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Introduction

Superconductivity, one of the most exciting phenomena in the solid state
physics, was discovered at temperature of only few Kelvin far back in time
in 1911. Since then an amazing number of different classes of materials,
from room temperature classical metals to cuprates, has been found showing
the same properties of a truly perfect bulk conductivity and an exclusion
of the magnetic flux from the interior. The temperature, at which super-
conductivity is detected, is increasing to higher and higher values, already
enabling important technical applications and promising us that some day
useable room temperature superconductors will revolutionize the way we live
our everyday life.

An exciting step forward was done when in 1957 Bardeen, Cooper, and
Schrieffer created their epoch making BCS theory of superconductivity. For a
moment superconductivity was seen as one of the best understood many-body
problems of the physics and in all materials the responsible mechanism was
seemingly exactly the same. Situation was significantly changed when in 1979
heavy fermion superconductors were discovered, closely followed by organic
superconductors in 1980 and high-temperature superconducting cuprates in
1986. It was found that these new superconductors exhibit unconventional
properties, many of which cannot be explained in the frames of the origi-
nal BCS theory. Thus the understanding of superconducting mechanism is
nowadays again a topic full of questions and mystery.

In this thesis, I will try to shed a new light on the problem of understand-
ing the ground state of the BEDT-TTF superconductors, which have been
for too long the object of quarrel between different experimental and the-
oretical groups in the world. Despite relatively low superconducting phase
transition temperatures, these materials prove to be very interesting, as they
have many things in common with other classes of superconducting materi-
als, in particular with high-temperature superconducting cuprates; That is,
they are highly anisotropic, two-dimensional materials, their superconduct-
ing state is located in the vicinity of the antiferromagnetic phase, and there
are indications of high electron correlations. Further, the crystal structure is
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rather simple, so investigations of the BEDT-TTF materials are promising
in terms of making a breakthrough in the understanding of the general prop-
erties of the superconducting mechanism. On the other hand, because of the
rich cuprate-like phase diagram, it is of vital significance to understand the
normal state, as well as both the superconducting and the insulating ground
states. Therefore, in this thesis we study and correlate the properties of the
superconducting and insulating spin density wave ground states.

Finally, it should be pointed out that ambitions of this thesis are not
limited on giving another study of the ground states, but they also provide
a plausible way out of the mystery of the determination of the exact su-
perconducting symmetry in the BEDT-TTF materials. Furthermore, it will
also provide a detailed description of the employed techniques and methods,
which are necessary in order to obtain a reliable and complete determination
of some of the magnetic properties of the studied superconductor. Therefore,
it could be used not only as a bare scientific contribution to the investiga-
tion of the problem of superconductivity, but also as a manual and guide
to a more reliable experimental determination of the magnetic properties in
superconducting materials.



1 Known properties of the
κ-(BEDT-TTF)2X materials

1.1 Phase diagram

Organic superconductivity was first reported by Jérome et al. [1] in 1980
in the quasi-one-dimensional organic material (TMTSF)2PF6. Further re-
search led to various novel compounds, the most distinguished of which
is the family of quasi-two-dimensional materials based on the BEDT-TTF
molecule. Up to this moment, the κ-(BEDT-TTF)2X materials of this family
[abbreviated as κ-(ET)2X], where X represents polymerized anion, achieve
the highest phase transition temperatures among low-dimensional organic
superconductors, making them the most suitable for the experimental study
of the superconducting state.

The first distinguished property of the κ-(ET)2X materials is the vicinity
of the superconducting (SC) and antiferromagnetic (AF) ground states, as
well as the paramagnetic and insulating normal states, which can be clearly
seen in the proposed phase diagram for the κ-(ET)2X phase (Fig. 1.1). Kan-
oda argues that the metal-nonmetal transition or the crossover depicted by
the shaded boundary in the figure is driven by electron correlations, which
corresponds to the Mott transition [2]. This is confirmed by the calculation
demonstrating that the effective Coulomb correlation value is very close to
the bandwidth one. Further, three materials in this phase

κ-(BEDT-TTF)2Cu[N(CN)2]Cl [abbreviated as κ-(ET)2Cl],

κ-(BEDT-TTF)2Cu[N(CN)2]Br [abbreviated as κ-(ET)2Br], and

κ-(BEDT-TTF)2Cu(NCS)2 [abbreviated as κ-(ET)2NCS]

have different ground states at the atmospheric pressure; That is, while the
former is an antiferromagnetic insulator, the latter two are superconductors.
In κ-(ET)2Cl, the applied pressure suppresses the AF state and stabilizes
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Fig. 1.1: Proposed phase diagram for κ-(ET)2X quasi-two-dimensional ma-
terials. An increase of the ratio of the effective Coulomb interaction and the
bandwidth (Ueff/W ) is analogous to the decrease of the pressure P on the
material. Shaded area corresponds to the phase diagram region, in which the
ratio Ueff/W is critical in regard to the Mott transition. “SC” denotes the
superconducting phase. [2]
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Fig. 1.2: The experimental phase diagram of κ-(ET)2Cl. “I”, “M”, “AF” and
“SC” denote the insulating, metallic, antiferromagnetic and superconducting
phases, respectively. Shaded area denotes region of the inhomogeneous phase
coexistence, while double-dashed line represents the AF-SC boundary. [3]

the SC state [3], whereas by deuterization of κ-(ET)2Br, the ground state is
gradually pushed from the SC toward the AF state [4]. The phase diagram
is, therefore, quite similar to that of the cuprates if doping is replaced by
pressure or deuterization.

Lefebvre et al. [3] studied the phase diagram of κ-(ET)2Cl experimentally
using the 1H nuclear magnetic resonance (NMR) and the ac susceptibility
measurements (Fig. 1.2). Significant hysteresis in the ac susceptibility and
a gradual change of the NMR line shape was discovered between 200 and
400 bars, pointing to a coexistence of the superconducting and antiferro-
magnetic phases. However, it remained unknown if the coexistence is of a
microscopic or a mesoscopic (e.g., stripes) type.

1.2 Normal state properties

1.2.1 Crystal structure

The κ-(ET)2X compound is composed of two organic, quasi-planar
molecules BEDT-TTF [bis(etilen-dithiolo)tetrathiofulvalen, abbreviated
also as ET], shown in Fig. 1.3, and one polymerized anion X. The BEDT-
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Fig. 1.3: BEDT-TTF molecule.

b (Å) a (Å) c (Å) ϕ(b, ac) V (Å3)
κ-(ET)2Cl 29.979 12.977 8.480 90◦ 3299
κ-(ET)2Br 30.016 12.942 8.539 90◦ 3317

a (Å) c (Å) b (Å) ϕ(a, cb) V (Å3)
κ-(ET)2NCS 16.256 13.143 8.456 110.28◦ 1695

Table 1.1: Lattice parameters in order of size, the angle between the longest
axis and the plane defined by other two axes, and the volume of the unit cell,
for the compounds elaborated in this thesis.

TTF molecules form mutually orthogonal dimers, which are then arranged
into the conducting layers sandwiched between the polymerized anion layers.

The κ-(ET)2Br and κ-(ET)2Cl crystals unit cell is orthorhombic (sym-
metry Pnma) and consists of two donor and two acceptor layers, that is of
four BEDT-TTF dimers and four anions (Fig. 1.4). The layers coincide with
the planes defined by two perpendicular crystallographic axes a and c, in a
way that the BEDT-TTF dimers close the angle of 45◦ with axes. The third
axis b coincides with the perpendicular direction to the ac planes.

On the other hand the κ-(ET)2NCS crystal unit cell is monoclinic (sym-
metry P21) and consists of only one donor and one acceptor layer, that is of
two BEDT-TTF dimers and two anions (Fig. 1.5). The layers coincide with
the planes defined by two perpendicular crystallographic axes b and c, in a
way that the BEDT-TTF dimers close the angle of 45◦ with axes. The third
axis a is canted for angle of 20.28◦ from the perpendicular direction to the
bc planes.

The reason for seemingly large discrepancy between unit cells lays in
the fact that the BEDT-TTF molecules are canted differently in regard to
the perpendicular direction in two successive layers in the κ-(ET)2Br and
κ-(ET)2Cl crystals, which is not the case in the κ-(ET)2NCS crystal. As a
result, the crystallographic directions and lattice parameters are completely
different. However, if the lattice parameters are written in the order of length
and the volumes of the unit cells are calculated, as illustrated in Table 1.1, it
is obvious that unit cells are very similar, apart from the fact that the unit
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Fig. 1.4: Three-dimensional view of the unit cell for the κ-(ET)2Cl and
κ-(ET)2Br crystals.
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Fig. 1.5: Three-dimensional view of the unit cell for the κ-(ET)2NCS crystal.

cell of the κ-(ET)2NCS crystal is smaller by half.

1.2.2 Electronic properties

The most important fact concerning the crystal structure is that small
differences do not influence important physical properties at room temper-
ature (RT), which are in principle exactly the same for all three materials.
Overlapping of the external BEDT-TTF molecular orbitals in the donor lay-
ers is strong in both planar directions, so these molecular orbitals form a
two-dimensional bandwidth. On the other hand, the inter-plane coupling
is very weak. The exact anisotropy data for conductivity were published
only for the κ-(ET)2Br material, giving the anisotropy inside the conductive
planes σa/σc ≈ 1.5 and the anisotropy between the conductive planes and the
direction perpendicular to them σa/σb ≈ 1000 [5]. The κ-(ET)2X materials
are therefore distinctly two-dimensional, which is also a prominent property
of cuprates.

Conductivity at RT inside the conductive planes amounts to about
1 (Ωcm)−1 in the κ-(ET)2Cl material [6], to about 30 (Ωcm)−1 in the
κ-(ET)2NCS material [7], and to the range of 1–50 (Ωcm)−1 in the κ-(ET)2Br
material, depending on the conditions of the synthesis [5]. There is no signifi-
cant difference among most of the samples of all materials in the temperature
region between RT and 100 K, where resistivity shows a weak semiconduct-
ing behavior. However, while the κ-(ET)2Cl thermal activation of resistivity
increases significantly below 60 K [8] (see Fig. 4.1 on page 60), resistivity
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Fig. 1.6: Numerically obtained dispersion relations for the two highest occu-
pied bands. Dashed line designates Fermi energy. [12]

of κ-(ET)2Br and κ-(ET)2NCS shows a hump around 80 K and metallic
behavior below that temperature [5, 7] (see Fig. 5.1 on page 68). Situation
is however complicated by the fact that the κ-(ET)2Br samples of some syn-
thesis display a metallic behavior in the whole temperature region between
RT and TC [9] (see Fig. 5.2 on page 68).

The situation regarding resistivity is further complicated by indications
that some Cu(II) may replace regular Cu(I) during synthesis, affecting the
resistivity behavior [10]. The correlation between different mean free paths
in samples of different syntheses and the presence of Cu(II) ions has also
been suggested [11].

Using the X-ray diffraction data in the κ-(ET)2Br and κ-(ET)2Cl ma-
terials at 127 K, Geiser et al. [12] determined electronic structure using the
tight binding calculation based on the extended Hückel method. According
to this calculation, qualitatively similar results were obtained for both ma-
terials, pointing in particular to the existence of two bands (Fig. 1.6), with
the values of WL ≈ 0.31 eV and WU ≈ 0.65 eV, for the lower and the upper
bandwidth, respectively. The obtained total bandwidth value amounts to
W ≈ 1.14 eV. A similar band structure was obtained in the κ-(ET)2NCS
material using the self-consistent orthogonalized linear combination of the
atomic orbitals method [13].

A formal oxidation arrangement assigns one hole per dimer, so the upper
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Fig. 1.7: Numerically obtained Fermi surface associated with the half-filled
band of Fig. 1.6. The box in the center denotes the Brillouin zone. [12]

band is half-occupied. Then the Fermi surface consists of overlapped de-
formed circles (Fig. 1.7), which results in the combination of an oval-shaped
quasi-two-dimensional cylinder and a pair of open quasi-one-dimensional
sheets. The predicted Fermi surface was successfully confirmed by the Shub-
nikov - de Haas and de Haas - van Alphen experiments, but only in the
κ-(ET)2Cl and κ-(ET)2NCS materials. In particular, measurements detect
two orbital frequencies, α due to the closed hole pockets and β due to the
magnetic breakdown encircling the entire Fermi surface [14], the values of
which are in a good quantitative agreement with the theoretical predictions.
The κ-(ET)2Br material exhibits, however, some slight aberrations from this
simple picture. The detection and value of the high frequency β orbital agrees
with the theoretical prediction, while the two distinctive low-frequency or-
bitals appear only after the pressure of about 5 kbar is applied at low tem-
peratures [15]. Note that this pressure corresponds well to the one at which
the superconducting state is completely suppressed. However, neither of the
two obtained frequencies agrees with the expected frequency value for α hole
pocket orbital. This discrepancy can be explained if results of the X-ray
measurements made by Nogami et al. [16] are taken into consideration. It
was reported that the superlattice structural transition, assigned to the lon-
gitudinal displacement or deformation of anion layer chains, appears below
200 K, which leads to the halving of the Brillouin zone in the kc direction. As
the result, the new bone-like, star-like and pocket-like Fermi surface struc-
tures appear, the areas of which correspond to the frequencies obtained by
the magnetotransport measurements [15].
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Fig. 1.10: Temperature dependance of the ESR molar magnetic susceptibility
for κ-ET2Cl. [19]

Despite of the high conductivity, normal state above the SC ground state
[in κ-(ET)2Br and κ-(ET)2NCS] shows several properties at the atmospheric
pressure that are distinct from conventional metals, supporting the impor-
tance of electron correlations. In particular, the Knight shift decreases sig-
nificantly below approximately 50 K, suggesting a suppression of the density
of the states – that is, the appearance of a pseudogap near the Fermi energy
(Fig. 1.8) [17]. A broad dip in the electronic density of the states around
the Fermi energy was also observed by the scanning tunneling microscopy
(STM) measurements below about the same temperature [18]. Finally, the
spin-lattice relaxation rate 1/T1 does not follow the Korringa law, valid for
most normal metals, which states that 1/T1T is independent of the tem-
perature. Instead, there is a peak in 1/T1T at about 50 K, which suggests
the presence of the short-range AF correlations (Fig. 1.9) [17]. This peak
disappears under the external pressure concomitantly with the suppression
of superconductivity and the disappearance of the drop in the Knight shift
behavior (Fig. 1.8).

A useful estimate of electron correlations can be obtained by using elec-
tron susceptibility data. The molar magnetic susceptibility was measured
using the electronic spin resonance technique in the κ-(ET)2Cl material by
Kubota et al. (Fig. 1.10) [19]. If the density of the states at the Fermi
energy N(EF) = 0.91 eV−1 [12] in these two materials is taken into consid-
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Fig. 1.11: Two possible conformations of the ethylene group. [21]

Fig. 1.12: Two possible arragements of the outer C-C bonds: (a) eclipsed
and (b) staggered. [12]

eration, it is obvious that the susceptibility is enhanced. Using the Hubbard
susceptibility expression one can estimate the Coulomb interaction value to
about U ≈ 1.04 eV for both materials [20]. Note that a similar value is also
reported by the authors of Ref. 17. The large interaction, comparable to the
bandwidth U ≈ W , is consistent with other experimental indications of the
strong electron correlations. On the other hand, since the same conclusion is
obtained for both the antiferromagnetic κ-(ET)2Cl and the superconducting
κ-(ET)2Br materials, the electron correlations in the normal state cannot
explain their difference of the ground state.

1.2.3 Relaxation effects

Another important normal state feature that requires special attention
is an order-disorder transition that bears glassy features, first reported by
the ac specific heat measurements [21]. The transition was ascribed to the
gradual freezing down of the remaining motion of the ethylene groups of
the BEDT-TTF molecules, which are thermally activated at high tempera-
tures between the two possible conformations (Fig. 1.11), as reported by the
X-ray diffraction measurements [12]. That is, the relative orientation of the
outer C-C bonds can be either eclipsed or staggered (Fig. 1.12). Upon low-
ering the temperature, the former and the latter are adopted for κ-(ET)2Br
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Fig. 1.13: Coefficient of the thermal expansion perpendicular to the planes,
α⊥, versus T close to the glass transition for (a) κ-(ET)2Cl (b) κ-(ET)2Br,
and (c) κ-(ET)2NCS. Solid and open symbols denote the heating and cooling
curves, respectively. No cooling-rate dependence of behavior was observed
for rates between −0.02 K/min and −5 K/min. [22]

and κ-(ET)2NCS, respectively. The X-ray measurements also report that at
127 K the ethylene groups are already ordered in the whole bulk, however
the authors of Ref. 21 argued that the sensitivity of the calorimetry is much
higher than the diffractometry concerning the disorder and that the disorder
of the ethylene groups at this temperature could still exist. The existence of
the glass transition was confirmed by the measurements of the coefficient of
the thermal expansion [22], which determined transition regions and transi-
tion temperatures more precisely. The transition region is situated between
60 and 80 K in the κ-(ET)2Cl [Fig. 1.13(a)], between 65 and 85 K in the
κ-(ET)2Br [Fig. 1.13(b)], and between 45 and 75 K in the κ-(ET)2NCS ma-
terial [Fig. 1.13(c)]. Transition temperatures were identified at TG ≈ 70 K
in the κ-(ET)2Cl, at TG ≈ 75 K in the κ-(ET)2Br, or at TG1 ≈ 70 K and
TG2 ≈ 53 K in the κ-(ET)2NCS material.

An important question arises whether the order-disorder transition in
the κ-(ET)2Br material is somehow connected to the reported superlattice
structural transition below 200 K, which doubles the lattice parameter along
c-axis [16]. The authors argued that the transition is due to the longitudinal
displacement of chains in the anion layer. The NMR studies showed that the
motion of ethylene groups starts freezing below 200 K and that an incom-
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Fig. 1.14: The resistivity as a function of the temperature for the κ-(ET)2Br
sample cooled at different cooling rates. [24]

mensurate modulation of the electron density is observed below that temper-
ature [17]. In order to elucidate relaxation transition, Tanatar et al. [23] took
the resistance measurements of the structural relaxation kinetics; That is, the
isothermal time dependent resistivity and temperature dependent resistivity
as a function of the thermal history were measured. They argued that the
competition between the interaction of ethylenes with anions and the energy
difference between two molecular conformations determine whether a super-
structure or ordered state is formed. In connection to the NMR results they
concluded that between 100 K and 200 K the incommensurate superstructure
of the ethylene groups exists, the presence of which could also be connected to
the reported superlattice transition. Further, they report that a coexistence
of two phases, the ethylene groups superstructure and the ethylene groups
ordering, exists between 60 K and 100 K, with the temperature of 80 K as
the border between the two phases. In accordance with other experiments,
(re)ordering bears glassy properties in this temperature region, while below
60 K the ordered phase finally stabilizes.

Anyhow, the passage through the region of the glass transition appears
to play a crucial role regarding the level of the residual intrinsic disorder
at low temperatures for all three materials alike. Rapid cooling rates are
reflected in the smaller resistivity ratio between TG and TC for κ-(ET)2Br
and κ-(ET)2NCS materials and larger resistivity humps centered at about
60 K (Fig. 1.14) [4, 25]. The residual disorder might also be connected to
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the anomalous changes in the thermal expansion behavior at about 80 K,
in particular with a large and abrupt change and a small hysteresis in the
behavior of the linear expansion of coefficients along all three principle axes
[26, 27]. That is, in κ-(ET)2Br the linear expansion of a parameter changes
the sign, while the linear expansions of b and c show rapid drop of the value.

The sample dependence and relaxation effects were also observed in the
magnetization measurement results for κ-(ET)2Br [28]. Samples of one syn-
thesis show the second peak in the magnetization versus field (M−H) curve,
corresponding to the dimensional crossover in the vortex system, in contrast
to crystals of another synthesis that show only one. The observed anomalous
cooling rate dependence of the M −H curve was attributed to the change in
the resistivity curves and the remnant disorder in the sample.

1.3 Insulating spin density wave state in

κ-(BEDT-TTF)2Cu[N(CN)2]Cl

The first magnetization measurements performed by Welp et al. [29]
claimed an antiferromagnetic transition at 45 K and a weak ferromagnetic
state below 22 K. Later, the results of the NMR measurements showed a
large enhancement of the spin-lattice relaxation rate below 50 K and a sharp
peak at 27 K [30]. The former was interpreted to be due to the antiferro-
magnetic spin fluctuations, and the latter as a sign of an antiferromagnetic
phase transition. Indeed, the established order is commensurate with the un-
derlying lattice and possesses a rather large moment of (0.4–1.0) µB/dimer,
which is much larger than the value of 0.08 µB/molecule observed in the case
of the spin density wave in (TMTSF)2PF6 formed by itinerant spins [31]. In
addition, magnetization measurements by former authors [30] showed that
the weak ferromagnetism appears below 23 K due to the canting of spins.
As in this temperature region a finite energy gap is already opened in the
charge degrees of freedom, Miyagawa et al. [30] suggested that the magnetic
ordering of localized spins driven by the electron-electron correlations was
in the origin of the observed phase transition. Kino et al. [32] proposed a
theoretical model in which the AF ordering with the large magnetic moment
and a simultaneous metal-to-insulator phase transition is predicted as the ef-
fect of a strong enough on-site Coulomb interaction within the Hartree-Fock
approximation.

Magnetic anisotropy measurements showed that an antiferromagnetic
transition with a concomitant canted antiferromagnetic state is established at
22 K [6]. The easy axis was confirmed to be along the crystallographic b-axis
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Fig. 1.15: Torque versus angle in the bc-plane at 4.2 K for two field values.
Arrows (1,2,3) and (4) indicate the increasing and decreasing fields (H =
300 Oe), respectively. [6]

with the AF spins canted by angle 6×10−2 degrees from it. It was argued that
the observed features might be well described if the Dzyaloshinsky-Moriya
interaction is taken into account [33]. Magnetic field reversal of the ferro-
magnetic magnetization also indicated the existence of a domain structure
(Fig. 1.15) [6]. It was concluded that the low-temperature state is the weak
ferromagnetic state divided in domains with the equivalent spin configura-
tions.

1.4 Superconducting state in

κ-(BEDT-TTF)2Cu[N(CN)2]Br and

κ-(BEDT-TTF)2Cu(NCS)2

The superconducting ground state in κ-(ET)2Br and κ-(ET)2NCS ma-
terials is established below TC ≈ 11.5 K and TC ≈ 9.5 K, respectively [35].
Reported penetration depths, in accordance to the structure of the mate-
rials, are strongly anisotropic, that is λ‖ = 0.5 − 2 µm [36, 37, 38] and
λ⊥ = 40−300 µm [36, 39, 40, 41]. Coherence length values are much smaller,
ξ‖ = 20 − 60 Å and ξ⊥ = 3 − 7 Å, which gives κ‖ ≈ 300 and κ⊥ ≈ 2 × 105

for the Ginzburg-Landau parameters. Hagel et al. [34] have also determined
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Fig. 1.16: Lower critical field HC1 for κ-(ET)2Br for the field perpendicular
to isotropic planes determined by two different methods. [34]

critical magnetic fields for the κ-(ET)2Br material. The lower critical field,
below which the Meissner state is established, is presented in Fig. 1.16.

The presence of the significant electron correlations strongly favors the
possibility of an unconventional SC. Results in favor of a d-wave order param-
eter have been obtained by different experimental techniques. The 13C NMR
measurements showed that the spin-lattice relaxation rate follows a T 3 de-
pendence at very low temperatures. This result, together with the Knight
shift experiment, provides evidence for spin-singlet pairing with nodes in
the gap [42]. The low-temperature specific heat [43], as well as the ther-
mal conductivity [44], also showed a power-law behavior Cs(T ) ∝ T 2 and
κ(T ) ∝ T , respectively. Further, the penetration depth λ(T ), measured by
microwave cavity perturbation [38], tunnel diode oscillation [39], muon-spin
relaxation [45], and ac susceptibility [46], also displayed the power-law be-
havior, usually in the form of a T and/or a T 2 behavior for λ(T ) at low
temperatures.

The possibility of the unconventional pairing was also predicted by theo-
retical calculations. Louati et al. [47] have proposed that the nesting between
the pair of the open quasi-one-dimensional sheets is responsible for the strong
antiferromagnetic correlations. The calculation quantitatively reproduces the
unusual behavior of 1/T1T and Knight shift in the normal state, and it also
suggests an anisotropic mechanism for the SC pairing in a form of the antifer-
romagnetic fluctuations, which leads to the formation of the d-wave pairing.
The nesting mechanism opens an AF gap in the open quasi-one-dimensional
sheets, so the superconductivity is attributed to the oval-shaped quasi-two-
dimensional cylinders.
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Further, the calculation showed that the increase of the t1/t2 ratio, where
t1 and t2 represent transfer integrals between the BEDT-TTF dimers in two
different in-plane crystallographic directions, decreases the value of the super-
conducting coupling constant. Concomitantly both Fermi surfaces deform,
the nesting is no longer perfect and the antiferromagnetic correlation weak-
ens. Therefore, if one connects the increase of the t1/t2 ratio, to the increase
of the external pressure, it is possible to explain the disappearance of super-
conductivity, as well as the disappearance of the peak in 1/T1T . Since the
t1/t2 ratio is related to W/Ueff, this explains the relation between the pres-
sure and the Ueff/W ratio implicitly given in the κ-(ET)2X phase diagram
(Fig. 1.1).

Further, recent angle-resolved measurements of the SC gap structure us-
ing STM [48] and the thermal conductivity [49] both clearly showed the
fourfold symmetry in the angular variation, characteristic of the d-wave su-
perconducting gap. Former also report the maximum value of the order
parameter to be ∆(0) = 3.4 kBTC, what is substantially more than expected
for the s-wave pairing. However, both measurements have revealed that the
nodes are directed along directions rotated by 45◦ relative to the in-plane
crystallographic axes, indicating the dx2−y2-wave superconductivity. Such a
nodal structure indicates that both Fermi surfaces should participate in the
SC pairing, what is in contrast with theoretical predictions [47].

In contrast to the presented indications of the superconducting order pa-
rameter with nodes, some other penetration depth studies using the cavity
perturbation technique [36], the muon-spin relaxation [50], and the dc mag-
netization [51], as well as the most recent specific heat measurements [52, 53],
led to results favoring a conventional s-wave order parameter. In particular,
a strong-coupling s-wave order parameter was claimed to be observed in the
latter experiments. Unlike the previous specific heat measurements [43], in
which the lattice specific heat was measured in the deuterated κ-(ET)2Br
material, the ground state of which is the AF state, in the latter experiments
the lattice specific heat was measured in the normal state produced by fields
higher than HC2 ≈ 10 T. However, authors of Ref. 43 argue that in case
of huge fields some additional terms due to possible paramagnetic localized
moments or impurities can appear and obscure the reliability of the lattice
specific heat, especially at temperatures below 1 K.

The question arises as to what the source of the conflicting results is
and how this discrepancy could be resolved. As far as the experimental
determination of the penetration depth in the mixed state is concerned [50,
51], fields as low as 70–300 Oe might present a serious problem, as pointed
out by Lee et al. [37]. Above these fields the rigid three-dimensional vortex
lattice is replaced by the quasi-independent two-dimensional lattices, and the
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result for the penetration depth might be influenced by the complex vortex
dynamics. On the other hand, additional complications might occur due to
an order-disorder transition, described in Sec. 1.2.3. And finally, attention
should be given to the difference in properties depending on the sample, that
is, the synthesis of the sample.



2 Theory of unconventional
superconductivity

In this chapter the extension of the most successful theory of superconduc-
tivity up to date – the BCS theory of superconductivity – will be presented.
After the original theory was first published in 1957 by Bardeen, Cooper and
Schrieffer [54], it instantly became one of the most successful microscopic
theories in the physics of the condensed matter. However, it was the dis-
covery of new superconducting materials, heavy fermion superconductors in
1979, organic material superconductors in 1980, and high-temperature su-
perconducting cuprates in 1986, that threw shadow on its ultimate success.
Nevertheless, further theoretical developments proved that the basic princi-
ple of the original BCS theory, the formation of the superconducting Cooper
pair, is still valid, and that the theory should only be extended by assuming
the possibility of an anisotropic wave function of the Cooper pair.

This assumption paved the way to immense number of different wave
functions and physical properties resulting from them. However, all new
phenomena can be qualitatively classified in only a few distinct situations,
depending on the dimensionality of the Fermi surface and the topology of the
superconducting energy gap. The topic is still too general and too compre-
hensive for primarily experimental thesis on superconductivity. Therefore,
for the matter of simplicity only the singlet spin Cooper pairs will be con-
sidered in particular details, while the extensive literature, on which this
presentation is based [55, 56, 57], provides a more detailed insight into all
possibilities. Further, we limit analysis for the case of a three-dimensional
Fermi surface, while in the case of a two-dimensional Fermi surface, a special
care has to be exercised, as for example in Sec. 6.3.

2.1 Cooper pair

The basic idea that lays behind the BCS theory is the assertion made by
Cooper in 1956 [58]; That is, the Fermi sea of electrons is unstable against



2 Theory of unconventional superconductivity 25

the formation of at least one bound pair, regardless of how weak the inter-
action is, so long as it is attractive. The question arises as to what kind of
interaction could be responsible for the attractive interaction between two
electrons. It turns out that there are many mechanisms, which could lead
to such interaction, as far as an appropriate mediator of the interaction be-
tween two electrons is included. Even before the BCS theory was published,
it was known that if electron-lattice interaction is taken into account, an
attractive term in the interaction of electrons appears. Thus, a part of inter-
action between two electrons, mediated by vibrations of the crystal lattice
(so-called phonons) gives an almost isotropic attractive interaction, leading
in the original BCS theory to the formation of the Cooper pairs with a zero
angular momentum (s-wave). Later it turned out that other mediators, like
ferromagnetic (so-called paramagnons) and antiferromagnetic (so-called an-
tiparamagnons) spin fluctuations also give an attractive interaction, which is
however essentially anisotropic and leads to the formation of the Cooper pairs
with a non-zero angular momentum (p-wave, d-wave . . . ). The anisotropic
pairing of the Copper pair is (at least in the experimental community) usually
referred to as the unconventional superconductivity .

In order to demonstrate the formation of the Cooper pair, the generalized
approach of the Cooper’s originally simple model will be presented. Two
electrons are added to Fermi sea of electrons, very near to Fermi surface,
with the stipulation that the extra electrons interact with each other, but
not with those of the sea, except via the exclusion principle. Thus, we want
to solve the two-particle wave function ψ(r), where r is relative position
vector of two electrons, using the Schrödinger equation. In the momentum
(k) representation we obtain the following expression

~2k2

m
g(k) +

∫
d3k′

(2π)3
V (k− k′)g(k′) =

(
∆ +

~2k2
F

m

)
g(k), (2.1)

where g(k) is the two-particle wave function in the momentum representa-
tion, V (k − k′) the potential between two electrons, m electron mass, kF

Fermi wave vector and ∆ bounding energy. The interaction potential is a
function of the momentum direction and can be expanded using spherical
harmonics Ylm(k̂)

V (k− k′) =
∞∑

l=0

Vl(k, k′)
l∑

m=−l

Ylm(k̂)Y ∗
lm(k̂′). (2.2)

In the weak coupling limit the potential is assumed to be non-zero, but
constant and attractive only within a thin layer over the Fermi surface
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εl ¿ εF = ~2k2/2m, where εF represents Fermi energy. That is,

Vl(k− k′) = −Vl, for εF <
~2k2

2m
,
~2k′2

2m
< εF + εl. (2.3)

Using Eq. (2.3) and replacing the summation over wave vector with the
integration over energy relative to Fermi energy ξ = ~2k2

F/2m−εF, we finally
obtain

{
~2

m
(k2 − k2

F)−∆

}
g(k)−

−N0

∫ εl

0

dξ′
∫

dΩ′

4π

∞∑

l=0

Vl

l∑

m=−l

Ylm(k̂)Y ∗
lm(k̂′)g(k′) = 0, (2.4)

where N0 represents the density of the states at the Fermi level. Each value
of the orbital angular momentum l corresponds to a specific eigenfunction
gl(k) with eigenenergy ∆l. Therefore, by expanding g(k) using spherical
harmonics Ylm(k̂)

g(k′) = gl′(k
′) =

l′∑

m′=−l′
al′m′(k′)Yl′m′(k̂′), (2.5)

where al′m′(k′) are expansion coefficients, and using the orthonormality prop-
erty of spherical functions we finally obtain

{
~2

m
(k2 − k2

F)−∆l

}
gl(k)−N0Vl

∫ εl

0

dξ′gl(k
′) = 0,

gl(k) =
N0Vl

2ξ −∆l

∫ εl

0

dξ′gl(k
′). (2.6)

Integrating both sides of Eq. (2.6) over ξ in range (0, εl), given that the
interaction is sufficiently weak, N0Vl ¿ 1, gives

∆l =
2εl

1− e
2

N0Vl

≈ −2εle
2

N0Vl . (2.7)

Thus a bound state, the energy of which is a function of the orbital angular
momentum, occurs in the case of an arbitrarily weak interaction between two
electrons.

The Cooper pairs are composed of fermions with spin S = 1
2
, so the pair

wave function should describe a bozon with a total spin of S = 0 (singlet)
or S = 1 (triplet). On the other hand, the whole wave function should be
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antisymmetric with respect to the exchange of two particles. In the case
of the singlet state, the spin part of the wave function can be written as
(α1β2−β1α2), where indices denote particle numbers, while α and β refer to
the “up” and “down” spin states, respectively. The spin part must then be
combined with the spatial part of the wave function to give the total wave
function of the Cooper pair

ψl(k) = (α1β2 − β1α2)gl(k) = (α1β2 − β1α2)
l∑

m=−l

alm(k)Ylm(k̂). (2.8)

Note that the condition for the antisymmetry of the whole function requires
that the spatial part is symmetric; That is, l must take even values l =
0, 2, 4, . . ..

On the other hand, in the case of the triplet state three distinct spin parts
of the function can be written (α1α2), (α1β2 + β1α2), and (β1β2) with the
z-spin projection of Sz = 1, Sz = 0, and Sz = −1, respectively. The total
wave function of the pair is

ψl(k) = (α1α2)gl,1(k) + (α1β2 + β1α2)gl,2(k) + (β1β2)gl,3(k),

with gl,d =
l∑

m=−l

alm,d(k)Ylm(k̂).
(2.9)

Note that the condition for the antisymmetry of the whole function requires
that the spatial part is antisymmetric; That is l must take odd values l =
1, 3, 5, . . ..

2.2 Symmetry considerations

It was shown in the previous section that the Cooper pair wave func-
tion can be expanded using the spherical harmonics. The condition for the
antisymmetry of the whole function, which imposed that the space part of
the wave function is either symmetrical or antisymmetrical, significantly re-
duced the number of acceptable spherical harmonics by halving the number
of acceptable angular momentum values l. Moreover, when the supercon-
ducting state in crystals is considered, the number of possible allowed spher-
ical harmonics is further reduced by the requirement that the wave function
symmetry should be in accordance with the crystal symmetry. Taking into
consideration that the presence of the interaction can reduce the symmetry
of the wave function, we conclude that the wave function symmetry should
be equal or lower than the crystal symmetry.
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Mathematically speaking, we can form a group of α, β = 1 . . . d linear
combinations of the spherical harmonics, ψα, that are transformed into them-
selves by any symmetry operator g from the crystals symmetry group G, that
is

ψα(gk̂) = ψα(k̂′) =
d∑

β=1

cα,βψβ(k̂),

where cα,β are transformation coefficients. One says that such a group of d
functions forms the basis of an irreducible representation Γ of a certain spatial
symmetry group G. For example, in an isotropic system, which is invariant
under all spatial rotations, the irreducible representations are labeled by
the value of the orbital angular momentum l, and the set of the 2l + 1
spherical harmonics with the given orbital momentum l forms the basis of
the irreducible representation. In the case of the triplet state of the Cooper
pair also the spin-orbit coupling should be considered. Only in the case of
the negligible spin-orbit coupling, the states remain degenerate with respect
to the rotation of spin vectors, while for the strong spin-orbit coupling spin
becomes a “bad” quantum number.

After the appropriate irreducible representation Γ with α = 1 . . . d ele-
ments is determined, we can write the wave function of the singlet Cooper
pair as a linear combination of them

g(k) =
d∑

α=1

ηαψα(k̂). (2.10)

The set of complex coefficients ηα is called the order parameter . Supercon-
ducting states with either a one-component order parameter η = |η|ei ϕ or
multi-component order parameters are plausible.

In addition to the point symmetry operations, the symmetry group G of
the normal state also contains the operation of time reversal R and gauge
transformations U(1):

G = U(1)×R×G.

The transition to a superconducting state causes phase coherence, i.e., states
with different phases ϕ of the order parameter |η|ei ϕ become distinguishable,
which is usually described as the spontaneous breaking of gauge symmetry
U(1). Other types of symmetry breaking of the symmetry group G may
also occur as a result of the transition in a particular superconducting state.
Then the point symmetry of the superconducting state does not have full
point symmetry of the crystal lattice and one usually refers to such cases (at
least in the theoretical community) as to the unconventional superconduc-
tivity . Mathematically speaking, the conventional superconductivity corre-
sponds to the identity representation, denoted as A1g or Ag in Tables 2.1,
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d Γ ψα(k̂)
1 A1g az2 + b(x2 + y2)
1 A2g xy(x2 − y2)
1 B1g x2 − y2

1 B2g xy
2 Eg xz, yz

Table 2.1: Basis functions ψα(k̂) of even (S = 0) representations of group D4h

(tetragonal crystals). Γ denotes representation name and d its dimensionality.

d Γ ψα(k̂)
1 A1g ax2 + by2 + cz2

1 A2g xy
1 B1g xz
1 B2g yz

Table 2.2: Basis functions ψα(k̂) of even (S = 0) representations of group
D2h (orthorhombic crystals). Γ denotes representation name and d its di-
mensionality.

2.2 and 2.3, while all other representations correspond to the unconventional
superconductivity. Note that this is the second possible, more theoretical
definition of the term “unconventional”, apart from the one we have already
presented in Sec. 2.1. However, this theoretical definition is rather rarely
used, so in the rest of this thesis we shall stick to the experimental definition
of the unconventional superconductivity as to the superconducting state in
which the pairing is anisotropic (non-s-wave pairing).

The accumulated data concerning the low-temperature behavior of high-

d Γ ψα(k̂)
1 Ag ax2 + by2 + cz2 + dxy
1 Bg axz + byz

Table 2.3: Basis functions ψα(k̂) of even (S = 0) representations of group
C2h (monoclinic crystals). Γ denotes representation name and d its dimen-
sionality.
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Fig. 2.1: Order parameter dx2−y2 for κ-(ET)2X materials. Thick lines repre-
sent the Fermi surface, lines with a medium thickness superconducting gap
and thin lines the Brillouin zone and crystallographic axes. Dashed lines
represent node directions in the superconducting gap.

temperature superconducting cuprates suggests the formation of the dx2−y2

pairing. Since the crystal structure of most cuprates is tetragonal (Table 2.1),
this means that the pairing is in theoretical terms unconventional (B1g). It
is however remarkable that the dx2−y2 pairing is absolutely conventional for
the remaining cuprates with an orthorhombic crystal structure (Table 2.2).

Finally, for both superconducting κ-(ET)2X salts, κ-(ET)2Br, which has
an orthorhombic crystal structure (Table 2.2), and κ-(ET)2NCS, which has
a monoclinic crystal structure (Table 2.3), the dx2−y2 pairing is in theoretical
terms conventional. For the illustration, the relation between Fermi surface
and gap structure according to angle-resolved experiments [48, 49] is shown
in Fig. 2.1.

2.3 Energy of elementary excitations

In Sec. 2.1 the creation of the superconducting pair was sketched using the
two-body method. In order to study other interesting properties, especially
the elementary excitations in the superconductor, the many-body approach
should be applied. For this purpose the second quantization method is most
appropriate. Please note that for the reason of simplicity, only singlet Cooper
pairs will be examined in this section.

A special, BCS Hamiltionian has to be constructed in order to account
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for the attraction potential between electrons in the Cooper pairs

H =
∑

kσ

ξkc
+
kσckσ +

∑

kk′
Vkk′c

+
k↑c

+
−k↓c−k′↓ck′↑. (2.11)

Here, c+ and c are creation and annihilation operators of electrons, respec-
tively, σ refer to any spin state, while ↑ and ↓ refer to the “up” and “down”
spin states, respectively. The instability of the electron gas to this Hamiltio-
nian against the formation of the Cooper pairs can be taken into account by
expressing the wave function in the form of the following product

|Ψ〉 =
∏

k

(uk + vkc
+
k↑c

+
−k↓)|0〉, (2.12)

where vk and uk are probabilities that the (k ↑,−k ↓) state is occupied or
vacant, respectively, while |0〉 represents the vacuum state. Obviously,

v2
k + u2

k = 1. (2.13)

The importance of the above expression of the ground state is that it is
the superposition of states with different numbers of the Cooper pairs. The
consequence of this fundamental fact is non-vanishing values of so-called
anomalous averages

bk =

{ 〈Ψ|c−k↓ck↑|Ψ〉, T = 0,
〈c−k↓ck↑〉, T > 0.

(2.14)

Note that the function bk determines the expectation value of the Cooper
pair, so it corresponds to the Cooper pair wave function g(k). Because of
the large number of the particles involved, the fluctuations about bk should be
small, so it would be useful to express the corresponding product of operators
formally as

c−k↓ck↑ = bk + (c−k↓ck↑ − bk) (2.15)

and subsequently neglect the quantities which are bilinear in the presumably
small fluctuation term in parentheses. This is so-called mean-field approach
to the solution of the system. Using this approach, the BCS Hamiltonian is
transformed into the form

H =
∑

kσ

ξkc
+
kσckσ +

∑

kk′
Vkk′(c

+
k↑c

+
−k↓bk′ + b+

k c−k′↓ck′↑ − b+
k bk′). (2.16)

Further, if we use the definition of the mean-field potential

∆k = −
∑

k′
Vkk′bk′ = −

∑

k′
Vkk′〈c−k′↓ck′↑〉, (2.17)
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the Hamiltonian transforms to

H =
∑

kσ

ξkc
+
kσckσ −

∑

k

(∆kc
+
k↑c

+
−k↓ + ∆+

k c−k↓ck↑ −∆kb
+
k ). (2.18)

Note that ∆k has the symmetry as g(k). For a zero mean-field potential
∆k = 0, there is no superconductivity and the anomalous averages as well
as the pair wave function must vanish g(k) = 〈c−k↓ck↑〉 = 0. Similarly, for
a positive or a negative ∆k, g(k) is also positive or negative, respectively.
Therefore, we can take that their space dependencies are identical to some
proportionality factor ∆, that is,

∆k = ∆ g(k). (2.19)

In order to diagonalize the Hamiltionian, we have to perform the Bogoli-
ubov transformation. This is done by defining the new Fermi operators γ+

k

according to equations

ck↑ = u+
k γk0 + vkγ

+
k1,

c+
−k↓ = −v+

k γk0 + ukγ
+
k1.

(2.20)

The Hamiltionian is diagonalized for the condition

2ξkukvk + ∆+
k v2

k −∆ku
2
k = 0,

i.e.,
∆+

k vk

uk

=
√

ξ2
k + |∆k|2 − ξk. (2.21)

Finally, the diagonalized Hamiltionian reads

H =
∑

k

(ξk − Ek + ∆kb
+
k ) +

∑

k

Ek(γ
+
k0γk0 + γ+

k1γk1), (2.22)

where γ+
k obviously represents the operator of creation of the elementary

excitation with energy Ek =
√

ξ2
k + |∆k|2. As anticipated, ∆k plays the role

of an energy gap.

2.4 Phase transition temperature

In order to fulfill the self-consistency of our calculation, the solution for
〈c−k′↓ck′↑〉 must be inserted back to Eq. (2.17). If we rewrite ck operators in
terms of γk operators and drop combinations γ+

k0γ
+
k1, which do not contribute

to averages, we find

∆k = −
∑

k′
Vkk′u

+
k′vk′〈1− γ+

k′0γk′0 + γ+
k′1γk′1〉. (2.23)
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Taking into account that 〈γ+
k′0γk′0 + γ+

k′1γk′1〉 equals to two times the proba-
bility of excitation, we can write 1−〈γ+

k′0γk′0 +γ+
k′1γk′1〉 = 1−2f(Ek), where

f(E) = (1+ eE/kT )−1 is the Fermi-Dirac distribution. Replacing u+
k′vk′ using

Eqs. (2.13) and (2.21), we finally obtain

∆k = −
∑

k′
Vkk′

∆k′

2Ek′
tanh

Ek′

2kT
. (2.24)

As pointed out in Sec. 2.1, in weak coupling limit the potential is assumed
to be non-zero and attractive only within a thin layer over the Fermi surface
ε ¿ εF = ~2k2/2m. However, potential is anisotropic, so the Eq. (2.3) should
be transformed to

Vkk′ = −V
g(k)g(k′)

N
, for εF <

~2k2

2m
,
~2k′2

2m
< εF + ε, (2.25)

with N ≡
π∫

0

sin ϑ′dϑ′
2π∫

0

dϕ′g2(k′). (2.26)

Putting Eqs. (2.19) and (2.25) into Eq. (2.24) we get

Ng(k) = −N0

4π
g(k)V

ε∫

0

dξ′
π∫

0

sin ϑ′dϑ′
2π∫

0

dϕ′
g2(k′)
2Ek′

tanh
Ek′

2kT
.

Using the substitution x =
√

ξ′2 + ∆2g2(k′), and using ε À ∆ for integral
limits we finally obtain

N = −N0

8π
V

ε∫

0

dx

π∫

0

sin ϑdϑ

2π∫

0

dϕ
g2(k)√

x2 −∆2g2(k)
tanh

x

2kT
. (2.27)

Here we dropped the index of k in the integration which is no longer necces-
sary.

At 0 K, tanh(x/2kT ) is replaced by unity, ∆ = ∆(0), so the expression
after the integration reduces to

N = −N0

8π
V

π∫

0

sin ϑdϑ

2π∫

0

dϕg2(k)

ε∫

0

dx
1√

x2 + ∆2(0)g2(k)

= −N0

8π
V

π∫

0

sin ϑdϑ

2π∫

0

dϕg2(k) ln
ε +

√
ε2 + ∆2(0)g2(k)

∆(0)g(k)
.
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Taking that ε À ∆(0), we finally obtain

N =
N0

8π
V




π∫

0

sin ϑdϑ

2π∫

0

dϕg2(k) ln g(k)− ln

(
2ε

∆(0)

)
N


 . (2.28)

On the other hand, at phase transition temperature TC superconducting
gap vanishes ∆ = 0 and Eq. (2.27) reduces to

N = −N0

8π
V

π∫

0

sin ϑdϑ

2π∫

0

dϕg2(k)

ε∫

0

dx
tanh(x/2kTC)

x

= −N0

8π
V

π∫

0

sin ϑdϑ

2π∫

0

dϕg2(k)

ε/2kTC∫

0

dy
tanh(y)

y

= −N0

8π
V ln

(
4eγ

π

ε

2kTC

)
N. (2.29)

Here we used expression

A∫

0

tanh(x)

x
dx = ln

(
4eγ

2π
A

)
,

where γ ≈ 0.577 is the Euler’s constant.
Comparing Eqs. (2.28) and (2.29) we finally obtain

∆(0) = πe−γe−S kBTC,

with S =

π∫

0

sin ϑdϑ

2π∫

0

dϕg2(k) ln g(k)
/ π∫

0

sin ϑdϑ

2π∫

0

dϕg2(k).
(2.30)

Obviously, for the isotropic situation g(k) = 1, S = 0, and the expression
reduces to the well-known BCS expression ∆(0) = πe−γ kBTC = 1.76 TC.

2.5 Bulk properties

In this Section calculations will be made assuming the closed Fermi
sphere. Such Fermi surface is indeed very unlikely to appear in the unconven-
tional superconductors, however such assumption simplifies the explanation
of the calculation. On the other hand, the final results are not influenced by
the Fermi surface shape, but depend solely on the topology of the nodes.
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Knowing the shape of the energy gap for the superconductor, one can eas-
ily calculate the variation of thermodynamic quantities at low temperatures.
The electronic specific heat is defined as

Cs =
∑

kα

Ek
∂fk

∂T
=

N0

2π

∞∫

0

dξ

π∫

0

sin ϑdϑ

2π∫

0

dϕ
1

T 2

E2
k eEk/T

(eEk/T + 1)2
. (2.31)

In the case of the full gap coupling in the limit, T → 0, Ek =
√

ξ2 + ∆2 ≈
∆ + ξ2/2∆, Eq. (2.31) gives

Cs ≈ 2N0∆
2

T 2
e−∆/T

∞∫

0

dξe−ξ2/2∆T ≈
√

2πN0T

(
∆(0)

T

)5/2

e−∆(0)/T .

When energy of the quasiparticle is in the form Ek =
√

ξ2 + ∆2 sin2 ϑ,
we see that the gap has nodes for (ϑ = 0, π), that is, two node points appear
in the case of the closed Fermi sphere. Taking into consideration that the
main contributions to the integral in Eq. (2.31) come from the regions around
these node points (ϑ < ξ/∆, π − ϑ < ξ/∆), Eq. (2.31) can be rewritten as

Cs ≈ N0

4πT 2

∞∫

0

dξ
ξ2

cosh2(ξ/2kT )

ξ/∆∫

0

ϑdϑ

2π∫

0

dϕ =
7π4

30
N0T

(
T

∆(0)

)2

.

When energy of excited electron is in the form Ek =√
ξ2 + ∆2 sin4 ϑ sin2 2ϕ (dxy-wave), we see that gap has nodes for (ϑ = 0, π)

and (ϕ = 0, π/2, π, 3π/2). Latter nodes actually absorb former, so two circles
– that is, node lines – appear in the case of the closed Fermi sphere. Taking
into consideration that the main contributions to the integral in Eq. (2.31)
come from the regions around these lines (|ϕ| < ξ/∆, |π/2 + ϕ| < ξ/∆, . . .),
Eq. (2.31) can be rewritten as

Cs ≈ N0

πT 2

∞∫

0

dξ
ξ2

cosh2(ξ/2kT )

π∫

0

sin ϑdϑ

ξ/∆∫

0

dϕ =
36ζ(3)

π
N0T

(
T

∆(0)

)1

.

The following expressions were used in the calculations above:

∞∫

0

dzz4

cosh2 z
=

7π4

240
;

∞∫

0

dzz3

cosh2 z
=

9

8
ζ(3)
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Taking into account that the normal state specific heat at low temperatures
is proportional to Cn ∝ T and that TC ∝ ∆(0) we can finally write

Cs

Cn

∝





(
TC

T

)5/2

e−
TC
T , nodeless gap,

(
T
TC

)2

, gap with point nodes,(
T
TC

)
, gap with line nodes.

(2.32)

The next important contribution concerns the paramagnetic susceptibil-
ity . Although the weak magnetic field, which is screened by the persistent
superconducting currents, does not penetrate in the superconductor bulk,
the spin (Pauli) paramagnetism in superconductors is an observable phe-
nomenon. Now the susceptibility of the electron gas in the superconducting
state will be calculated. In the case of the singlet pairing, the supercon-
ducting pairs give no contribution to the susceptibility, so the entire spin
magnetic moment is due to the quasiparticles

M = µB

∑

k

[f(Ek,−)− f(Ek,+)],

where Ek,± = Ek ± µBH are energies of excitations with spins parallel and
antiparallel to the magnetic field H, and µB = 9.27 × 10−24 J/T is Bohr
magneton. We can rewrite the expression as

M = 2µ2
BN0H





1

4π

∞∫

0

dξ

π∫

0

sin ϑdϑ

2π∫

0

dϕ
∂f(Ek)

∂Ek



 = 2µ2

BN0HY, (2.33)

where

Y = ρn =
1

8π

∞∫

0

dξ

π∫

0

sin ϑdϑ

2π∫

0

dϕ
1

kT

eEk/T

(eEk/T + 1)2

=
1

16πkT

∞∫

0

dξ

π∫

0

sin ϑdϑ

2π∫

0

dϕ
1

cosh2(Ek/2kT )
(2.34)

is called the Yosida function and determines the fraction of the normal elec-
trons ρn in the superconductor. Now, the susceptibility is simply defined
as

χ =
∂M

∂H
= 2µ2

BN0Y. (2.35)
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Using the same reasoning as for the specific heat, and the expression for the
susceptibility in the normal state χn = 2µBN0, it can be easily shown that

χs

χn

= Y ∝





(
TC

T

)1/2

e−
TC
T , nodeless gap,

(
T
TC

)2

, gap with point nodes,(
T
TC

)
, gap with line nodes.

(2.36)

The spin magnetic moment is also screened by the persistent supercon-
ducting currents, so a special procedure should be performed in order to mea-
sure susceptibility of the quasiparticles. For that reason the NMR method
is employed. It is a well-known fact that, when the sample is located in
a magnetic field H, there exists a strong absorption of the electromagnetic
radiation at frequencies, which coincide with the magnetic precession fre-
quencies of the nuclear spins. Further, if a particular electron is described by
the wave function ψ, there exists a certain probability |ψ|2 that its magnetic
moment µe is located at the nucleus site with the magnetic moment µn. This
obviously leads to the interaction between two magnetic moments

Hint ∝ |ψ|2µnµe = |ψ|2µn
χH

ne

,

where ne is the density of the (normal) electron gas. The existence of an extra
interaction changes the frequency of the absorbed electromagnetic waves by

δω ∝ µn|ψ|2
ne~

χH ∝ χ. (2.37)

This effect is known as the Knight shift . By measuring the ratio δωs/δωn, one
can determine the susceptibility of the quasiparticles in the superconducting
state, as well as the density of the normal electrons. The Knight shift is
also a useful probe for the spin pairing of the superconducting electrons. If
the Cooper pair is a singlet, the Knight shift should go smoothly to zero at
T = 0, which is not the case for the triplet Cooper pair.

Using the similar procedure other physical quantities at low temperatures
can be also obtained. Another example is the spin-lattice relaxation rate
1/T1, which is at low temperatures given as [59]

1
T1,s

1
T1,n

∝





(
TC

T

)7/2

e−
TC
T , nodeless gap,

(
T
TC

)5

, gap with point nodes,
(

T
TC

)3

, gap with line nodes.

(2.38)
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In a superconductor, the sum of the normal electron density ρn and the
superconducting electron density ρs should give unity. Using Eq. (2.34) we
can therefore write

ρs = 1− ρn = 1− 1

16πkT

∞∫

0

dξ

π∫

0

sin ϑdϑ

2π∫

0

dϕ
1

cosh2(Ek/2kT )
. (2.39)

This physical quantity is usually referred to as the superfluid density and is
of primary interest in our research. In accordance to the behavior of the nor-
mal electron density [Eq. (2.36)], the superfluid density at low temperatures
shows exponential temperature behavior for the nodeless superconducting
symmetry and power-law, in particular a linear and a squared temperature
behavior, for the superconducting gap with the line and the point nodes,
respectively.



3 Experimental determination
of superconducting quantities

As it was elaborated in Sec. 1.4, an enormous experimental as well as the-
oretical attention was directed toward the determination of the symmetry of
the superconducting state so far, however the effort was shadowed by contra-
dictory results. Starting from this point, our idea was not only to make yet
another research of the superconducting state, but also to solve the mystery
of the observed discrepancy. Indeed, we believe that our research, consid-
ering the experimental technique, has several advantages when compared to
the measurements that were done so far.

First, it should be noted that the measurement of the penetration depth
has one distinct advantage; The measurements of the penetration depth allow
direct calculation of the density of the superfluid electrons. Most experiments
described in Sec. 1.4 are based on the measurement of a particular physical
quantity, originating from the quasiparticles in the system. Therefore, these
experiments usually face large problems in order to distinguish between the
quasiparticle contribution and other (most notably phonon) contributions
to the measured physical quantity. Further, in our experiment the penetra-
tion depth was obtained in the truly Meissner state, so the vortex effects
were excluded as well. And finally, we performed full characterization of the
material using the same single crystal and the same experimental method
in two different magnetic field positions, parallel and perpendicular to the
isotropic planes. In order to succeed in obtaining reliable absolute values of
the penetration depth, not only in the parallel but also in the perpendicular
geometry, for the first time we have used, according to our best knowledge,
the improved calibration method in the former case. The details of the ex-
perimental technique, as well as the extended data analysis, will be given in
the following sections.
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Fig. 3.1: Schematic diagram of the ac susceptibility measurement. For clarity,
the secondary coils are drawn outside of the primary coil.

3.1 ac susceptometer

The experimental methods of the magnetic response measurement can
be divided into two groups: static and dynamic, depending on whether the
sample is placed into the time-invariant or the time-dependent – usually
harmonic – magnetic field. The absolute value of the magnetic moment and
the change of the magnetic moment, is detected in the former and the latter
case, respectively. However, if the measurement is done in the linear part
of the magnetic response function near the zero-field value, both methods
give the same result. Moreover, the obtained magnetic response function is
complex; That is, while the real part of the function gives us a magnetic
response of the studied system, the imaginary part of the function gives us
an insight into the dissipation processes.

The method of the ac susceptibility [60], as one of the dynamic methods,
is based on the fact that the inductance of the coils changes if a magnetized
sample is placed inside of it. If such a coil is positioned in the harmonically
time-dependent magnetic field, the induced voltage will be changed by the
contribution of the sample. The voltage change in the low-field limit can be
directly connected to the dynamical ac susceptibility.

In the basic setup the ac susceptometer consists of three coaxially placed
coils; One primary coil, which is used to create a time-dependent magnetic
field and two identical secondary (pick-up) coils inside of it, which are con-
nected in a way that their induced voltages are subtracted (Fig. 3.1). Ob-
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viously, without a sample, the induced voltage of each of the coils equals to
U1 = U2 = U0, so their subtraction U equals to zero. A magnetized sam-
ple inserted in one of the coils changes the magnetic flux Φ threading the
coil. Thus, by the virtue of the Faraday law, the overall induced voltage U1

changes by the flux (i.e., magnetization) time rate

U1 = U0 + µ0
dΦ

dt
= U0 + µ0GS

dM

dt
, (3.1)

where G represents geometrical factors of the detection coil, S is the filling
factor, M sample magnetization, and µ0 = 4π × 10−7 H/m the permeability
of the vacuum. In general, the contribution of the sample is much smaller
than the induced voltage of the empty coil. This small signal of our pri-
mary interest can be easily extracted by the compensation of U0, in a setup
described above. In this case the resulting voltage U can be written as

U = U1 − U2 = µ0GS
dM

dH

dH

dt
, (3.2)

if we also take into consideration that the time-dependent magnetic response
is introduced by the time-dependent magnetic field. The term dM/dH rep-
resents the measured dynamic susceptibility χm. If the time-dependent part
of the magnetic field Hac is harmonic with the frequency ω, that is

H = Hdc + Hace
iωt,

the final expression for the resulting voltage reads as

U = i ωµ0GSχmHac. (3.3)

In what follows, we discuss important properties of the ac susceptibility
method. First, U is obviously shifted by a certain phase with regard to Hac,
and moreover χm is in general a complex function. The measurements setup
requires therefore a phase-sensitive detection. Further, it is also necessary
to ensure that all the relaxation mechanisms in the sample are faster than
the change of the magnetic field – in this case the measured susceptibility
represents the isothermal susceptibility. In the opposite case we would mea-
sure the adiabatic susceptibility, which is always smaller than the isothermal
one. Finally, strictly speaking the setup measures the redistribution of the
magnetic flux due to the sample insertion into one of the coils. Only if all
flux lines originating from the sample are closed outside the secondary coil,
the setup measures the sample magnetism. This is precisely true only if the
sample area exactly matches the area of the secondary coil. Since this con-
dition is technically impossible to fulfill, a special variable called the filling
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Fig. 3.2: Block scheme of the ac susceptometer. [60]

factor is introduced, which gives the proportion between the measured and
the actual flux originating from the sample. The filling factor depends solely
on the geometrical factors and is obviously always smaller than the unity.
For small samples it is generally proportional to the sample volume.

Measurements of the ac susceptibility were performed using a commercial
ac susceptometer (CryoBIND/Sistemprojekt, Zagreb [61]) (Fig. 3.2). A long,
four layers copper coil immersed into a liquid nitrogen bath is used as the
primary coil (P). Three short coils are used as secondary coils, coaxially po-
sitioned along the axis of the primary coil and immersed into a liquid helium
bath. Two of them, 14 layers A and B coils, are balanced to the induced
voltage equivalent to one coil turn or better. These coils are used to measure
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the induced voltage U , as described above, which is then amplified using the
EG&G 1901 low noise transformer. When both of them are empty, there still
exists a small non-zero induced voltage due to the residual unbalance of the
A and B coils. The third secondary coil (C) has the function to compensate
this signal with the use of the autotransformer. The lock-in EG&G 5210 is
used as the source of the current for the primary coil, as well as the phase
sensitive voltmeter. The tip of the sample holder is made of the single crys-
tal sapphire, an electrical insulator with a good thermal conductivity at low
temperatures. During the measurement the tip is positioned in the center
of the upper secondary coil (A). The heater made of the nonmagnetic resis-
tance wire, and powered by the buffered DAC (digital-to-analog converter)
output of the lock-in EG&G 5210, is attached to the top of the sapphire
block. The sensitivity of such system, expressed in equivalent magnetic mo-
ments, is ∆m = 2×10−9 emu in the broad temperature range. A gold 0.07%
iron-copper thermocouple attached to the sapphire block is used as a ther-
mometer. It is distinguished by the high sensitivity in the whole temperature
range between 1.5 and 300 K and by the negligible magnetic contribution at
low temperatures. The freezing-point of the water is used as a reference tem-
perature. Finally, the studied sample, attached to the sapphire block, has a
good thermal contact with both the heater and the thermometer. The whole
setup is controlled by the computer.

3.2 Calibration

In addition to the filling factor explained above, another general experi-
mental problem concerning the measurement of susceptibility should be ad-
dressed. Namely, when the sample is positioned in the applied magnetic field
Happ, it is magnetized and its own magnetization M is the source, due to
the sample finiteness, of an additional magnetic field in the sample vicin-
ity. This field is historically called the demagnetizing field Hdem, since for
the paramagnetic materials its contribution is opposite to the applied field.
The demagnetizing field is determined by the geometry of the sample and
the exact calculation is possible only in the cases of some special geometries.
An instructive example represents the ellipsoid sample. When the ellipsoid
sample is located in the applied field Happ, it is uniformly magnetized [62]
and the only Hdem contribution, proportional to the sample magnetization,
comes from the discontinuity of the magnetization at the sample surface. In
calculating the susceptibility, the field that has to be taken into accounts is
the total field in the sample vicinity

Htot = Happ + Hdem = Happ −DM.
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The constant factor D is called the demagnetization factor and depends solely
on the geometrical parameters of the ellipsoid. For the samples of other reg-
ular shapes, magnetization is not uniform, and there is an additional Hdem

contribution due to the divergence of the sample magnetization. Neverthe-
less, for some distinct geometries, e.g., disks [63], it is still possible to make
approximate calculations of the demagnetization factor. Knowing the value
of D, the correction to the measured susceptibility χm = dM/dHapp due to
the extra magnetic field can be easily calculated. The correct value of the
susceptibility – that is, the value that is the property of the material itself –
is then equal to

χ =
dM

dHtot

=
dM

dHapp

dHapp

dHtot

=
χm

1−Dχm

. (3.4)

Real samples practically never come in the ideal shapes and it is practi-
cally impossible to perform the precise calibration. Nevertheless, for special
cases the demagnetization factor can be neglected. As it was pointed out
before, the demagnetization factor depends exclusively on the geometrical
parameters of the sample. Further, it turns out that only if the dimension
of the sample parallel to the magnetic field l‖ is much larger than the largest
dimension of the sample perpendicular to the magnetic field l⊥, i.e., l‖ À l⊥,
the demagnetization factor is small and can be neglected (D ≈ 0). As the ra-
tio l⊥/l‖ increases, D becomes monotonically larger and more sensitive to the
tiny difference in the geometrical parameters. Therefore, only the measure-
ment of the needle-shaped samples, with the needle direction parallel to the
magnetic field, enables us to get the exact value of the material susceptibility
straightforwardly.

In our particular case the material is a quasi-two-dimensional one, so in
order to get the full physical characterization of the sample, the magneti-
zation should be measured in at least two distinct orientations. Obviously,
even if a particular sample complies with the l‖ À l⊥ condition in one of
the orientations, it cannot possibly comply with this condition for two dis-
tinct orientations. Nevertheless, in order to eliminate the filling factor and
to get the exact value of the magnetization in our samples for two distinct
orientations, a specially conceived calibration of the system was performed.

The κ-(ET)2X crystals are thin rhombic platelets with faces parallel to
the conducting planes and with a typical face dimension almost one order of
magnitude larger than a typical thickness. In order to obtain full character-
ization of the sample, it has to be attached to the sapphire sample holder
in a way that the applied ac field is either perpendicular or parallel to the
high-conducting planes of the studied single crystals. From now on, the
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Fig. 3.3: The κ-(ET)2Br (above) and its reference sample (below).

case of a magnetic field aligned with the crystallographic axis perpendicu-
lar to the high-conducting crystal planes [b-axis for κ-(ET)2Br, a∗-axis for
κ-(ET)2NCS], is denoted as the Hac ⊥ plane, while the case of a magnetic
field direction lying inside the high-conducting crystal plane [ac plane for
κ-(ET)2Br, bc plane for κ-(ET)2NCS] is denoted as the Hac ‖ plane.

The principle of our calibration is based on the creation of the specially
and carefully designed niobium foil, which we will from now on refer to as
the reference sample. For each κ-(ET)2Br or κ-(ET)2NCS single crystal, a
special reference sample was created independently to ensure that its dimen-
sions and shape were as close as possible to the original (see Fig. 3.3). Using
Eqs. (3.4) and (3.3), the total voltage induced on the detection coils when
we measure the κ-(ET)2X sample can then be rewritten as

U = i ωµ0GSHac
χ

1 + Dχ
. (3.5)

Similarly, for the reference sample, the voltage induced on the detection coils
equals to

Ur = i ωµ0GSrHac
χr

1 + Drχr

. (3.6)

Index “r” designates the reference sample. From now on, I will refer to
the expression 1/(1 + Dχ) as the demagnetization effect . In general, the
susceptibility as well as the induced voltage are complex quantities, and
the extraction of the real and the imaginary voltage components leads to
complicated expressions. However, since we measure in the purely Meissner
regime, where the imaginary component of susceptibility amounts to χ′′ =
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χ′′r = 0, Eqs. (3.5) and (3.6) give the exact relationship between the real part
of the induced voltage and the real part of the susceptibility.

Taking into account that, at low temperatures, the penetration depth
in the niobium reference sample is negligible compared to its dimensions, we
can take for calibration purposes that the zero-temperature real susceptibility
amounts to χ′r(0 K) = −1 (full diamagnetism). Then we can obtain the value
for the susceptibility of the κ-(ET)2X sample from Eqs. (3.5) and (3.6)

χ′ = −Sr

S

1
1−Dr

1
1+Dχ′

U

Ur(0 K)

The corresponding zero-temperature voltage value Ur(0 K) is obtained by
the interpolation of the measured data in the temperature region between
the lowest measured temperature Tmin = 4.2 K and Tmax < TC,r = 9.25 K,
where TC,r represents the superconducting phase transition temperature of
the reference sample. Interpolations for different Tmax values gave practically
identical results.

If measured samples are much smaller than the detection coil, the filling
factor is generally proportional to the sample volume, so we finally get the
following expression

χ′ = −Vr

V

1
1−Dr

1
1+Dχ′

U

Ur(0 K)
(3.7)

where V and Vr are volumes of the κ-(ET)2X and the reference sample,
respectively.

Diamagnetic volume of the superconducting sample in the Meissner state
under an applied magnetic field is related to the absolute real part of the
susceptibility |χ′| = −χ′. The volume of the sample penetrated by the mag-
netic field is therefore related to 1−|χ′| = 1+χ′. The latter quantity enables
calculations of the penetration depth and the superfluid density. Obviously,
both measured quantities −χ′ and 1+χ′ contain the same experimental error,
which in our experiments amounts to a few percent of the measured χ′ value.
This fact requires special attention when the sample is in the Hac ⊥ plane
geometry.

The calibration procedure described above is widely accepted as reliable
for obtaining the absolute value of the penetrated volume and consequently
the penetration depth value for the κ-(ET)2X samples in the Hac ‖ plane
geometry. In this geometry the ratio l‖/l⊥ ≥ 2 is the largest. The conse-
quence is that D is very small and does not depend much on the sample
geometry [63]. In other words, the demagnetization effect is close to 1, and
also does not depend much on the sample geometry. Therefore, even if the
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κ-(ET)2X and its reference sample are not very similar, the middle factor in
Eq. (3.7) can be simply replaced by the unity:

χ′ = −Vr

V

U

Ur(0K)
. (3.8)

Further, in this case the κ-(ET)2X sample susceptibility is not close to the
completely diamagnetic and the penetrated volume and its corresponding
quantity 1 + χ′ are at least one order of magnitude larger than the experi-
mental error.

This is, however, not true for the Hac ⊥ plane geometry. In this case the
κ-(ET)2X sample susceptibility is almost completely diamagnetic (χ′ ≈ −1)
and consequently the value 1+χ′ is smaller for about one order of magnitude
than in the opposite geometry. Further, the ratio between the sample dimen-
sion parallel to the magnetic field and other two perpendicular dimensions is
also smaller for about one order of magnitude than for the opposite geome-
try (l‖/l⊥ < 0.5). As a result, the demagnetization factor is large and much
more sensitive to the sample geometry, which increases experimental error in
−χ′ and 1 + χ′. The strong decrease in 1 + χ′ value and the increase in its
experimental error leads to a situation, where the 1+χ′ data are smaller than
the corresponding error. Obviously, this makes the extraction of the pene-
tration depth values extremely difficult. This is the reason why the previous
authors [39, 46], failed to publish absolute values of the penetration depth.
Taniguchi et al. [4] actually performed a simple calibration for this geometry,
in order to get absolute values of χ′. They calculated the demagnetization
factor using ellipsoid approximation and claimed an error of 10% in χ′ abso-
lute value for χ′ ≈ −1, which we consider to be underestimated, taking into
account the complexity of the real sample geometry. Nevertheless, even this
error is too large to enable a reliable extraction of the penetration depth.

Initially, following this conventional reasoning, we also did not obtain the
absolute value of the penetration depth directly [64]. Later, however, we have
developed a method, which strongly decreases the experimental error in χ′

to less than 1% and allows us to get the reliable absolute value of penetrated
volume for the Hac ⊥ plane geometry as well [65]. In the following, we argue
and show that our claim is justified.

The obvious solution of the problem is to calculate the exact demagneti-
zation factor for both samples, which is however an extremely difficult task.
This is due to the fact that the demagnetization factor is analytically available
only for ellipsoids and numerically calculated for some other ideal bodies, like
cubes and cylinders. The real samples, however, do not match any of these
shapes. Therefore, our starting point is that the reference sample represents
a perfect copy of the studied sample (Fig. 3.3), implying very close values of
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A
db l

Fig. 3.4: Approximation of the real sample with face area A and thickness b
with the disk of diameter d = 2

√
A/π and length of l = b.

the respective demagnetization factors D and Dr. Since the κ-(ET)2X sam-
ple susceptibility is almost completely diamagnetic in this geometry, we can
use the approximation χ′ ≈ −1. Therefore, demagnetization effects for both
samples must be very close in value and the middle factor in Eq. (3.7) in the
first order of approximation can be replaced by the unity. Further, in order
to improve the precision and eliminate the small remaining difference in the
demagnetization effect, the middle factor in the second order of approxima-
tion is calculated by the following procedure. Both κ-(ET)2X and reference
sample were taken to be fully superconducting disks (that is, thin cylinders
with an aspect ratio of length and diameter of about 0.4) with the same face
area and the same thickness as their originals (Fig. 3.4). We consider the disk
approximation to be more suitable for a description of the real sample than
the ellipsoid one, used by the authors of Ref. 4. We base this assertion on
the fact that the former approximation describes better rather sharp sample
edges, which might give a substantial contribution to the demagnetization
factor. The middle factor in Eq. (3.7) is then given by the calculated ratio
of demagnetization effects for these two bodies, 1

1−Ddisk,r
/ 1

1−Ddisk
, that is

χ′ ≈ −Vr

V

1
1−Ddisk,r

1
1−Ddisk

U

Ur(0K)
. (3.9)

The systematic error due to the approximation of the specific shape of sam-
ples to the shape of the disk is obviously canceled out by division. Numerical
data for the demagnetization factor for the disk were taken from the litera-
ture [63].

In order to calculate the area and thickness, the dimensions of both
κ-(ET)2X and reference sample were carefully measured with a high pre-
cision of 1%. The precision was verified by the following procedure. All
significant niobium reference sample dimensions were measured and the vol-
ume was calculated. In addition, the same reference sample was weighted
and the volume was calculated using the niobium density ρNb = 8.57 g/cm3.
The difference between two obtained values was always about 1%. Finally,
the middle factor in Eq. (3.9) obtained in this way differs from the unity
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Fig. 3.5: Simulation of the systematic experimental error in the penetration
depth evaluation: the ratio of actual and experimentally obtained penetra-
tion depth as a function of experimentally obtained susceptibility for plain
calibration (solid lines) and our improved calibration (dashed lines). The
circle denotes the area of the most interest.

in only a few percent. This shows that the calculation procedure and the
starting assumption are valid.

In the end, we comment on the approximation χ′ ≈ −1 in Eq. (3.9) in the
cases when the susceptibility is not very close to −1. In order to probe the
systematic experimental error in the whole susceptibility range 0 > χ′ > −1
for the Hac ⊥ plane geometry, a computer simulation has to be done. The
disk approximation of our typical sample gives the demagnetization factor
in range 0.7 > D > 0.5. Since the real sample has more irregular face con-
tours, compared to the round contour of the disk approximation, the real
sample demagnetization factor should be somewhat larger. Therefore, in the
computer simulation we postulated that the actual demagnetization of the
sample amounts to Df ≈ 0.7. For the sake of comparison we shall simulate
the results as if two different calibrations were used for the Hac ⊥ plane
geometry; the one that was used in the Hac ‖ plane geometry [Eq. (3.8)], de-
noted as the plain calibration and the one that was used in the Hac ⊥ plane
geometry [Eq. (3.9)], denoted as the improved calibration, despite of the
fact that we have already argued that the former is not effective. In order
to make the simulation, the difference between the experimental estimation
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of the demagnetization factor De and the actual demagnetization factor Df

should also be defined. De/Df ≈ 0.85 and De/Df ≈ 0.99 was postulated
for plain and improved calibration, respectively. The results of the simula-
tion are presented in the Fig. 3.5. There the ratio of the actual λf and the
experimentally obtained λe penetration depth as a function of the experi-
mentally obtained susceptibility χ′e is shown for both calibrations. When
χ′ approaches −1, 1 + χ′ approaches zero, its error becomes uncomparably
larger than the value itself, so the systematic error diverges for all calibra-
tions. However, for χ′ ≈ −0.99 situation differs significantly. While the
error for the plain calibration is still huge (λf/λf ≈ 10), the improved cali-
bration already gives a reasonably small systematic error (see the encircled
area). These results are in full accordance with what we have pointed out
before; That is, it is generally believed that it is impossible to make a suc-
cessful calibration in the proximity of χ′ ≈ −1, but also that our improved
analysis strongly improves the situation for samples with almost completely
diamagnetic susceptibility. On the other hand, it should be noted that for
χ′ > −0.98 the improved calibration becomes less reliable. For χ′ > −0.8 it
is even less reliable than the plain calibration.

In the end, we resume that our improved calibration procedure for the
Hac ⊥ plane geometry is accurate in 1 + χ′ to ±33% for χ′ close to −1 and
to about −50% for −0.96 > χ′ > −0.5. As for the Hac ‖ plane geometry,
the accuracy in 1 + χ′ is estimated to be about 15% for all measured low-
temperature χ′ values.

3.3 Experimental conditions

In order to probe the samples in the Meissner state care was taken to
reduce the amplitude of the ac field (Hac) until the component χ′(T ) was
independent of Hac (Hac < 42 mOe) and the χ′′(T ) component was negligible.
The field used for the extraction of the penetration depth, Hac = 14 mOe
is well below the critical field for both conditions. Still it is large enough
to perform reliable measurements. No frequency dependence (13 Hz < f <
2 kHz) was observed for Hac < 1 Oe, so the frequency of the magnetic
field was fixed to 231 Hz. In addition no influence of the Earth’s field was
observed: runs performed with compensation for the Earth’s field gave the
same results. This is in accordance with the fact that the reported values for
lower critical magnetic fields HC1(T ), corrected for demagnetization, are far
above the Earth’s field HE for all temperatures below 8 K. In this temperature
region HC1(T ) ≥ 10 Oe (see Fig. 1.16 on Page 21) [34], while the value of
the Earth’s field obtained in our laboratory is HE ≈ 0.36 Oe [66].
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The data were taken by warming in well-controlled temperature sweeps
between the lowest attainable temperature 1.5 K (obtained by pumping liq-
uid helium bath) and about 1 K above the phase transition temperature TC.
The temperature sweep speed was between 0.3 K/min and 0.5 K/min. An-
other issue that drew our attention was the possibility of an experimental
artefact in temperature measurement, due to the thermal gradients along the
sample holder. Namely, for different sample orientations the position of the
sample on the holder differs and for the Hac ‖ plane geometry the thermome-
ter is located almost half-way between the sample and the heater. Despite
the fact that the choice of the sapphire as the sample holder material does not
favor the presence of any large gradient, we decided to perform a straightfor-
ward experimental test to eliminate the possibility of the appearance of the
artefact. For this purpose one of the reference niobium samples, which has
been used for calibration, was measured at same two distinct positions on
the sample holder and under the same measuring conditions as the sample
itself, that is, sweep speed was between 0.3 K/min and 0.5 K/min. For all
orientations and sweep speeds, the obtained phase transition temperature
was in the range of 9.25 K < TC,r < 9.29 K. The results show that only a
small temperature difference less than 0.05 K exists between the curves, in
particular in the region of the onset of diamagnetism (i.e., TC) and that the
value is in full accordance with the literature value of TC,r = 9.25 K.

3.4 Penetration depth extraction

Once the susceptibility data are obtained, they have to be analyzed in
order to obtain the penetration depth temperature dependance, as well as
the values at zero temperature. The starting point is the standard formula
for a thin superconducting plate in a parallel field [67]

1 + χ′ =
2λ

l
tanh

(
l

2λ

)
, (3.10)

where λ is the penetration depth and l is the sample width in the direction of
the field penetration. If we take into account that the ratio (2λ)/l is actually
the ratio between the volume penetrated by the magnetic field VP and the
whole sample volume V , we can generalize Eq. (3.10) to

1 + χ′ =
VP

V
tanh

V

VP

. (3.11)

In the Hac ‖ plane geometry circulating supercurrents flow within the
isotropic planes and also across them, giving a contribution to two dis-
tinct in-plane λin and out-of-plane λout penetration depths, respectively [see
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Fig. 3.6: Simplified depiction of the sample in (a) Hac ‖ plane and
(b) Hac ⊥ plane geometry. Shaded parts of the sample represent the vol-
ume penetrated by the magnetic field. Condition λout/λin À lin/lout in (a)
ensures that λin can be neglected in the analysis.

Fig. 3.6(a)]. Then Eq. (3.11) should be rewritten as

1 + χ′ =
(

2λout

lout

+
2λin

lin

)
tanh

(
2λout

lout

+
2λin

lin

)−1

. (3.12)

However, in most of the studied crystals the condition λout/λin À lout/lin
is easily fulfilled, no matter which absolute λ values from literature are used.
Then the in-plane penetration depth λin can be neglected in Eq. (3.12) and
the out-of-plane penetration depth λout can be obtained from the suscepti-
bility data using the expression [see Fig. 3.7(a)]

1 + χ′ =
2λout

lout

tanh

(
lout

2λout

)
. (3.13)

The direct confirmation of the validity of use of Eq. (3.13) instead of
Eq. (3.12) was verified on two measured samples, as will be shown in the
beginning of Sec. 5.2.

Especially, if the sample sides are not aligned perfectly to the magnetic
field, or the sample does not have regular and mutually perpendicular sides
[see Fig. 3.7(b)], then the expression for the penetration depth can be ex-
tracted directly from Eq. (3.11). In this case the penetrated volume amounts
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Fig. 3.7: Simplified depiction of the sample in the Hac ‖ plane geometry for
the situations (a) when the sample sides are perfectly aligned to the magnetic
field and (b) when the sample sides are canted from the magnetic field direc-
tion. Shaded parts of the sample represent the area (volume) penetrated by
the magnetic field. λin contribution is not shown.

to VP ≈ 2lHλoutd and the whole volume to V = Ad, where d is the thickness
of the sample, A the area of the face, and lH the maximal dimension in the
direction of the magnetic field. Finally, this gives us the following expression

1 + χ′ =
2lHλout

A
tanh

A

2lHλout

≡ 2λout

lλ
tanh

lλ
2λout

, (3.14)

where lλ is defined as lλ ≡ A/lH . In most cases sample sides are not perfectly
aligned to the magnetic field, so in the analysis Eq. (3.14) was used much
more often than Eq. (3.13).

Now we address in more detail the Hac ⊥ plane geometry. The magnetic
field is strictly perpendicular to the conducting planes, so is the respond-
ing magnetization that expels it out of the bulk. The resultant circulating
supercurrents will therefore flow within the planes, which will only give a
contribution to in-plane penetration depth λin [see Fig. 3.6(b)].

Initially, as it was elaborated in the previous Section, we failed to obtain
the absolute value of the susceptibility in this particular direction because of
the calibration reasons. However, following the method of Kanoda et al. [46]
it is still possible to determine the deviation of λin from the minimum value
at the lowest attainable temperature Tmin. For a thin round disk of radius
R, the authors of Ref. 46 obtained the following approximate expression

λin(T )− λin(Tmin) = R

[
1−

(
χ′(T )

χ′(Tmin)

)1/3
]

. (3.15)

They also argued that this expression is free from simplifications made in
its extraction. Therefore, for thin disks, which are not perfectly round, the
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sample radius in the expression can be replaced by R = (A/π)1/2, where A
is the area of the sample large face. This expression was regularly used in
our earlier susceptibility measurements, since it enabled, combined with the
penetration depth values from other experiments, the full determination of
the penetration depth temperature dependence [64].

Since the absolute value of the susceptibility is accessible due to the im-
proved calibration, we are also able to determine the absolute value of the
susceptibility. Consequently, the penetration depth can be determined as
well, starting from Eq. (3.11). If the sample has the shape of a platelet, the
magnetic field penetrates along the whole edge of the face and we can rewrite
the generalized formula to

1 + χ′ =
Cλin

A
tanh

A

Cλin

, (3.16)

where C is the circumference and A the area of the platelet face [see
Fig. 3.6(b)].

3.5 Superfluid density analysis

The final step of the experimental research consists of the superfluid den-
sity ρs determination. This physical quantity can be constructed using the
classical London equation, stating

λ2 =
mc2

4πρse2
, (3.17)

where c = 3 × 108 m/s is the speed of light, while m = 9.1 × 10−31 kg and
e = 1.6×10−19 As represent the electron mass and charge, respectively. In the
quasi-two-dimensional system, two superfluid densities, in-plane superfluid
density ρs,in and out-of-plane superfluid density ρs,out can be constructed

ρs,in =

(
λin(0)

λin(T )

)2

, (3.18)

ρs,out =

(
λout(0)

λout(T )

)2

, (3.19)

where we have taken into consideration that at 0 K all electrons are in the
superconducting state, that is ρs,in(0) = ρs,out(0) = 1.

In order to compare the experimental data to the theoretical predictions,
a fit to the experimental data should be performed. Since the theoretical
expressions usually cannot be easily handled mathematically, the solution
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appears to fit the data between the lowest temperature and the phase tran-
sition temperature TC to the polynomial expressions. On the other hand,
the theoretical expression can be expanded to the polynomial expression as
well and the obtained coefficients can be then compared. As it was shown
in Sec. 2.5, since the experimental data strongly suggest the existence of line
nodes in the superconducting gap, the in-plane penetration depth ρs,in should
comply with a linear dependence at low temperatures. On the other hand,
as it will be shown in Sec. 6.3, the out-of-plane penetration depth ρs,out is
intimately connected to the Josephson coupling between conducting planes,
indicating a squared dependence at low temperatures. Therefore, both ex-
pressions written in terms of reduced temperature t = T/TC are

ρs,in(t) =

(
λ(0)

λ(t)

)2

= 1− bt− ct3 − dt5 − et6, (3.20)

ρs,out(t) =

(
λ(0)

λ(t)

)2

= 1− bt2 − ct4 − dt5 − et6. (3.21)

The expressions require a simultaneous fit to four parameters. This is
practically impossible to achieve, if we take into account that parameters
depend on each other, therefore a special procedure was developed in order
to obtain the parameters. We start by fitting the parameter b in the low-
temperature region, where the contribution of other parameters should be
still negligible. On the other hand, at temperatures close to TC (t / 1) we
fit the function derivation to the slope in the measured data

dρs

dt

∣∣∣∣
t/1

≡ −η. (3.22)

Finally, if we take into consideration that the superfluid density in the normal
state should vanish

ρs(1) = 0, (3.23)

we reduced our problem to three unresolved parameters (c, d, and e) and two
equations [Eqs. (3.22) and (3.23)]. If we use those two equations in order to
eliminate the parameters d and e, we obtain

ρs,in(t) = (−t5 + 2t4 − t3)c +

+[(−3b− η + 4)t5 + (4b + η − 5)t4 − bt + 1], (3.24)

ρs,out(t) = (−t5 + 2t4 − t3)c +

+[(−2b− η + 4)t5 + (3b + η − 5)t4 − bt2 + 1]. (3.25)

thus the only remaining unresolved parameter c can be obtained by the fit
to the data in the whole temperature region.



3 Experimental determination of superconducting quantities 56

When one deals with the real data, two additional problems appear. First,
it is difficult, and arbitrary to some degree, to determine the exact value of TC.
The problem is manifested in a way that for a bad choice or determination
of TC, ρs data do not tend to 0 for T = TC. This problem can be solved by
generalization of the Eq. (3.22)

dρs

d( T
TC

)

∣∣∣∣
T/TC

≡ −η, (3.26)

and by letting TC to be the second fit parameter of a previously one-parameter
fit for η

ρs = η − η

TC

T. (3.27)

Now, TC and η are fitted simultaneously.
Secondly, in order to construct the superfluid density using Eqs. (3.18)

and (3.19), one has to insert the corresponding λ(0) values into the expres-
sions. The solution is somewhat more straightforward when the experimental
and the calibration procedure give absolute λ(T ) values. On the other hand,
if the λ(T )− λ(Tmin) data are obtained in the experiment, using Eq. (3.15),
the λ(0) value is taken from the literature. However, the construction of the
absolute penetration depth λ(T ) = [λ(T )−λ(Tmin)]+ [λ(Tmin)−λ(0)]+λ(0)
points to the missing parameter ∆λ ≡ λ(Tmin) − λ(0), which should be ex-
tracted from the experimental data. Once λ(0) or ∆λ are obtained from the
experimental data, they can be optimized in the ρs fits in order to get as
good concordance as possible between the data and the fit parameters. This
is done by replacing the coefficient of t0, which by the definition in Eqs. (3.20)
and (3.21) equals the unity, with undetermined coefficient a. Then the former
low-temperature one parameter fit to b will be replaced by the two param-
eters fit to a and b. Further, the existence of the additional parameter a
slightly modifies Eqs. (3.24) and (3.25) to:

ρs,in(t) = (−t5 + 2t4 − t3)c +

+[(−3b− η + 4a)t5 + (4b + η − 5a)t4 − bt + a], (3.28)

ρs,out(t) = (−t5 + 2t4 − t3)c +

+[(−2b− η + 4a)t5 + (3b + η − 5a)t4 − bt2 + a]. (3.29)

If the obtained value a differs from the unity, then λ(0) and ∆λ should
be corrected in order to fulfill the condition ρs(0) = 1. From the conditions

(
λ(0)new

f(T )

)2

=
1

a

(
λ(0)

f(T )

)2

,

(
λ(0)

λ(0) + ∆λnew + f(T )

)2

=
1

a

(
λ(0)

λ(0) + ∆λ + f(T )

)2

,
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we obtain

λ(0)new =
λ(0)√

a
, (3.30)

∆λnew ≈
√

a(λ(0) + ∆λ)− λ(0). (3.31)

for new λ(0) and ∆λ values. [The second expression is iterative and based
on the presumption that f(T )(

√
a − 1) ¿ λ(0)(

√
a − 1) +

√
a∆λ in the

low-temperature fit region.] Only after our corrected λ(0) and ∆λ values
result in the parameter value a = 1, we continue with the above described
procedure; That is, in the second step in the high-temperature limit fit η and
TC are obtained and finally the parameter c is fitted by the fit in the whole
temperature region by Eqs. (3.24) and (3.25).



4 Investigation of the insulating
spin density wave state

Despite the fact that our primary interest is the investigation of the su-
perconducting state, an insulating antiferromagnetic state also requires a
special attention. Namely, since these states are immediate neighbors, the
characterization of the latter might prove to be crucial for understanding of
the former.

As pointed out in the Sec. 1.3, it was found that below TC = 22 K the
antiferromagnetic ground state with a very small canting of spins is estab-
lished in κ-(ET)2Cl [6]. The canting of spins results in a weak ferromagnetic
state with domain structure consisting of equivalent spin configurations. In
order to understand the dynamics of the ground state even better, we have
conducted an investigation of its charge response.

4.1 Samples and the experimental setup

Two high-quality single crystals of κ-(ET)2Cl, in the shape of rhombic
platelets with face areas of about 1.4 mm2 and thickness of about 0.2 mm,
were studied. From two to four probes were attached to a single crystal using
silver paste. The measured contact resistance was less than 20% of the sample
resistance and no imaginary component in the resistance was observed at RT.
Therefore, the influence of the contacts should be negligible. The sample
holder was immersed into a liquid helium bath, and the temperature was
measured using the silicon diode or carbon glass resistive thermometers. In
order to avoid sample cracks, the sample was cooled using a typical cooling
rate of −0.1 K/min between RT and the liquid nitrogen temperature. Below
the latter temperature, the sample was cooled using a typical cooling rate of
−1 K/min.

The temperature dependent dc resistivity was measured in the two-probe
and four-probe configurations, while the nonlinear dc resistivity was mea-
sured in the four-probe configuration using the standard dc techniques.
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Keithley 220 was used as a current source, while Keithley 181, 182, and 196
were used as voltmeters. For large sample impedances electrometer Keith-
ley 617 in V-I mode was also used, that is the current through the sam-
ple was measured after a fixed voltage was applied to the sample. The
complex conductivity was measured in the two-probe configuration by the
Hewlett-Packard 4284A impedance analyzer (ν = 20 Hz − 1 MHz). To
exclude possible effects due to the sample holder and cables the so-called
open-measurement conductivity was performed; That is, the conductivity
was measured first with the sample mounted on the sample holder, and then
with the empty sample holder. The deduction of the latter from the former
result gives the actual sample conductivity.

The complex dielectric function ε = ε′ + i ε′′ can be obtained from the
measured complex conductivity σ = σ′(ω) + i σ′′(ω) using the following ex-
pressions

ε′(ω) =
σ′′(ω)

ε0ω
(4.1)

ε′′(ω) =
σ′(ω)− σ0

ε0ω
(4.2)

where ν = ω/2π stands for the frequency, ε0 = 8.85 × 10−12 F/m for the
permittivity of the vacuum and σ0 for the dc conductivity. A special care was
taken in the determination of σ0, which was obtained by the extrapolation
of the frequency dependent conductivity to low frequencies.

4.2 Single particle resistivity

In order to avoid the contribution of the collective modes to the conduc-
tivity, single particle resistivity was probed in the linear I − V range, i.e.,
the measurement current was limited to the range, in which the resistivity
of sample was independent of the current. dc resistance, shown in Fig. 4.1,
increases below room temperature according to the Arrhenius law. Activa-
tion energy between 300 and 70 K and between 50 and 25 K amounts to
118 K and 273 K, respectively. This is in good agreement with previously
reported results [8]. Below 25 K the activation energy decreases and between
25 and 10 K amounts to 150 K. Below 10 K, the resistance change starts to
level off, and its temperature dependance can be described equally well by
the semiconducting activation with the activation energy of 21 K, as well as
by the variable range hopping mechanism. The latter mechanism suggests
that the number of single particle carriers, due to the thermal activation
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Fig. 4.1: The temperature dependence of the dc resistance for the first cooling
and the first warming. Insert shows the temperature dependence of the
activation energy.

over the semiconducting gap, is reduced so much that the dominant contri-
bution to conductivity comes from the charge carriers localized on randomly
distributed impurities.

We have also observed a hysteresis in the resistance behavior between
10 K and 25 K. That is, the first half-cycle cooling curve with a well defined
activation energy of 150 K differs from the curve obtained for all other cooling
and warming half-cycles, where the change of the activation energy is gradual
in the whole temperature region. Up to now, we do not have plausible
explanation for this hysteresis.

Finally, the inset of Fig. 4.1 shows d(ln R)/d(1/T ), which obviously corre-
sponds to the activation energy ∆. We can identify the phase transition with
the appearance of a clear peak in the value of the activation energy at 20 K.
The peak in cooling is not as clearly distinguishable as it is in warming. This
is due to the fact that the cooling sweep is harder to stabilize and a smaller
number of temperature points was taken in the same temperature region.
The meaning of a broad peak in warming above 25 K remains unknown.
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Fig. 4.2: The electrical field dependent conductivity normalized to its ohmic
value at six representative temperatures.

4.3 Non-ohmic conductivity

Next we present the results of the field-dependent conductivity measure-
ments. In order to obtain reliable results, we have adjusted the time constant
of the measurement τ = RC according to the increase of the sample resistiv-
ity. Further, we have ensured that the current through the sample did not
produce a heat exceeding 0.5 µW, in which case a temperature gradient on
the sample holder between the thermometer and the sample may appear.

Below the phase transition temperature the increase of the conductivity
above a finite electrical threshold field indicates the opening of a collective
conductivity channel (Fig. 4.2). The temperature dependance of the elec-
trical threshold field ET, as well as the non-ohmic conductivity at twice the
threshold field, normalized to its ohmic value (σ − σ0)/σ0|2ET

are presented
in Figs. 4.3 and 4.4.

The behavior of these two quantities can be separated into two dis-
tinct temperature regions. At about 13 K, the ET has a minimum value
(Fig. 4.3). Its increase toward the phase transition temperature can be well
understood in the frame of the standard model of the sliding spin density
wave, weakly pinned to the randomly distributed impurities [68, 69]. How-
ever, (σ−σ0)/σ0|2ET

is practically negligible in the same temperature region
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(Fig. 4.4).
It is interesting to note that increase of ET toward low temperatures

below 13 K (Fig. 4.3) fits well to expression predicted for the charge density
waves [68]

ET(T ) = Ae
− T

T0 + B, (4.3)

giving the values of T0 = 1.9 K, A = 7000 mV/cm and B = 160 mV/cm for
the parameters. To our knowledge, this behavior was previously observed
only in the NbSe3 material [70]. However, the semimetalic NbSe3 with the
charge density wave and the semiconducting κ-(ET)2Cl with the spin density
wave have nothing else in common. Furthermore, the increase of the ET is
accompanied by the strong increase of (σ−σ0)/σ0|2ET

as well (Fig. 4.4), which
is in contradiction to the expectations. Thus it remains unclear how to relate
the partial success of the theoretical prediction to the observed ground state.

4.4 ac conductivity

Now we show the frequency-dependent dielectric response. Above 32 K
no frequency dependance of the conductivity was observed. The obtained
real part conductivity as a function of the frequency below that temperature
is presented in Fig. 4.5. Note that the effect appears above the temperature
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of the phase transition, which can be explained in terms of spin density wave
fluctuations.

Using Eqs. (4.1) and (4.2) we calculated the frequency dependent dielec-
tric function. Fig. 4.6 shows frequency domain plots of the real and imaginary
parts of the dielectric function at three representative temperatures. The full
lines in Fig. 4.6 correspond to the calculated fits to the Havriliak-Negami
(HN) function

ε(ω)− ε(∞) =
∆ε

1 + (iωτ0)
1−α , (4.4)

which represents empirical generalization of the Debye relaxation. Here ∆ε
represents the dielectric strength, τ0 the mean relaxation time and 1 − α
the width of the relaxation time distribution. In order to obtain a better
resolution and precision, we have fitted ε data in the complex plane; That is,
the real and imaginary parts of the dielectric function were simultaneously
fitted to the same set of parameters.

The three parameters of the fit, which fully characterize the dielectric
relaxation, as a function of the inverse temperature, are shown in Fig. 4.7.
The dc resistance is also shown for comparison. The value of the dielectric
strength decreases with the decrease of the temperature. Further, it is much
larger than the value expected due to single particle contributions, so the
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observed mode should be ascribed to the existence of the collective mode
in the ground state. On the other hand, the width of the relaxation time
distribution amounts to 1 at 32 K, quickly decreases to about 0.7 at 28 K and
remains stable at this value down to 15 K. The broadness of the mode in the
latter temperature region suggests that the collective mode is pinned to the
randomly arranged impurities. However, below 15 K, 1−α narrows and the
relaxation of the collective mode should be linked to regularly distributed
structures. Finally, we observe that the behavior of the mean relaxation
time points to two distinct dissipation regimes. Above the phase transition
temperature, τ0 follows the thermal activation of the resistance, while it
saturates below that temperature.

In order to study dissipation regimes, it is also useful to present the tem-
perature behavior of the real part of the dielectric function (Fig. 4.8). Obvi-
ously, two distinct dissipation regimes above and below TC are characterized
by different activation energies ∆

ε′(T ) ∝ ε′e−
∆
T . (4.5)

∆ ≈ 270 K and ∆ ≈ 60 K for T > TC and T < TC, respectively.



5 Investigation of the
superconducting state

5.1 Samples

5.1.1 κ-(BEDT-TTF)2Cu[N(CN)2]Br

Nine nominally pure single crystals of κ-(ET)2Br, in shape of rhombic
platelets with face areas between 0.42 and 2.15 mm2 and thickness between
0.29 and 0.69 mm, were measured. The results for the last five of them
were calibrated and analyzed in most detail and all showed qualitatively
and quantitatively the same behavior. Samples originated from two different
syntheses and had different resistivity ratios RR(TG/TC) for similar cooling
rates employed:

Crystals of the first synthesis, labeled as S1, had the resistivity ratio
RR(TG/TC) ≈ 200 (see Fig. 5.1) [24].

Crystals of the second synthesis, labeled as S2, had the resistivity ratio
RR(TG/TC) ≈ 50 (see Fig. 5.2) [9].

Here, the resistivity ratio is defined as

RR(T/TC) =
ρ(T )

ρC

, (5.1)

where ρC is the resistivity measured at temperature just above the SC tran-
sition.

Three different cooling procedures were used to cool samples from RT to
4.2 K. Special care was taken in the temperature region 60 K < T < 100 K,
where the relaxation processes appear (see Sec. 1.2.3 and Fig. 1.13). For the
quenched (denoted as Q) state the sample was cooled down to liquid helium
temperature in about 1 min, which represents an average speed of about
−300 K/min over the whole temperature region. For the relaxed (denoted
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as R) state the sample was first cooled to 100 K in about 10 min. Between
60 K and 100 K the cooling rate was carefully monitored to amount to
about −0.2 K/min. Below 60 K, the sample was finally cooled to 4.2 K
in a few minutes. For the annealed state (denoted as A) the sample was
cooled down to liquid nitrogen temperatures in about 1 h. Then it was kept
between the liquid nitrogen temperature and 100 K for three days, mostly
at temperatures in the vicinity of 80 K. Finally, it was cooled down to the
liquid helium temperature in a few minutes.

5.1.2 κ-(BEDT-TTF)2Cu(NCS)2

Five nominally pure single crystals of κ-(ET)2NCS, in shape of rhombic
platelets with face areas between 0.61 and 2.29 mm2 and thickness between
0.24 and 0.46 mm, were measured. The results for last two of them were
calibrated and they both showed qualitatively and quantitatively the same
behavior. Samples originated from two different syntheses:

Crystals of the first synthesis proved to be extremely sensitive to the
degradation effects, failing to give reliable reproducible results. There-
fore, no result can be presented on the basis of these measurements.

Crystals of the second synthesis were labeled as S3 and only preliminary
measurements have been finished up to now.

Two different cooling procedures were used to cool samples from RT to
4.2 K. Special care was taken in the temperature region 40 K < T < 80 K,
where the relaxation processes appear (see Sec. 1.2.3 and Fig. 1.13). Note
that the situation is somehow more complicated compared to the one for the
κ-(ET)2Br material, since the glass transition temperature region is lower
and two glass transition temperatures are located within the region. For the
quenched (denoted as Q) state the sample was cooled down to the liquid he-
lium temperature in about 1 min, which represents an average speed of about
−300 K/min over the whole temperature region. For the relaxed (denoted
as R) state the sample was first cooled to 80 K in about 10 min. Between
40 K and 80 K the cooling rate was carefully monitored to amount to about
−0.2 K/min. Below 40 K, the sample was finally cooled to 4.2 K in a few
minutes.

A counterpart for the annealed state in κ-(ET)2Br could not be yet es-
tablished because of the experimental limitations. Namely, the majority of
the glass transition temperature region lays below the liquid nitrogen tem-
perature, where the stabilization and the maintenance of the temperature is
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complicated. Further, the this temperature region embodies two glass tran-
sition temperatures, so a very long maintenance of the fixed temperature in
the vicinity of the lower limit of this region might not be successful. Indeed,
preliminary annealing measurements holding the sample at fixed tempera-
tures of 45 K and 50 K for four hours showed that the relaxation effect was
smaller compared to the relaxed cooling in the whole temperature region for
the same period of time. We conclude that a very slow sweep for several days
between 80 and 40 K should be performed in order to obtain a counterpart
of the annealed state. However, the requirement for a slow drift below the
liquid nitrogen temperature for several days presents an enormous problem
in the present experimental conditions.

5.2 Complex susceptibility

We present the behavior obtained in two principal field geometries: that
is, the Hac ⊥ plane and the Hac ‖ plane, as defined in Sec. 3.2. For two
κ-(ET)2Br samples measurements were also performed for two distinct di-
rections in the Hac ‖ plane geometry, that is the magnetic field was aligned
to the a and c crystallographic axes (Fig. 5.3). The χ′ response in these two
orientations was different, which confirms that the field penetration along
the lout direction and not the one along the lin direction, dominates the sus-
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ceptibility of the sample [see Eq. (3.12)]. Further, we point out that the λout

results obtained for both field orientations were mutually consistent, so we
conclude that the specific orientation within the ac plane does not influence
the results. It should be also noted that this test measurement was performed
only in fast cooling conditions, which corresponds best to the Q state. How-
ever, as it can be seen from the Table 5.2, the ratio λout/λin for R and A states
is even much larger than the one for the Q state, so our conclusions are valid
for the former two states as well. Therefore, in all further measurements
we have always made sure that in the Hac ‖ plane geometry the field was
aligned with the largest dimension of the platelet face in order to minimize
the demagnetization factor.

Our first important result concerns the influence of the cooling rate on
the components of the complex susceptibility in the SC state as a function of
the synthesis procedure. The susceptibility data obtained for the sample S1
for two different cooling rates are shown in Fig. 5.4. We identify the R state
as the ground state. In the ground state, superconductivity sets in at 12.0 K
and 11.5 K for the Hac ⊥ plane and the Hac ‖ plane geometry, respectively.
For the Hac ⊥ plane geometry the sample response is almost completely dia-
magnetic, while for the Hac ‖ plane geometry the susceptibility is somewhat
smaller in magnitude. Our results point to a huge effect of the cooling rate
on the susceptibility value and TC. When the sample was cooled faster, the
absolute value of the susceptibility was smaller and TC lower. In other words,
the diamagnetic region shrinks in the χ′ versus T plot. This huge effect is
especially emphasized for the Hac ‖ plane geometry, where the absolute χ′

value is almost an order of magnitude smaller for the Q state than for the
R state.

The susceptibility data obtained for the sample S2 for three different
cooling rates are presented in Fig. 5.5. The first feature, reflecting different
sample quality, is that the ground state, characterized as before by an almost
complete diamagnetic response, is established in the A state, and not, as in
the case of the sample S1, in the R state. For the purpose of clarity, we
will refer to the R state of the sample S2 as the intermediate state1. The
anisotropy of the susceptibility in the ground state is somewhat larger for
sample S2 than for sample S1. The second feature is that the cooling rate
effect on the susceptibility value is much smaller for sample S2 compared
with the effects obtained for sample S1 (see Fig. 5.4). We can qualitatively
describe this effect using the definition of the cooling rate sensitivity ξ, which
is the ratio of the absolute susceptibility values for the Q state and the R state

1This state should not, by any means, be identified with the historical notion of the
intermediate state in superconductors (Ref. 71).
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error.
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Fig. 5.5: Sample S2: real and imaginary parts of the susceptibility for an-
nealed (A), relaxed (R), and quenched (Q) states in the (a) Hac ⊥ plane and
(b) Hac ‖ plane geometry. The arrows in (a) illustrate the upper limit of the
systematic error.



5 Investigation of the superconducting state 74

T (K)

0 2 4 6 8 10 12

�', 

�'' 
(S

I)

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

Q
R

Sample S3, Hac ⊥ plane
�-(ET)2NCS

Fig. 5.6: Sample S3: real and imaginary parts of the susceptibility for relaxed
(R) and quenched (Q) states in the Hac ⊥ plane geometry. The error bars
illustrate the upper limit of the systematic error.

at the lowest measured temperatures

ξ =
χ′(Tmin, Q state)

χ′(Tmin, R state)
. (5.2)

Obviously, smaller ξ means larger cooling rate sensitivity. For samples S1
and S2 for the Hac ⊥ plane geometry we get ξ = 0.69 and ξ = 0.92, respec-
tively.

The susceptibility data obtained for the sample S3 for two different cool-
ing rates are presented in Fig. 5.6. Only one geometry is shown, as the sample
disintegrated into pieces, when the change of orientation was attempted. The
presented results are therefore the only available results for the κ-(ET)2NCS
material so far. First note that the state with lower degree of disorder, the
R state, did not show almost full diamagnetism, which leads to the conclu-
sion that the ground state was not established. However, the obtained results
give us the possibility to calculate the cooling rate sensitivity ξ = 0.97, which
is even smaller than the one of the sample S2. Both facts suggest, by analogy
with the sample S2, that slower cooling (e.g., annealed state) could further
decrease the degree of the disorder and increase the absolute value of suscep-
tibility, giving the results in accordance with the ground states of samples S1
and S2. Indeed, here for the R state χ′ = −0.93, and such scenario seems
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State Hac ⊥ plane Hac ‖ plane
χ′ TC(K) χ′ TC(K)

Sample S1
R −0.99 12.0 −0.90 11.5
Q −0.68 11.2 −0.12 10.5

Sample S2
A −0.99 12.0 −0.78 11.5
R −0.93 12.0 −0.72 11.5
Q −0.86 11.4 −0.57 10.5

Table 5.1: Susceptibility properties, as defined in the text, for (i) sample S1 in
the relaxed (ground) and quenched states, and (ii) sample S2 in the annealed
(ground), relaxed (intermediate), and quenched states.

reasonable. However because of experimental limitations we haven’t been
able to check this hypothesis yet. Since we believe that the ground state was
not established, and since the results involve only one sample geometry, no
further conclusion will be drawn or analysis made from the presented result.

Finally, we point out that the χ′′(T ) component was negligible, clearly
indicating that all three measured samples were in the Meissner state. For
clarity, the most important susceptibility properties presented in this Section
are summarized in Table 5.1. The differences in TC between two samples are
within the experimental error.

5.2.1 Anomalies in complex susceptibility

Before proceeding to the penetration depth considerations, it would be
interesting to show some complex susceptibility results, which are not repro-
ducible, however they point to a strong domain behavior in the measured
samples. Interesting effects, which occasionally appeared regardless of the
field orientation and the sample synthesis are small susceptibility jumps, as
shown in Fig. 5.7. Sometimes these jumps are reversible, as shown in the
situation (b), where one reduction is annihilated by two enhancements of the
susceptibility. Jumps can also be irreversible, as shown in the situation (a),
where only one reduction of the susceptibility appears.

The second interesting effect that was observed only once, but which
persisted for several hours of measurement – even after the sample was
warmed to RT and quenched back to the liquid helium temperature – is
shown in Fig. 5.8. The temperature dependence of susceptibility appeared
as expected in almost the whole temperature region. However, above the
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expected TC = 12.0, 11.2 K, for R- and Q-states, respectively, the resid-
ual diamagnetism appears and persists in the additional temperature region
of 2 K. Comparing the full susceptibility of the sample and the residual
susceptibility, one can argue that about 25% of the sample remains in the
superconducting state even above the expected TC.

It should be stressed that we were unable to explain these peculiar effects
with the influence of some systematic error in the experimental setup.

5.3 Penetration depth

Our second important result concerns the temperature dependence of
λin and λout as a function of the synthesis procedure in the ground state. In
Figs. 5.9 and 5.10 we show the influence of the cooling rate on the anisotropic
penetration depth as a function of the sample quality. Note that in the
ground state of both samples S1 and S2 the temperature dependence of λin

and λout at temperatures below about 5 K is well described by the T and
T 2 law, respectively. The upper bound of the fit range (5 K) is given by
the general requirement that the genuine low-temperature behavior of the
penetration depth is strictly obeyed only far from the critical region close to
TC. The solid lines correspond to the calculated fit to the power-law behavior
in the temperature range 1.6 K < T < 5 K

λin = kin

(
T

TC

)
+ λin(0), (5.3)

λout = kout

(
T

TC

)2

+ λout(0). (5.4)

We get kin = 5.2 µm, λin(0) = 1.5 ± 0.5 µm, kout = 56 µm, λout(0) =
53 ± 10 µm and kin = 2.8 µm, λin(0) = 1.1 ± 0.4 µm, kout = 69 µm,
λout(0) = 85 ± 10 µm for S1 and S2, respectively. The penetration depth
values at 0 K, λ(0), observed in the ground states of both samples, are in
very good accordance with values for the penetration depths given in the
literature.

Special attention should be given to the relative change of the penetration
depth η(T ) at low temperatures,

η(T ) =
λ(T )− λ(0)

λ(0)
. (5.5)

We denote the deviation of λin(T ) and λout(T ) from their values at 0 K, in
units of λ(0), as ηin(T ) and ηout(T ), respectively. We find that ηin(5 K) = 1.4,
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Fig. 5.9: Sample S1: (a) in-plane and (b) out-of-plane penetration depths
for relaxed (R) and quenched (Q) states. Solid lines represent the fit to the
power-law behavior, while the arrow in (a) illustrates the upper limit of the
systematic error.
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ηout(5 K) = 0.19 and ηin(5 K) = 1.1, ηout(5 K) = 0.15 in the ground state of
samples S1 and S2, respectively. First we note that η values are in perfect
accordance for both samples, confirming that they are in the same – ground –
state. Second, a difference between ηin and ηout values for almost one order of
magnitude proves a strong anisotropy in physical properties between the two
orientations. This also confirms our choice for the exponent in the power-law
in Eqs. (5.3) and (5.4).

Finally, our third important result concerns the intermediate state
(R state in sample S2), for which we get ηin(5 K) = 0.13, ηout(5 K) = 0.10.
Unlike for the ground state, the temperature dependencies of λin and λout

are so similar that they cannot any longer be described by different power
laws as it was the case in the ground state. The obvious solution is to try to
fit both penetration depths to the T 2 power-law behavior

λin = kin

(
T

TC

)2

+ λin(0), (5.6)

λout = kout

(
T

TC

)2

+ λout(0), (5.7)

which, as it will be discussed in Sec. 6.4, suggests a d-wave superconductor
with impurities. We get kin = 9.2 µm, λin(0) = 12±6 µm, and kout = 58 µm,
λout(0) = 110 ± 20 µm. We point out that the fit to the s-wave model
describes our data almost equally well (see Sec. 5.4). On the other hand,
the s-wave model fails completely for the penetration depth temperature
dependencies in the ground state of both samples S1 and S2.

Now we comment on the penetration depth results for the Q state. We
find that ηin(5 K) = 0.11, ηout(5 K) = 0.12 and ηin(5 K) = 0.16, ηout(5 K) =
0.10 for samples S1 and S2, respectively. Here we apply the same arguments
as in the case of the intermediate state and fit both λin and λout to the T 2

power-law behavior [Eqs. (5.6) and (5.7)]. We get λin(0) = 100 ± 50 µm,
λout(0) = 830 ± 100 µm, and λin(0) = 24 ± 12 µm, λout(0) = 170 ± 20 µm
for sample S1 and S2, respectively. The fact that these fits describe well
the penetration depth data again suggests a d-wave superconductor with
impurities. Further, it should be noted that (i) λ(0) values are larger for the
Q state than for the intermediate state, suggesting a larger disorder in the
former state, and (ii) λ(0) values for the sample S1 are significantly larger
than the ones for S2, suggesting a significantly larger disorder in the former
sample in the Q state. Finally, the result that λout(0) for the sample S1
is close to the crystal size indicates that the bulk superconductivity is not
established, allowing us to define the boundary between bulk and non bulk
SC at χ′ = −0.7 for the Hac ⊥ plane geometry.
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State Hac ⊥ plane Hac ‖ plane
λin(0) kin ηin(5 K) λout(0) kout ηout(5 K)
(µm) (µm) (µm) (µm)

Sample S1
R 1.5± 0.5 5.2 1.4 53± 10 56 0.19
Q 100± 50 60 0.11 830± 100 480 0.12

Sample S2
A 1.1± 0.4 2.8 1.1 85± 10 69 0.15
R 12± 6 9.2 0.13 110± 20 58 0.10
Q 24± 12 22 0.16 170± 20 88 0.10

Table 5.2: Penetration depth properties, as defined in the text, for (i) sam-
ple S1 in the relaxed (ground) and quenched states, and (ii) sample S2 in
annealed (ground), relaxed (intermediate), and quenched states.

For clarity, the most important results of the penetration depth properties
presented in this Section are summarized in Table 5.2.

5.4 Superfluid density

In the following, we address the temperature dependance of the superfluid
density in order to get the information on the symmetry of the supercon-
ducting state. Note that, as explained in Sec. 3.5, TC and λ(0) are obtained
independently by the ρs analysis. Except for λ(0) = 1.8 µm [compared to
λ(0) = 1.5 µm in the previous section] for the R state in the sample S1, pen-
etration depth values obtained this way match perfectly to the ones obtained
by the direct fit to the penetration depth data.

ρs,in and ρs,out for the ground state of the sample S1 (established in the
R state) and for the ground state of the sample S2 (established in the A state)
as a function of the reduced temperature t = T/TC are displayed in Figs. 5.11
and 5.12, respectively. There is a strong resemblance in the behavior found
for both samples. Note that the leading terms, which describe the low-
temperature behavior, are the T and T 2 terms for ρs,in and ρs,out, respectively.
This is to be expected, because T and T 2 terms describe the low-temperature
behavior of the λin and λout in the ground state. If we fit the superfluid den-
sity data in the whole temperature region below TC, as described in Sec. 3.5,
we finally obtain for the sample S1

ρs,in = 1− 1.95t + 1.45t3 − 0.09t4 − 0.41t5, (5.8)

ρs,out = 1− 1.88t2 − 0.73t3 + 4.47t4 − 2.86t5, (5.9)
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Fig. 5.11: Sample S1: (a) in-plane and (b) out-of-plane superfluid densities
for the ground (R) state. Solid line is a fit to the polynomial expression. A
large noise in ρs,in is due to small values of λin(0) (see text).
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Fig. 5.12: Sample S2: (a) in-plane and (b) out-of-plane superfluid densities
for the ground (A) state. Solid line is a fit to the polynomial expression. A
large noise in ρs,in is due to small values of λin(0) (see text).
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and for the sample S2

ρs,in = 1− 1.68t + 0.78t3 + 0.16t4 − 0.26t5, (5.10)

ρs,out = 1− 1.45t2 + 2.98t3 − 5.38t4 + 2.84t5. (5.11)

Taking into account a relatively large experimental error in the penetration
depth values (see Figs. 5.9 and 5.10), the leading coefficient values might be
considered to be almost the same. In addition to the systematic error, there
is also a noise, which is a mere consequence of the fact that ρs,in is calculated
according to the expression ρs,in(T ) = [λin(0)/λin(T )]2, so that the absolute
noise in ρs,in is proportional to the relative noise in the penetration depth
data. That implies a larger noise for smaller values of λin(0), which becomes
substantial for λin(0) of the order of 1 µm. Finally, we point out that the
shapes of curves for the in-plane and out-of-plane penetration depths in the
ground state are qualitatively different from the s-wave dependence.

Further we want to correlate the presented results with the results ob-
tained by an alternative (now obsolete) method. If the improved calibration
is not used in the Hac ⊥ plane geometry, λin and ρs,in dependencies are ob-
tained using Eq. (3.15), as described in Secs. 3.4 and 3.5. In Fig. 5.13 ρs,in in
the ground states of sample S1 and S2 are displayed, using the λin(0) value
obtained by our improved calibration, that is λin(0) = 1.1 µm and 1.8 µm,
respectively. The obtained results are quantitatively the same as those pre-
sented in Figs. 5.11 and 5.12, that is the behavior is strongly linear. Even
more, if we check the obtained fits,

ρs,in(sample 1) = 1− 1.69t + 0.78t3 + 0.19t4 − 0.28t5, (5.12)

ρs,in(sample 2) = 1− 1.54t + 1.03t3 − 0.89t4 + 0.40t5, (5.13)

we see that the leading coefficients differ from those in Eqs. (5.8) and (5.10)
within the experimental error.

We used this method [using λin(0) values from the literature] in our first
publication on the superconductivity state investigations in this material [64].
In this case an important question arises as to which λin(0) value should be
used. This is of primary interest, since the λin(0) choice influences signifi-
cantly the low-temperature ρs,in behavior. We can see that if we expand the
ρs,in expression at low temperatures,

ρs,in(t) =

(
λin(0)

λin(0) + kλt

)2

≈ 1− 2
kλ

λin(0)
t,

it is obvious that both the λin(0) value, as well as the relative behavior of λin

significantly influence the ρs,in behavior and as a consequence also change the
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Fig. 5.13: In-plane superfluid density for the ground state of (a) sam-
ple S1 and (b) sample S2 without using the improved calibration but rather
Eq. (3.15) and the same λ(0) values.
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Fig. 5.14: In-plane superfluid density for the ground state of (a) sample S1
and (b) sample S2 using Eq. (3.15) and a few chosen λ(0) values.
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value of the leading coefficient. This fact is demonstrated for a few chosen
λin(0) values in Fig. 5.14, where the same experimental data as in Fig. 5.13
were used. Despite of the fact that it is obvious that the λin(0) influence is
significant, our primary conclusion does not change. Namely if we use λin(0)
from the literature, 0.5 µm < λin(0) < 2 µm, we shall obtain a strong linear
behavior with the leading coefficient of order of 1 or larger.

Finally, the behavior for the in-plane ρs,in and out-of-plane ρs,out super-
fluid densities for the intermediate state of the sample S2 (established in the
R state) is displayed in Fig. 5.15. They were obtained in the same way as
the results in the beginning of this Section by the use of the improved cal-
ibration. Here, the ρs,in data are insensitive to the systematic error at low
temperatures, since the correction for λin drops out from the expression for
ρs,in. Note that the leading term, describing the low-temperature behavior,
is the T 2 term for both the in-plane and out-of-plane superfluid densities:

ρs,in = 1− 1.69t2 + 2.77t3 − 5.05t4 + 2.97t5, (5.14)

ρs,out = 1− 1.02t2 + 1.34t3 − 2.50t4 + 1.18t5. (5.15)

As it will be shown in Sec. 6.4, this situation agrees well with the impurity
scattering in the unitary limit. In order to demonstrate the fact that the
superfluid density behavior in the intermediate state is also rather close to
the dependence expected for the s-wave order parameter behavior, the s-wave
model dependence is added as a dashed line for both orientations.
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Fig. 5.15: Sample S2: (a) in-plane and (b) out-of-plane superfluid densities
for the intermediate (R) state. The solid line is a fit to the polynomial
expression, and the dashed line presents the s-wave model (see the text).



6 Discussion

6.1 Insulating spin density wave state

Previous magnetic measurements have shown that in κ-(ET)2Cl, below
the phase transition temperature TC = 22 K, a commensurate spin den-
sity wave with a very small canting of spins is stabilized [6]. The anti-
ferromagnetic spins are canted by an angle of 6 × 10−2 degrees from the
b-axis in such a way that the vector of the ferromagnetic moment is aligned
along the c-axis. The ferromagnetic crystal is naturally divided into do-
mains with equivalent spin configurations. The measured magnetic moment
per spin amounts to 0.4 − 1.0µB/dimer [30], which is much larger than the
value of 0.08 µB/molecule observed in the case of the spin density wave in
(TMTSF)2PF6, which is formed by itinerant spins [31] and therefore indicates
the strong electron localization.

An important indication of the existence of the collective conductivity
channel, associated with the spin density wave, is given by the increase of
the conductivity above a finite electrical threshold field. At about 13 K,
the electrical threshold field has a minimum value. Its increase toward the
temperature of phase transition can be understood in the frame of the stan-
dard model of the sliding spin density wave, weakly pinned to randomly
distributed impurities [69]. On the other hand, the increase of the electrical
threshold field toward lower temperatures, with a concomitant rapid increase
of the collective conductivity, cannot be explained in terms of the model for
the spin density wave sliding. We argue that the spin density wave sliding
mechanism is replaced by a new mechanism of the collective conduction.

Further confirmation of a new mechanism is given by the behavior of
the parameters of the complex dielectric function. In particular, dielectric
strength is of the order of 103 and it decreases with the decreasing of the
temperature. This is in contradiction with the behavior observed in the case
of the spin density wave in the Bechgaard salts, where the phason is a relax-
ation entity [72]. In the latter material ∆ε is of order of 109 and temperature
independent. Therefore, we propose that in κ-(ET)2Cl a charged domain
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wall pair, connected to ferromagnetic domains, is the relaxation entity. Fur-
ther, the (1− α) ≈ 0.75 indicates a random ferromagnetic domain structure
in the temperature region 13 K < T < TC. The observation that below 13 K
mode narrows, that is (1−α) approaches 1, reveals a progressive restoration
of a regular ferromagnetic domain structure at low temperatures. We sug-
gest that above 13 K domains are numerous, and charged domain walls are
pinned to randomly arranged impurities. By lowering the temperature, do-
mains grow in size and below about 13 K become so large, that they stretch
over a larger number of impurities. Consequently, their shape and distri-
bution, as well as the distribution of domain walls becomes regular, as it is
no longer related to the distribution of impurities. In the whole tempera-
ture region, the number of domain walls decreases concomitantly with the
temperature decrease, which explains the gradual decrease of the relaxation
strength value.

In the fluctuation region above TC, the mean relaxation time is activated
with the single particle activation energy ∆ ≈ ∆fc ≈ 270 K showing that
the free-carrier screening is effective. However, below TC the temperature
independent behavior of τ0 indicates a substantial reduction of the free-carrier
screening in the ground state. Indeed, the free-carrier density below TC,
estimated on the basis of the resistance increase between room temperature
and TC, and allowing the electron to move inside a 2D plane, turns out
to be smaller than the one electron per domain wall characteristic length
Lwall ≈ 0.1 − 1µm. The latter might be also obtained from the theoretical
expression which relates Lwall and ET [73, 74]. These two distinct dissipation
regimes (above and below TC, which coincides with the crossover temperature
TC) are reflected in the behavior of ε′. At T > TC and T < TC the spin density
wave dynamics is governed by the free-carrier activation energy ∆fc ≈ 270 K
and by low energy barriers ∆ ≈ 60 K, respectively.

Finally, it is worth mentioning that we observed qualitatively the same
low-temperature behavior of the non-ohmic conductivity [75] and the dielec-
tric response [76] in Cu(DCNQI)2 material. This is of no surprise if one notes
that this commensurate charge density wave material shows domain structure
due to the coexistence of the metallic and insulating (CDW ordered) islands.
Therefore, both systems share the commensurate density wave ground state,
the domain structure becoming regular at low temperatures and the same –
a pair of charged domain walls – relaxation entity.
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6.2 General remarks considering the super-

conducting state

We start the discussion by pointing out that the well-defined, ground-
state properties – complex susceptibility, penetration depth, and superfluid
density – were essentially reproducible for all studied κ-(ET)2Br single crys-
tals from both syntheses S1 and S2. Cooling-rate-dependent effects were also
reproducible, but the observed behavior was the same only for single crys-
tals from the same synthesis, while it differed significantly from the observed
behavior for single crystals from the other synthesis.

First, we would like to comment on the anisotropy in TC. The onset of
superconductivity is observed to be at 12.0 K and 11.2 K for the Hac ⊥ plane
and the Hac ‖ plane geometries, respectively. The observed difference in TC

is somewhat surprising, since no other experimental group has reported it
so far. In order to eliminate spurious influences, we have verified, by per-
forming test experiments on the piece of a niobium foil used for calibration,
that no thermal gradient larger than 0.05 K exists along the sample holder.
Therefore, the observed difference in TC is not an experimental artifact. We
suggest that this anisotropy might be the consequence of the fact that the
diamagnetic shielding is no longer effective for the Hac ‖ plane geometry in
the region of 0.5 K below TC, which is due to the small sample dimensions and
the huge out-of-plane (Josephson-like) penetration depth near TC. However,
we point out that the TC anisotropy has negligible, if any, effects on our data
analysis, which is primarily done in the low-temperature region and therefore
does not influence the resulting conclusions regarding the low-temperature
behaviour of the physical quantities.

Second, we address the observed differences in cooling rate effects between
samples S1 and S2. As pointed out earlier, both samples show the same be-
havior in the ground state: almost full diamagnetism for the Hac ⊥ plane
geometry and the same temperature dependence and zero-temperature value
of the in-plane and the out-of-plane penetration depths, as well as the same
superfluid density temperature dependence. However, we note that the sam-
ple S2 required a completely different cooling procedure with significantly
longer time spent in the temperature region around 80 K, compared to the
sample S1, in order to reach the ground state. Moreover, the sample S2
is much less sensitive to the cooling rate. That is, the difference regard-
ing low-temperature susceptibility and zero-temperature penetration depth
values between A and Q states for the sample S2 is much smaller than the
difference between R and Q states for the sample S1. Both features indicate
that (i) the low-temperature state is critically determined by the time scale
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of experiment in the region of glass transition and (ii) relaxation times of
ethylene groups in the single crystals originating from the synthesis S2 are
much longer than the ones in the single crystals originating from the syn-
thesis S1. When the applied time scale is much longer than the relaxation
time of the ethylene moieties, the low-temperature state is the ground state.
In contrast, if the relaxation time exceeds the time scale of experiment, the
remnant disorder at low temperatures will be substantial and the Q state
will be established.

Different relaxation times of ethylene groups might also explain why the
resistivity ratio RR(TG/TC) is much larger for samples from the synthesis S1
when the standard slow cooling rate is applied. At this stage, we can only
speculate about the possible origin of different relaxation times. The experi-
mental observations that the crystals from the synthesis S2 show weak metal-
lic behavior, instead of a semiconducting behavior between RT and 100 K
observed for samples of the synthesis S1, might be of the same origin. In order
to reveal the origin of the differences, several additional measurements were
performed on samples of the syntheses S1 and S2. ESR measurements [77]
and X-ray measurements [78] did not show any differences within the sen-
sitivity of the experimental setup. Further, it has been suggested that the
difference in resistivity behavior could be also due to the contamination with
the chlorine atoms which replace bromine atoms [79]. Since the ordering of
ethylene fragment is closely linked to the halogen atom, the contamination
may introduce some degree of ordering already at RT. Indeed, the performed
mass spectroscopy [80] showed a slight difference in the fragmentation of
the BEDT-TTF molecules, in particular regarding the breaking off of the
ethylene groups. However, since the used experimental setup is not sensitive
to low masses below 100 daltons, we were unable to check the level of the
contamination.

Finally, it should be noted that we have also studied several κ-(ET)2NCS
samples, which the sample S3 represents. Because of the experimental lim-
itations we were unable to obtain the ground state and moreover because
of the sample tendency to disintegrate only one geometry was successfully
measured. However, on the basis of the obtained results we can conclude
that for this material the low-temperature state is critically determined by
the time scale of experiment in the region of glass transition as well. Further,
relaxation times of ethylene groups in the sample S3 are comparable to or
even larger than the ones for the sample S2. This can be concluded if one
takes into consideration that the obtained value for cooling rate sensitivity
for the sample S3 is the smallest among all three samples.
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6.3 Superfluid density

Next we comment on the behavior of the in-plane superfluid density in the
ground state. Our starting point is the d-wave symmetry of the conductivity,
proposed by most of the experiments, i.e., g(k) = cos(2ϕ) or g(k) = sin(2ϕ),
where ϕ is the angle between the quasiparticle momentum k and the a-axis.
These two functions represent dx2−y2-wave and dxy-wave symmetry for the
cylinder-like (in z-direction symmetrical) Fermi surfaces, respectively. In or-
der to obtain the theoretical expression of ρs, first we have to calculate the ra-
tio of the superconducting transition temperature and the zero-temperature
superconducting order parameter from Eq. (2.30). This equation can be
written in the following compact form

∆(0) = πe−γ kBTC exp[−〈g2(k) ln g(k)〉/〈g2(k)〉], (6.1)

if one designates the integrals over ϕ and ϑ, which have the meaning of the
averaging over the Fermi surface, with 〈 〉. Noting that 〈g2(k) ln g(k)〉 =
1
2
ln 1

2
+ 1

4
and 〈g2(k)〉 = 1

2
, we obtain

∆(0) = πe−γ kBTC exp[ln 2− 1

2
] = 2.14 kBTC. (6.2)

Now we can proceed with the calculation of the superfluid density using
Eq. (2.39). If the substitution ∆x =

√
ξ2 + ∆2g2(k) is used, we can trans-

form the expression into the following compact form

ρs,in(t) = 1− ∆

2kT

∫ ∞

0

〈
x√

x2 − g2(k)

〉
1

cosh2(∆x/2kT )
dx

≈ 1− 2(ln 2)
kT

∆
− 9

4
ζ(3)

(
kT

∆

)3

(6.3)

≈ 1− 0.6478t− 0.276t3.

Here we used
〈
x/

√
x2 − g2(k)

〉
= 2

π
xK(x) for x ≤ 1, where K(x) is the

complete elliptic integral [81]. In the last step we used Eq. (6.2).
The coefficient a of the leading term t in ρs,in = 1 − at + · · · depends

strongly on the ratio of the superconducting transition temperature and
the zero-temperature superconducting order parameter. The comparison of
values for a in Eq. (6.3) to those in Eqs. (5.8) and (5.10) or Eqs. (5.12)
and (5.13) suggests that the superconducting order parameter ∆ at T = 0 K
is much smaller than the one predicted by the weak-coupling limit. As a
result, this would also imply that the nodal region, the volume of which



6 Discussion 94

ka

� � �

_

+

_

+

kc kc

kaka

kc

r = 0.0 r = −0.35 r = −0.7

�� �

2kTg(�)

(a)

(b)

Fig. 6.1: The effects of the admixing of the s-wave component to the dx2−y2-
wave, where r represents the s-wave component parameter. (a) The change
of the node directions: Thick lines represent the Fermi surface, lines with
a medium thickness superconducting gap and thin lines the Brillouin zone
and crystallographic axes. Dashed lines represent node directions in the
superconducting gap. (b) The change of the volume of the nodal region µ:
The thick horizontal line represent the Fermi energy and thin horizontal lines
the limits of the thermal excitations.

is inversely proportional to the angular slope of the gap near the node
µ = dg(ϕ)/dϕ|node (Fig. 6.1(b)), occupies a much larger fraction of the phase
space at low temperatures. We point out that the same behavior of ρin for
λin(0) ≤ 1.3 µm was reported by Carrington et al. [39] They pointed out
that only at λin(0) ≥ 1.8 µm does the slope become similar to the one re-
ported for high-temperature superconducting cuprates and expected in the
weak-coupling model. From our present data, we get λin(0) ≈ 3 µm for the
crossover in-plane penetration depth value (see Fig. 5.14).

Obviously, since our results require a smaller superconducting order pa-
rameter ∆, the strong coupling model is of no help. On the other hand,
a plausible interpretation of our results is to consider the mixture of the
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Fig. 6.2: Superfluid density in the (d+s)-wave model for a few values of the
s-wave component parameter r.

d-wave and s-wave order parameters, which corresponds to the supercon-
ducting order parameter g(k) = cos(2ϕ) + r, with r representing the s-wave
component (Fig. 6.1) [82]. Using Eq. (6.1) and noting that 〈g2(k) ln g(k)〉 =
(1

2
+ r2) ln 1

2
+ 1

4
+ 3

4
r2 and 〈g2(k)〉 = 1

2
+ r2, we obtain

∆(0) = 2πe−γ kBTC exp[ln 2− 1

2
− 2r2

1 + 2r2
]. (6.4)

If in the last step of Eq. (6.3) we use Eq. (6.4) instead of Eq. (6.2), leading
linear coefficient a increases with the increase of r according to the expression

a =
2 ln 2

2.14
√

1− r2
exp

[
2r2

1 + 2r2

]
. (6.5)

Additional factor
√

1− r2 is the result of the fact that, in case of (d+s)-wave
order parameter, ρs,in becomes anisotropic and should be averaged over the
conductivity plane.

The shapes of the superfluid density curves for several values of param-
eter r are given in Fig. 6.2. For our results, |r| ≈ 0.7 gives a very good
agreement, which is, on the other hand, theoretically very unlikely, as it will
be shown in the next paragraph.

Recently, an admixture of the s-wave component with r = −0.067 for
κ-(ET)2NCS was suggested [82] based on the angular-dependent magne-
tothermal conductivity data [49]. These data suggest that the dx2−y2-wave
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(depicted in Figs. 2.1 and 6.1) instead of the dxy-wave pairing is responsible
for the superconductivity in κ-(ET)2X materials. As argued in Sec. 1.4, this
symmetry implies that both Fermi surfaces participate in pairing, which is
in contradiction to the previous assumption that spin fluctuations are re-
sponsible for the superconducting mechanism [47]. Therefore, the origin of
the electron pairing should be found elsewhere. The Coulomb interaction,
which is responsible for the d-wave superconductivity, gives rise to both spin
and charge fluctuations, so the obvious solution appears to be that charge
fluctuations play the principal role in the κ-(ET)2X superconductivity. The
value r = −0.07 suggests that the node lines in g(k) pass through the gap
between two Fermi surfaces. This is consistent with the (d + s)-wave model
in which the superconductivity is due to the charge fluctuations between
different groups of dimers. On the other hand, for r ≈ −0.7, the nodal direc-
tions cross the oval-shaped quasi-two-dimensional cylinders (Fig. 6.1(a)), and
for r ≈ 0.7, the nodal directions cross a pair of open quasi-one-dimensional
sheets. If the d+s superconductivity model is generated by the charge fluc-
tuations, such a scenario is unlikely to work, since this implies a strong
intra-Coulomb repulsion in each energy band. Indeed, the reported Coulomb
repulsion exceeds the value of 1 eV [2]. Therefore, the exact mechanism of
the pairing remains unclear and further theoretical as well as experimental
work should be done to resolve this question.

On the other hand, to calculate the out-of-plane superfluid density coher-
ent Josephson tunneling between superconducting layers is assumed, as pro-
posed by K. Maki [83]. The calculation is performed within the Ambegaokar-
Baratoff model [84], properly generalized for the d-wave superconductor. It
was assumed that only the direction, but not the magnitude of the in-plane
electron momentum is conserved. Finally, this gives

ρs,out(t) =
π

2

∆

∆(0)

〈
g(k) tanh

(
∆g(k)

2kT

)〉

≈
{

1− π2

6

(
kT

∆

)2

− 7π4

120

(
kT

∆

)4
}{

1− 3

2
ζ(3)

(
kT

∆

)3
}
(6.6)

≈ 1− 0.3592t2.

Here 1 − 3ζ(3)(kT/∆)3 comes from ∆/∆(0). It should be also pointed out
that the related Josephson plasmons have been reported in the κ-(ET)2NCS
material [85]. Comparing theoretical expression Eq. (6.6) to the experimental
ones, Eqs. (5.9) and (5.11) show qualitatively the same behavior with a small
discrepancy in the value of the first coefficient of the expansion.
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Fig. 6.3: The superfluid density as a function of T/TC0 for the state with no
scattering, and three states with a different degree of the scattering. TC0 is
the temperature of phase transition for the state with no scattering. Note
that all depicted superfluid densities share the same λ(0), obtained from the
state with no scattering. [87]

6.4 Remnant disorder in the superconduct-

ing state

Now, we address the behavior of the in-plane superfluid density in states
with different cooling rates. In this discussion we will concentrate on the
changes observed for the sample S2, but the same conclusions could be ob-
tained in the case of the sample S1. A quick inspection of Tables 5.1 and 5.2
shows two distinct effects of the increased cooling rate: a large increase of
the penetration depth and a rather small supression of the phase transition
temperature. The similar conclusions were obtained also by magnetization
studies by Aburto et al. [86]. Furthermore, considering the polynomial fit
in the intermediate state in Eq. (5.14), we see that the in-plane superfluid
density low-temperature variation changes to the squared temperature de-
pendence.

First of all, we ascribe the difference between the A state (ground state),
the R state (intermediate state), and the Q state to the residual degree of
the ethylene disorder. The A state we discussed is the ground state with the
least disorder in the ethylene groups. Indeed, this idea is consistent with the
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theoretical predictions. Hirschfeld et al. [88] pointed out that an infinitesimal
amount of disorder in unconventional superconducting states with nodes has
two effects near T = 0 K: First, a non-zero density of states at zero energy
exists, leading to the existence of the “gapless” temperature regime. Second,
the penetration depth increases compared to the no scattering case, and its
variation, as well as the superfluid density variation, change to the squared
temperature dependence. Furthermore, Sun et al. [89, 90] studied thermody-
namic quantities and superfluid density for the d-wave model with the impu-
rity scattering in the unitary limit in the whole temperature range (Fig. 6.3).
However, there is a serious discrepancy between our experimental data and
the impurity model, which established that a small disorder also depresses
TC dramatically. That is, in our experiment, it seems that TC is practically
unaffected by the ethylene disorder for the intermediate state, achieved by
the slow cooling of −0.2 K/min in the region of the glass transition. Further,
taking into account the fact that the λ(0) increases for at least by a factor
of 6, the superconducting electron density at 0 K, ns(0) ∝ λ−2(0), decreases
at least by a factor of 36. Such a simple impurity model cannot describe the
surprising combination of these two features. On the other hand, the results
for other low-temperature states achieved by cooling rates qC < −1 K/min
for the sample S1 and for the Q state in the sample S2 are more consis-
tent with the theory. In these cases both TC, χ′(0), and therefore λ(0) are
simultaneously influenced by the remnant ethylene disorder (see Tables 5.1
and 5.2). However, it is still difficult to correlate the observed behavior to
the impurity model quantitatively. This discrepancy might indicate that the
degree of disorder at low temperatures, as defined by the cooling rate in
the region of the glass transition, has also a profound influence on electronic
correlations, responsible for the SC pairing.

Further we address other explanations for the observed effects of the rem-
nant disorder in the superconducting state. For example, the authors of
Ref. 91 concluded that the suppression of the diamagnetism in the deuter-
ated material is due to the mixing of a superconducting and an antiferro-
magnetic phases. However, this possibility does not imply any suppression
of the phase transition temperature, in contrast to the observed small sup-
pression in our results [86]. The authors of Ref. 86 studied the situation
that combines two theoretical situations mentioned above – the possibility
that for the scattering in the unitary limit the defects may form clusters of
the antiferromagnetic phase. If this is so, one should consider the existence
of a non-superconducting fraction and the actual λ(0) variations would be
smaller than the ones computed from the magnetization data, leaving the
TC variations untouched. However, the performed calculations did not agree
well with the experimental results. Another appealing possibility comes from
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the effect of the weak localization [86]. Unlike in the impurity scattering in
the unitary limit discussed above, where the product ∆(0)τ (where τ is the
scattering time) determines both TC and λ(0) variations, in case of the weak
localization variation of TC is determined by εFτ (where εF is Fermi energy).
This enables the possibility of variations of TC and λ(0) being different. The
quantitative considerations, however, did not give a good correspondence to
the experimental results.

At this point we would like to recall the result of Kund et al. [26], which
showed changes in the crystal structure parameters for κ-(ET)2Br in the
region of the glass transition. In particular, while the first in-plane lattice
parameter a value displays a peak, the second in-plane lattice parameter c,
as well as out-of-plane lattice parameter b values display kinks at the same
temperature. It might be that these changes are also susceptible to the
cooling rate. In addition, the authors of Ref. 4 have pointed out that the
role of disorder in this class of superconductors might be different than in the
other unconventional superconductors due to the vicinity of the insulating
state in the phase diagram. This is due to the fact that in the former the
electrons are strongly correlated, which suggests the vicinity of the Mott
transition. The authors argue that the effect of disorder in the metallic state
near the antiferromagnetic Mott insulator is qualitatively different from the
situation of the simple Anderson localization.

Coming back to the intermediate state, the most intriguing fact about
Fig. 5.15 is that in the intermediate state the observed data could be well
described by the s-wave model as well. This gives a possible explanation
for the contradictory findings in favor of the s-wave and d-wave models in
the same material. The behavior is obviously strongly influenced by both
thermal history and synthesis, which suggests that the same material was
not measured in the same low-temperature state.

6.5 Coexistence of two phases

Now we shall study in more detail the appealing possibility of coexistence
of AF and SC phases already mentioned in the previous section. Regarding
indication of the decrease in the superconducting electron density, which was
pointed out in the previous section, we suggest that it may be related to
the reduction of the superconducting volume. It has been already reported
that cooling rates combined with progressive deuteration influence the low-
temperature electronic state in κ-(ET)2Br samples [4, 91]. The deuterated
κ-(ET)2Br system is situated in the critical region between an insulating
AF transition at 15 K and a SC transition at 11.5 K. Despite the slow cool-
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Fig. 6.4: ac susceptibility of d(0, 0)-, d(2, 2)-, d(3, 3)-, and d(4, 4)-κ-(ET)2Br
in the various cooling conditions: a rapid cooling of 10 K/min (�), a slow
cooling of 0.5 K/min (◦), and an annealing at 70 K for 12h (¦). n, n′ in
d(n, n′) represent number of the deuterum in each ethylene group. [4]
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ing rate, the deuterated sample gives almost the same TC as in the hydro-
genated κ-(ET)2Br system, the SC state being not fully established in the
bulk (Fig. 6.4). Note that this result strongly resembles to what we observed
for the S2 samples in the intermediate (R) state. In addition, a gradual
decrease of the susceptibility below TC in the deuterated system strongly
indicates the inhomogeneous nature of the SC state. This is in contrast to
what we observe in the sample S2, in which the susceptibility curves are
rather sharp even in the Q state. More rapid cooling rates induce a decrease
of TC and a substantial decrease of the SC volume fraction. The authors of
Refs. 4 and 91 have argued that since the electronic specific heat of rapidly
cooled deuterated samples did not show any finite electronic contribution
at low temperatures, the missing part of the superconducting phase should
be considered to be the magnetic insulating phase. The question arises if
their conclusion might also be valid in the hydrogenated system. Taking into
account the structure of the phase diagram of this class of superconductors
(Fig. 1.2), we think that this might be the case. However, the specific heat
data under carefully controlled cooling cycles are needed to resolve this issue.

The intimate relation between antiferromagnetic and superconducting
states is also supported by anomalous behavior in the susceptibility (see
Sec. 5.2.1). This suggests that the SC and AF domains compete in the
ground state and that in certain conditions an AF domain could turn into
a SC one or vice-versa. It is interesting to see whether this domain effects
could be somehow connected to the charged domain walls in the insulating
spin density wave ground state. Indeed, some recent articles suggest that the
superconducting ground state in the cuprates consists of antiferromagnetic
regions called stripes , bordered by the charge domain walls. These struc-
tures are easily detected in the AF ground state of the cuprates, where they
are pinned to the background lattice [92]. Nevertheless, authors of Ref. 92
argue that they might exist even in the SC state, where they are hard to
observe because of their dynamic behavior. Indeed, while the elastic neutron
scattering shows no stripe structure, the inelastic neutron scattering in the
Meissner superconducting state (H < HC1) show incommensurate magnetic
peaks possibly related to dynamic stripe structure. However, the consensus
about the stripe existence in the SC state still does not exist and the answer
to the question whether the presence of the stripes induces or destroys the SC
state remains open. It should also be noted that our estimate of the charged
domain wall size at 22 K in the κ-(ET)2Cl insulating spin density wave state,
amounting to about Lwall ≈ 0.1 − 1µm, is much larger than the typical size
of the charged domain walls of order of 10 Å in the cuprates. It is plausible
that the charge domain walls become thinner and eventually comparable to
the ones in the cuprates by the reduction of the temperature. On the other
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hand, since we expect rather huge antiferromagnetic domains in κ-(ET)2Cl,
the question how can we relate them to thin antiferromagnetic stripes of
order of 10 Å in the cuprates remains open. Therefore, further work is neces-
sary to investigate the possibility of domain size shrinking and domain walls
number increase by the applied pressure to the κ-(ET)2Cl material.



7 Summary

The family of quasi-two-dimensional κ-(ET)2X organic materials distin-
guishes itself by the rich phase diagram, very similar to the one found in the
high-temperature superconducting cuprates. Because of this similarity, an
enormous effort was made in order to understand the superconducting state
in these materials. Despite of that, a long time controversy regarding the
symmetry of the superconducting state has persisted to this day.

In order to make a breakthrough in the understanding of the problem,
we concentrated our attention on three important issues. First, if one wants
to understand the superconducting ground state, one has to correlate its
properties with the properties of the neighboring insulating spin density wave
ground state and the normal state. Second, sample-dependent and thermal
history effects should be accounted for. And finally, the full characterization
of the superconducting state should be made on one single crystal and, if
possible, using one experimental method. Indeed, in our investigation we
successfully addressed all of these issues.

Normal state properties point to strong electron correlations, which, de-
pending on the subtle crystal properties, lead to either an antiferromagnetic
or a superconducting state. The situation is further complicated by the ex-
istence of the important relaxation effects, due to the glass transition, that
influence the properties of the superconducting ground state. Our measure-
ments of the insulating spin density wave ground state included the measure-
ment of the single-particle resistivity, the non-ohmic conductivity and the di-
electric spectroscopy. The obtained non-ohmic and dielectric response can be
explained only by the existence of the collective mode. The behavior of phys-
ical parameters, related to the response, suggests that the short-wavelength
– charge domain wall pairs – excitations are the entities responsible for the
observed properties. The existence of domain walls is naturally connected to
the existence of the reported weak ferromagnetic ordering, which also implies
the existence of domains.

Next, the full characterization of the superconducting state was made
for samples of different syntheses. Further, every sample was cooled using
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several different well-controlled conditions in the temperature region that
corresponds to the glass transition. Large differences in the properties of the
superconducting state were observed and the ground state was assigned to
the low-temperature state obtained by the slowest cooling rate.

The investigation of the superconducting state was performed by the
extraction of the penetration depth. This method has a large advantage
as regarding to the fact that the superfluid density can be calculated directly
from the penetration depth. The measurements were performed using the
ac susceptometer of high precision, which was inevitable in order to account
for small dimensions of the studied samples. The measurements were done in
magnetic fields, more than an order of magnitude smaller than the Earth’s
field, which is far below the lower critical magnetic field, so the genuine
Meissner state was measured and the possible vortex effects were avoided.
Finally, a specially developed improved calibration was designed in order to
obtain the reliable absolute value of the penetration depth for two distinct
geometries, with the direction of the magnetic field parallel and perpendicular
to the isotropic crystal planes.

The qualitative temperature dependence of both the in-plane and the
out-of-plane superfluid densities in the genuine superconducting ground state
undoubtfully revealed that the symmetry of the superconductivity requires
the existence of the linear nodes in the superconducting gap, which is in a
good agreement with the d-wave model. Also, to obtain the temperature de-
pendance of the out-of-plane suprafluid density, Josephson coupling between
the conducting planes has to be taken into account. The nodes in the su-
perconducting gap are not surprising if one takes into consideration that an
antiferromagnetic state is located in the vicinity of the superconducting one,
which points to the unconventional superconductivity. In order to also get a
quantitative agreement, the (d + s)-wave model was used, however, a rather
large s-wave component needed to fit our data was not consistent with the
recent thermal conductivity results. On the other hand, the superconduct-
ing state, obtained by the faster cooling rate, can be well described by the
model of the d-wave superconductor with impurities. Even more important,
this state can be correlated fairly well to the s-wave coupling superconduct-
ing model, with no nodes in the superconducting gap. This fact suggests a
possible way out of the contradicting results in the scientific community.

Finally, few domain effects in the superconducting state, combined with
the domain structure in the neighboring insulating spin density wave ground
state, point to an important possibility of the existence of a novel ground
state. Since κ-(ET)2X materials are in many ways very similar to high-
temperature superconducting cuprates, a question appears if this state can
be somehow related to newly reported structures – stripes – in the latter
materials.
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C. Mézière, M. Fourmigué, and P. Batail, Phys. Rev. Lett. 85(25), 5420
(2000).

[4] H. Taniguchi, A. Kawamoto, and K. Kanoda, Phys. Rev. B 59(13), 8424
(1999).

[5] L. I. Buravov, N. D. Kushch, V. A. Merzhanov, M. V. Osherov, A. G.
Khomenko, and E. B. Yagubskii, J. Phys. I France 2, 1257 (1992).

[6] M. Pinterić, M. Miljak, N. Bǐskup, O. Milat, I. Aviani, S. Tomić,
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France 1, 1603 (1991).

[70] Y. T. Tseng, G. X. Tessema, and M. Skove, Phys. Rev. B 48(7), 4871
(1993).

[71] M. Tinkham, Introduction to Superconductivity (McGraw-Hill, New
York, 1996), p. 25.

http://www.cryobind.com/


Bibliography 110
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