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Introduction 
We have monitored in situ the growth of nonstoichiometric cuprous selenide spherical single 
crystals of equilibrium-like shape at fixed temperature of around 800 K, at fixed stoichiometry 
and fixed chemical potential difference between the surface of the growing crystal and the 
source of copper atoms /1/. Our crystal has grown within the sealed cylindrical ampoule which 
has been placed uniaxially within the tubular transparent furnace. The stability and 
homogeneity of the temperature in the growth region is very important and has been kept 
constant within ±0.25 K.  The growth process has been slow, with constant volume growth rate 
dV/dt=0.01 mm3/h, yielding radial velocities ranging between 15 and .3 nm/s. These crystals 
are ones of the very few known which exhibit ECS at almost millimetre sizes. At these 
temperatures the surface of these crystals exhibits atomically smooth facets separated by 
atomically rough rounded parts. The growth method has provided spherical single crystal with 
well developed (111) facets of cubooctahedral symmetry. Our aim has been the investigation 
of new growth modes in as wide range of growth rates as possible. We were to some extent 
motivated by the recently discovered so called burst-like mode of growth of 4He single crystals 
at the temperatures in the range between 2mK and 250 mK, which was found using the 
pressure difference measurements, rather than the interferometric measurements /2/. We need 
as precise measurements as possible since we are interested in studying the dynamics of the 
surface objects structure and correlating this structure to the microscopic balance of forces in 
the vicinity of the facet boundary using the model of stepped surface with repulsive step 
interactions. Therefore, we need the measurements with nanometre resolution, which can 
detect very small facet displacements. 
 
 
1 Digital interferometry 
As a suitable method for noncontact measurements of object displacements, we have chosen 
digital interferometry (DI) method. DI combines advantages of the interferometric sensitivity 
with computer processing by using a CCD camera. The CCD detector is converting optical 
fringe patterns first into electronic, and then into numerical data. Drawback of the method is 
still relatively large pixel size of the CCD detector area which implies the use of low 
numerical aperture configurations. In studying microscopic objects, DI was used for the 
determination of the resonant frequencies and mode shapes of vibrating atomic force 
microscope tips /3/. 
A schematic representation of our interferometer is shown in Fig. 1. The crystal was 
illuminated by the light of a Spectra-Physics 25 mW He-Ne laser (wavelength: 632.8 nm). An 
enlarged image of the facet was formed by an objective and captured by the CCD camera. We 
have placed a polarizer between the objective and CCD camera in order to select only 
polarization component of the light coming from the facet identical to the polarization of the  
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 Fig. 1. Scheme of the interferometric 
setup: M, mirror; VBS, variable beam 
splitter; S, shutter; C, collimator; WBS, 
wedge beam splitter; L, lens; Ob, object. 
 

reference beam. The reference beam was expanded by a spatial filter device and directed to 
the CCD camera by a wedge beam splitter. The interferometric setup is analogous to an 
electronic speckle pattern interferometer with a distinctive feature: the facet of the single 
crystal was optically flat most of the time of monitoring, and thus the speckled image of the 
facet was essentially specular. The interferometer, aligned on a vibration isolated table, was 
isolated from the furnace device, and completely covered, to prevent air convection. A special 
care was devoted to the control of all optical parameters as well as to the crystal growth 
conditions.  
 
 
2 Analysis of interferograms 
The recorded interference fringes have then been grabbed from the videotapes and analysed. 
We have chosen our frame-taking rate to be 25 frames per second since we wanted to increase 
the range of accessible growth rates as much as possible. Such high frame-taking rate has 
turned out to be necessary as well, because of the mechanical vibrations occurring during the 
growth. 
We have analysed the full two-dimensional digitised frames, i.e. interferograms (256 grey 
levels), on a square grid of 64*64 pixels. We have used and refined the Fourier-transform 
method of analysing fringe-patterns of the general form /4/: 
 
  g(r) = a(r) + b(r)·cos[2πq·r + Φ(r)], 
 
in which the desired information is contained in the phase field Φ(r), while a(r) and b(r) are 
the functions whose spatial dependencies originate from the imperfections of the 
measurements, and r=(x,y). The basic assumption of the method is that Φ(r), a(r) and b(r) are 
spatially slow varying functions on the scale established by the spatial-carrier frequency 
q=(qx,qy), which is given by the number of pixels per interference line. If this assumption is 
fulfilled, the Fourier spectrum contains features that are separated by q. The standard 
procedure /4/ proceeds by extracting out one of the first order maxima, centred either at q or –
q, and shifting it to the origin of the inverse space. After the inverse Fourier transform back to 
the real space, it is straightforward to extract the desired information, i.e. the phase field Φ(r). 
The first thing one may think about in order to enhance the quality of interferograms is the 
background subtraction. Since we have been dealing with a very large number of frames (72 
hours of continuous frame taking during the crystal growth, at the rate of 25 frames per 
second), some method of automatic background subtraction is mandatory. If the interferograms 
were “perfect”, one would expect that by adding up a certain number of subsequent 
interferograms an image without any interference lines would appear, and one might take this 



image as the background. The only prominent feature in the Fourier spectrum of such an image 
would be a zero order peak. Our method of “running background” subtraction is based on these 
considerations. Since we may not expect a perfect cancellation of interference pattern, we have 
established the following criterion. After each addition of a single frame, we have Fourier 
analysed the sum and found the ratio of first to zero order peak intensity. As long as this ratio, 
as a function of the number of frames added, diminishes, the frame added contributes to the 
disappearing of the interference pattern. When by adding n+1 frame the trend of diminishing of 
this ratio stops, we have pronounced the sum of n frames the “running background” and have 
subtracted it from each of the n frames. The (n+1)st frame has then been taken as the first in the 
new sequence of frames that would define the subsequent background image. By doing this we 
have been able to enhance the first to zero order peak intensity ratio (i.e. the signal to “noise” 
ratio) by more than two orders of magnitude. This would prove particularly useful in analysing 
the interferograms for which the carrier frequency is smaller, i.e. for which the first order peaks 
overlap with the zero order one. Moreover, such background subtraction enables the extraction 
of one of the first order maxima to be much more straightforward, i.e. it may be done without 
the introduction of Gaussian (or some other) window centred at the position of the first 
maximum in g(q). In Fig.2 we plot the Fourier spectrum g(q) of a typical frame without 
and with the subtraction of the background. 
 

  
 
 

Fig.2. Fourier spectra of a typical frame. Left: FT of raw data, right: FT of the same frame after 
the background has been subtracted. X and Y denote components of q. 
 
The above mentioned procedure of shifting one of the first order peaks into the origin of the 
spatial frequency space is straightforward and exact if the carrier frequency has integer 
components expressed in pixels, q=q0=(q0x, q0y) The optics of the experimental set-up usually 
yields non-integer pixel components of q, i.e. q=q0+δ, where δx, δy≤0.5, and that was the 
case in our measurements. The problem then consists in finding the deviation δ of the carrier 
frequency from the nearest pixels in the spatial frequency space. We have made use of the 
sampling theorem /5/, which states that a continuous function, sampled at an interval ∆ and 
bandwidth limited to frequencies smaller than the Nyquist critical frequency 1/(2∆) is 



completely determined by its samples. We have applied this theorem in the spatial frequency 
space, to the amplitude of the Fourier transform g(q), q=(qx,qy), which is a well behaved 
function in the frequency space. Explicitly, one has the following (“exact” interpolation) 
formula: 
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where gm,n stands for g(qx =m⋅∆qx,qy=n⋅∆qy). By making use of this formula, one has to 
calculate g(q) on the grid limited by δx, δy≤0.5 around the integer-pixel point q0, and 
obtain its values to the chosen sub pixel accuracy. The maximum of these values defines δ, i.e. 
the deviation of the carrier frequency components from the integer pixel values.  
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Fig. 3. x (lower panel) and y (upper panel) components of the spatial carrier frequency q=q0+δ 
which maximize the first maximum of the Fourier spectrum g(q).  
 
In Fig. 3 we plot the components qx and qy of the spatial carrier frequency for which g(q) 
acquires its maximum value as a function of time for first four hours of monitored growth. We 
shift now the chosen first order maximum to the origin of the spatial frequency space by the 
integer values q0, and upon the inverse Fourier transformation we obtain G0(r), which defines 
the uncorrected phase field Φ0(r). By expanding g(q), which is, owing to the “noise” 
contributions a and b, a continuous function of q, in Taylor series around q0, and by 
performing the inverse Fourier transform, one obtains, as expected, for the correction arising 
from the sub pixel correction δ to r: 



 ∆G(r)=exp(iδ⋅r), 
 
and the corrected value of the inverse transform reads  
 
 G(r)=G0(r)⋅exp(iδ⋅r). 
 
It is now straightforward to calculate from G(r) the corrected phase field Φ(r). 
We have tested the above described procedure on test functions involving non-integer 
components of the carrier frequency, and obtained phase field with the accuracy better than 
1%, independent of the value of (predefined) phase field, which enables the determination of 
facet displacement with the theoretical resolution better than 2 nm.  
In Fig.4 we plot the phase fields Φ(r) for two typical consecutive frames, and their difference 
∆Φ(r). All of the phase fields have been unwrapped by the standard procedure /6/.
 

 

 
Fig.4. Phase fields Φ(r) of two consecutive frames (left panel), and their difference (right 
panel). 
 
The facet displacement between two consecutive frames is given by: 

 

)2/cos(
1

4 θπ
λ
⋅⋅∆Φ=∆h , 

 
where λ is the wavelength of the laser beam used (λ=632.8nm), θ is the angle between the 
incoming laser beam and the beam reflected from the facet, and ∆Φ  is the phase difference 
∆Φ(r) averaged over the central part of the grid in real space. 
 
3 Results 
In Fig.5 we plot the cumulative facet displacement, i.e. the facet height as a function of time, 
for first four hours of monitored facet growth. We plot here as well, with the bold line, the 
same curve from which the high frequency features, originating mainly from the experimental 
noise and happening on the scale shorter that 15 minutes, have been removed. From this curve 
one may notice a growth mode of our crystal in which the intervals of fast growth (the growth 
rate being up to ≈15 nm/s) are separated by intervals of very slow growth (the growth rate 



falling to ≈0.3 nm/s). The detailed analysis of the obtained results, for much longer interval of 
growth, will be presented elsewhere /7/. 

 
Fig. 5. Single line: Facet height as a function of time. Bold line: The same curve upon the 
removal of features corresponding to time scale shorter than 15 minutes. 
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