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ABSTRACT

Pure katabatic flow is studied with a Prandtl-type model allowing eddy diffusivity/conductivity to vary
with height. Recently we obtained an asymptotic solution to the katabatic flow assuming the validity of
the WKB method, which solves the fourth-order governing equation coupling the momentum and heat
transfer. The WKB approximation requires that eddy diffusivity may vary only gradually compared to
the calculated quantities, i.e., potential temperature and wind speed. This means that the scale height
for eddy diffusivity must be higher than that for the calculated potential temperature and wind speed.
The ratio between the maximum versus the mean eddy diffusivity should be less than that for the
scale heights of the diffusivity versus the calculated quantities (temperature and wind). Here we justify
(a posteriori) the WKB method independently based on two arguments: (i) a scaling argument and (i i)
a philosophy behind a higher-order closure turbulence modeling. Both the eddy diffusivity maximum
and the level of the relevant maximum turbulent kinetic energy are above the strongest part of the near-
surface inversion and the low-level jet which is required for the WKB validity. Thus, the numerical
modeling perspective lends credibility to the simple WKB modeling. This justification is important
before other data sets are analyzed and a parameterization scheme written.

1. Introduction

Since katabatic flows are regular features of stable
boundary layers (SBL) over inclined cold surfaces, it
is desirable to understand their detailed structure (re-
views in, e.g., Stull, 1988; Egger, 1990; Oerlemans,
1998). For instance, the turbulence parameters of
katabatic flow enter the mass balance calculations
for glaciers (Oerlemans and Fortuin, 1992; Van den
Broeke, 1997; Oerlemans et al., 1999). At the same
time, our basic understanding of katabatic flows is still
limited (e.g., Mahrt, 1982; 1998; Denby and Smeets,
2000; Pawlak and Armi, 2000). In the SBL there is
a multitude of processes that complicate the under-
standing and consequently our ability to parameterize
the SBL (Zilitinkevich and Mironov, 1996). The latter
is needed for developing further our weather and cli-
mate models that can deal with very stable atmospheric
conditions.
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Recent studies of katabatic flows show that the clas-
sic theory of Monin and Obukhov (MO) for the surface
layer may not work (e.g., Mahrt, 1998; Van der Avoird
and Duynkerke, 1999), a fact that was indicated earlier
by Munro and Davies (1978). Although there are some
significant advancements in MO theory (Zilitinkevich
and Calanca, 2000), it is still questionable whether
these can deal with katabatic flows having a well de-
fined low-level jet at only several metres above the
surface (zj ∼ 5 m). Munro and Davies (1978) suggest
that the problem with MO theory used over inclined
surfaces is because of the incorrect assumption that the
buoyant force acts in the vertical only. The fact is that
a part of the buoyant force is directed along the slope,
thus driving the katabatic wind. In very stable strati-
fications in general, the behavior of the SBL can be
far from what MO theory suggests (e.g., Mahrt, 1998;
Pahlow et al., 2001). In view of this, it is worthwhile
to investigate further the katabatic model of Prandtl
(1942), which couples the dynamics and thermody-
namics in a simple yet efficient and apparently correct
way (Defant, 1949; Egger, 1990; Oerlemans, 1998).
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One way to develop the theory of pure katabatic flow
is by employing the WKB1 method (Grisogono and
Oerlemans 2001a,b; henceforward GOa, b). This
method relies on the assumption that the background
fields may vary only gradually with respect to the per-
turbation (calculated) fields. In other words, the back-
ground should not depart much from its constancy.
More about the WKB techniques may be found in,
e.g., Bender and Orszag (1978) or Gill (1982).

The aim of this study is to justify the WKB method
starting with the eddy diffusivity, K, profile for pure
katabatic flows. The WKB method, which implies that
K (z) = KWKB(z) varies only gradually, was first ap-
plied to katabatic flows in GOa. Furthermore, in GOb it
was outlined why the WKB can be justified, but a proof
was not given. Both papers also compare the method
against a limited data set and numerical examples. In
this paper we work on the ‘proof’, inspired by the ques-
tions of many reviewers and editors who dealt with the
applicability of the WKB approach in the boundary-
layer models addressed in Grisogono (1995a), GOa
and GOb. It will be shown that the maximum of K (z)
is around or above the principal maximum of the kata-
batic turbulent kinetic energy (TKE), which is always
above zj and the strongest part of the surface inversion
zinv. Hence, the K (z) maximum is also always above
zj and zinv. The problem is sketched in Fig. 1 showing
the typical katabatic profiles.

Previous applications of the WKB method in the
SBL usually fail (Grisogono, 1994). There the WKB
assumption was applied to the Taylor–Goldstein equa-
tion, requiring the wave-number function to be a grad-
ually varying function of height. The method failed
because the calculated buoyancy wave often has a
longer vertical wavelength than the SBL depth, the lat-
ter being the background. This contradicts the WKB
assumption, but the WKB, as other linear theories,
does not know itself when it fails. But besides waves
there are other important boundary layer features onto
which one may exercise the WKB method. For exam-
ple, the problem of baroclinic Ekman layer was treated
in Berger and Grisogono (1998) applying the WKB ap-
proximation on K (z). It was simply required that the
vertical scale on which K (z) varies be longer than that
of the calculated quantities, namely the wind field. A
similar idea is used here as well but now addressing
pure katabatic flows.

1Wentzel, Kramers, Brillouin, Jeffreys and Rayleigh (e.g.,
Bender and Orszag, 1978).

Fig. 1. A sketch illustrating the pure katabatic flow. It is
similar to that in Stull (1988, p. 535) showing the wind speed
u (thin), potential temperature deficit �[= T h(z)] and tur-
bulent kinetic energy TKE (very thin). Here a typical K (z)
pertaining to the flow is displayed too. Various important
heights are depicted: low-level jet, zj, guessed near-surface
inversion, zinv, and heights of the TKE and K maxima. Note
that max(K) occurs slightly above or at the max(TKE), but the
latter is definitively above zj. Also note that zj, corresponding
to the max(u), coincides to the min(TKE).

2. The ‘WKB-ready’ governing equation

The pure katabatic model is one-dimensional, hy-
drostatic, irrotational and without a large-scale pres-
sure gradient. It consists of the momentum and thermo-
dynamics equations, the boundary conditions, and it is
discussed in a number of papers: Defant (1949), Nappo
and Rao (1987), Egger (1990), Oerlemans (1998),
Denby (1999), Smeets et al. (2000), etc. Thus, the over-
all discussion is not repeated: only the single, govern-
ing equation for the potential temperature perturbation
� (the equivalent can be done for the wind speed u)
will be recalled as the starting point here after the gov-
erning set is shown first. The katabatic flow model with
rotation can be found in, e.g., Denby (1999); neglect-
ing the rotation as unimportant for the pure katabatic
flow and using K-theory, the governing set is:

∂u/∂t = g(�/�0) sin(α) + ∂(K Pr∂u/∂z)/∂z (1a)

∂�/∂t = −uγ sin(α) + ∂(K∂�/∂z)/∂z, (1b)

where Pr is the turbulent Prandtl number, γ is the po-
tential temperature lapse rate, K is the turbulent heat
conductivity, α is the surface slope and the other sym-
bols have their usual meaning. Here we are concerned
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with the pure steady katabatic flow addressing rela-
tionships between K (z) and [�(z), u(z)].

First, if K and Pr are constants, then the steady form
of eqs. (1a,b) gives the classic model of Prandtl (1942):

d4�/dz4 + (σ/K )2� = 0, (1c)

where

σ 2 ≡ gγ sin2(α)/(�0 Pr ) (2)

is a suitable buoyancy frequency squared. Note that
σ is proportional to the common buoyancy frequency,
N ≡ (gγ /�0)1/2, divided by Pr 1/2, the proportional-
ity factor being sin(α). Equation (1c) is mathematically
equivalent to that for the Ekman-layer problem (e.g.,
Holton, 1992; Stull, 1988), having exponentially de-
caying sine and cosine functions as its solution. The
SBL depth, H, can be ideally assumed to be governed
solely by the katabatic flow. Then H follows from
the flow solution depending on how it is defined. If
we define it as the level where u = 0, namely Hu=0,
then a moderate overestimation for the katabatic flow
thickness is attained, which is probably closer the SBL
depth itself. We adopt the definition as in Oerlemans
(1998): H is the height where both u and � decrease
by e-fold, He determining the katabatic flow depth. As
it will be shown later, our main result does not cru-
cially depend on this definition. To summarize, eqs.
(1c) and (2) set the stage for the classic problem of
Prandtl (1942).

Second, if K = K (z), then eqs. (1a) and (1b) yield

d4�/dz4 + 4(dK/dz)/K d3�/dz3 + f2d2�/dz2

+ f1d�/dz + (σ/K )2� = 0 (3)

where

f2 ≡ 3d2 K/dz2/K + 2(dK/dz/K )2,

f1 ≡ d3 K/dz3/K + (dK/dz)d2 K/dz2/K 2,

(4)

as in GOa. For K (z) that is smooth everywhere, grow-
ing from an arbitrarily small value at z = 0, reaching
its maximum KMAX somewhere in the SBL and then
decreasing to an arbitrarily small value sufficiently
high above the surface, z > H , one expects that the
f1 and f2 terms can be sufficiently small that the first
and the last terms in eq. (3) dominate. In other words,
if K (z) is gradual enough, eq. (1c) still remains a rea-
sonable zeroth-order approximation to eq. (3). A first-
order correction is the inclusion of the second-term
on the LHS of eq. (3) containing dKWKB/dz (also see
Grisogono, 1995a; GOa). A second-order correction

would include the f2-term, etc. The WKB expansion
goes equivalently: a zeroth-order WKB approxima-
tion solves eq. (1c) but still allowing for KWKB(z), a
first-order WKB approximation solves eq. (3) with the
KWKB(z) and (dKWKB/dz) terms but without the f1 and
f2 terms, etc. Figure 2 illustrates both the constant K
and WKB solutions. The WKB solution shows sharper
gradients near the surface while approaching the upper
boundary conditions more gradually. That is exactly
what is needed from an improved theory as implied
by Defant (1949) and Egger (1990, e.g., his Fig. 3.5
adapted from Defant).

Going back to eq. (1), it follows that the classic
model of Prandtl holds where the follwing is fulfilled:

|dK/dz du/dz| < |K d2u/dz2| (5a)

and

|dK/dz d�/dz| < |K d2�/dz2| (5b)

because eq. (1c) results from d/dz[K d( )/dz] →
K d2( )/dz2 in eqs. (1a,b). Obviously K (z) must be
gradual and without zeros inside the domain for
eq. (5) to hold. However, eq. (5) cannot be fulfilled
everywhere, especially not at and very near the sur-
face, because K should vanish there unless we adopt
the roughness concept, or some other approach, with
z ≥ z0, so that K (z0) > 0 (done in a weak sense for
the fluxes in GOb). Instead it is better to require eq. (5)
to hold only for a certain part of the domain. Namely,
let eq. (5) hold around the low-level jet, because it is
the jet that determines the pure katabatic flow (Oer-
lemans, 1998; Van der Avoird and Duynkerke, 1999).
The rest of the flow will adjust to the jet governing the
flow. Of course, the larger the flow domain satisfying
eq. (5), the more accurate the WKB approximation. In
short, it is assumed that eq. (5) should be fulfilled only
in the most dynamically active part of the flow, which
is around the low-level jet.

Figure 3 depicts typical profiles of the terms in
eq. (5) as calculated from a WKB example in GOb
using a gradual KWKB(z) as discussed later. While eq.
(5a) is fulfilled above 1.17 m, eq. (5b) is fulfilled only
for z ≥ zj. The WKB solution, not fulfilling eq. (5b)
below zj, is shown to be significantly better than the
constant-K solution when compared against the data
set and numerical solution (GOa; b) throughout the
flow. Thus, relaxing eq. (5) away from zj allows for
sharper flow gradients that are poorly resolved with
K = const. If eq. (5) were applied everywhere, it
would be locally too restrictive. However, if eq. (5)
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Fig. 2. Typical profiles of a pure katabatic flow with constant K (the classic solution of Prandtl, dashed) and the WKB solution
using eqs. (7a–c) and (8a), solid. The particular input consists of (α, γ, Pr, C, KMAX, h, KCONST) = (−0.1 rad, 4 K km−1,
1.5, −10 K, 0.25 m2 s−1, 25 m, 0.1 m2 s−1). There is no input to the constant K model that would produce both the low-level
gradients and the smooth transition above the low-level jet obtained by the WKB model.
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Fig. 3. Typical profiles for the terms in eq. (5). The curvature terms (solid), those involving d2/dz2, are on the left, and the
gradient terms (dashed) are on the right (a). While the temperature-curvature term, |K d2�/dz2| (= |K d2T h/dz2|), is larger
than its gradient counterpart only from z j upward, the wind-curvature term is already so from about 1.113 m upward (b). The
latter dominates the dynamics of pure katabatic flows.
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holds only around zj, then WKB captures the main
features of the pure katabatic flow, and it can be said
that the WKB is a valid approximation.

The gradual behavior of K (z), i.e., K (z) =
KWKB(z), is essential and also explains the nature of
the WKB technique. For instance, if K = const, then
eq. (5) is trivially fulfilled, and this was the starting
point for the WKB employment in GOa. The main
point is that eq. (5) is valid only around zj, because it
is the low-level jet that determines the dynamics of this
type of flow (Van der Avoird and Duynkerke, 1999).
Away from zj, we allow for the implicit influence of K-
variations, which in turn results in a better resolution
of the flow gradients. A scale analysis of eq. (5) using
representative values for K, u, � and their gradients
(the maxima divided by the heights where they occur)
simplifies the criterion:

(KMAX/h)uMAX/zj ≤ K̄ uMAX/z2
j (6a)

and

(KMAX/h)�MAX/zinv ≤ K̄�MAX/z2
inv (6b)

where K̄ denotes suitable averaging of K (z) in the
vicinity of the low-level jet zj; the other parameters
are the maximum wind speed, uMAX, the maximum
potential temperature perturbation �MAX and the sur-
face inversion height, zinv. To unify the spatial averag-
ing in eq. (6), the averaging is performed between the
surface and the height where K reaches its maximum,
h, since h must embrace both the jet and inversion,
i.e., the WKB requirement, and it is the relevant scale-
height for K (z). Thus, K̄ and the averaging in eq. (6)
are obtained over h, h > max(2zj, zinv). Note that this
procedure “softens” eq. (5) because now K̄ is suffi-
ciently beyond zero. For all tests performed with grad-
ual K (z), i.e., with KWKB(z), eq. (6) was satisfied (not
shown). We use interchangeably K (z) and KWKB(z)
henceforth. Now, as one of the reviewers pointed out,
eq. (6) results in

KMAX/K̄ ≤ max(h/zj, h/zinv). (6c)

In GOa eq. (3) was solved upward from the height
h, h ≡ h(KMAX) = h[max (K )], with the first-order
WKB method where K (z) gradually decreases, and
below h with the zeroth-order WKB method where
K (z) increases with height. However, for the purpose
of this paper it suffices to use only the zeroth-order
WKB solution, thus omitting the solution patching at
h. This effectively means solving eq. (1c) but with

K (z). On the other hand, it implies that K-derivatives
do not affect (�, u) explicitly. Thus, the leading be-
havior of the WKB solution to eq. (3) taken from GOa
or GOb is

F ≈ exp

[
− (1 + i)(σ/2)1/2

∫ z

0
K −1/2 dz

]
. (7a)

Here F is a dimensionless complex function, F ≡
(�, u)D-LESS. The � and u are

�(z) = CRe[F(z)], and u(z) = CµIm[F(z)], (7b)

µ ≡ [g/(�0 Prγ )]1/2, (7c)

where C is the surface potential temperature deficit,
C < 0 (the lower boundary condition together with
no-slip for u). Compared to the case with constant K
(i.e., the classic solution of Prandtl), there is a dis-
tinctly different behavior, e.g., near the surface: here
F grows rapidly for 0 < z << h, etc. Figure 2 em-
phasizes some of these differences. Numerical com-
parisons presented and discussed in GOa, b are in
the favor of the WKB solution (not shown). Note
that the classical K-constant solution emerges from
eq. (7) as

(�, u) ∼ exp{−(1 + i)[σ/(2K )]1/2z}
= exp[−(1 + i)z/He],

He ≡ (4�0[max(K )]2 Pr/{γ g[sin(α)]2})1/4.

(7d)

The weakness of the whole method is the prescrip-
tion of K (z) instead of K being an interactive function
of the flow. In the latter case, we do not know how to
solve the resulting nonlinear partial differential equa-
tion analytically, and to find explicit relations between
K and (�, u). Thus, we are bound to use the linear
approach symbolized by eqs. (3)–(5). However, one
may remedy this in a numerical iterative procedure
solving eq. (1a,b) by parameterizing K in terms of the
flow variables. Next we concentrate on the choice and
justification of K (z); furthermore, a linearized link be-
tween the flow and K will be given.

3. The choice of K(z)

3.1. Input parameters

Besides the realizability criterion, K ≥ 0, K (z)
must satisfy the following conditions in pure katabatic
flows: K (z → 0) → 0 and again K (z << ∞) → 0
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while reaching its maximum, KMAX, at h within the
SBL. Furthermore, the class of K (z) considered here
must also comply with the WKB criterion that the scale
height of K is larger than that of u and �, namely
h > max(2zj, zinv), where 2zj and zinv are the respec-
tive scale heights for u and � (see below).

For modeling studies of stable and near-neutral
boundary layers, the profile of K due to O’Brien (1970)
is often used, see e.g., Pielke (1984) or Stull (1988).
O’Brien’s K is a third-order polynomial, K3(z). It is
generalized into a linear-exponential function, in GOa,
i.e.,

K (z) = (KMAX e1/2/h)z exp[−0.5(z/h)2]. (8a)

With its convenient analytic properties, this KWKB(z)
from eq. (8a) is used instead of a K3(z); its di-
mensionless form appears in the next section as eq.
(8b). Note that if eq. (8a) is expanded for small z, it
will approximate a K3(z). An additional advantage of
eq. (8a) with respect to K3(z) is that it has only two pa-
rameters (KMAX, h), while any K3(z) generally needs
four input parameters. This is relevant not only for ana-
lytical studies, but also for data analyses. It is possible
to show that eq. (8a) can be broadened into a class
of functions (z/h)p multiplied by the exponential fac-
tor, thus yielding a broader class of (�, u) profiles.
For example, p = 2 gives the log-profile; also, certain
correction functions can be constructed in this way.

From eqs. (5), (6) and (8a) one obtains

max(2zj, zinv) ≤ (e1/2 − 1)h (9a)

if the average K̄ in eq. (6) is done over h. Because
numerical experiences with the WKB tells that the
method is still valid even when the scale heights be-
come closer, i.e., going toward “≤” in eq. (9a), see
e.g., Bender and Orszag (1978), Laprise (1993), or
Grisogono (1995a), one is able to estimate h as

h ≈ const0 max(2zj, zinv)(e1/2 − 1)−1

= const max(2zj, zinv) (9b)

where ‘const’ is better to be determined from data;
it should be roughly O(1). Note that eq. (9a) sug-
gests a value close to 1.5. Two criteria are inter-related
here. First, the general WKB criterion that the back-
ground quantity, here KWKB(z), varies on the scale
larger that those of the calculated perturbations. That
resulted in h > max(2zj, zinv) because K varies over
h, u varies over 2zj and � changes over zinv. Second,
from eq. (6) zj/h < Kaverage/KMAX relating the former

and more general length-scale inequality to the partic-
ular gradient of K (z). The final relation including the
(e1/2 − 1) factor comes from the chosen form of K (z),
namely eq. (8a), the linear-exponential height depen-
dence. Clearly, another KWKB(z) will give another fac-
tor there.

Since du/dz = 0 at z j , the imaginary part of eq. (7a)
maximizes at zj. This gives another integral constraint
for K having integrated K −1/2 up to zj as in GOb [their
eq. (4.2)], so that eq. (9), together with the approximate
relation

KMAX ≈ 32Nαhzjπ
−2(ePr )−1/2 (10a)

derived in GOb [see their eq. (4.5)], will help esti-
mating the profile of KWKB, yielding its maximum
for pure katabatic flows; Nα ≡ σ Pr−1/2 = N sin(α).
One could have intuitively expected from the grad-
ual variability of KWKB that its KMAX ∝ h as in eq.
(10a). From the dynamics point of view, it is more im-
portant that zj enters directly in KMAX. For instance,
if (zj, zinv) = (6, 13) m, Nα = 0.0015 s−1, Pr ≈ 1.5,
then a first guess for h might be around 20 m, yield-
ing KMAX ≈ 0.29 m2 s−1. This is a reasonable value,
close to that found in GOa by fitting to a data set from
the Pasterze glacier, Austria. Based on eqs. (8)–(10)
and guessing a reasonable Pr ≥ 1, the WKB katabatic
model input is nearly completed. One way of making
the procedure weakly nonlinear is by an iterative ad-
justment of h[K (KMAX, h)] letting the new value of h
tend to He and assigning a new value to K (and also
recalculating zj).

Because the katabatic jet is the key dynamic feature
here (e.g., Van der Avoird and Duynkerke 1999; GOb),
it makes sense to also require as in Oerlemans [1998,
see his eq. (19)] that K is proportional to the flow depth
He and maximum wind speed:

KMAX = C1 He max(u) = c1e−π/4 sin(π/4)He(−Cµ).

(10b)

The thicker and the faster the katabatic flow, the larger
KMAX. It is beyond this analytical study to find the
coefficient c1[<O(10−2)], because this requires more
data to be processed. Equating eq. (10a), based on the
WKB method, and eq. (10b), from the underlying dy-
namics, we obtain zj ∼ −C/[γ sin1/2(α)]. Now even
the scale-height of the essential dynamics, namely
the height of the low-level jet, is related to the in-
put parameters; thus, everything becomes calculable
up to a constant. A similar expression was obtained by
Oerlemans [1998, his eq. (24)]. The last relation
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zj ∝ −C/[γ sin1/2(α)], (11)

tying in the background parameters determining zj,
together with eqs. (8)–(10) completes the estimation
of K (z) that senses the pure katabatic flow. In other
words, a set of constraints for max(K ) and its position
is found, which is important. Now the input consisting
of (α, γ, C, Pr ) determine the flow, in particular the
low-level jet intensity and position. Of course, gener-
ally KWKB(z) profiles are not limited to eq. (8a), pro-
vided they satisfy the WKB criterion requiring that
K (z) varies gradually as stated explicitly in eq. (5) or
(6). In short, we have combined here our previous find-
ings about the katabatic flow and KWKB (Oerlemans,
1998; GOa,b).

3.2. Spatio-temporal scales

The dimensionless integral in the exponent of
eq. (7a) determines the katabatic flow depth He (which
ideally can be related to the SBL depth, since He ≤ H ).
If the integral is considered only, it defines the square
root of an important time scale related to turbulence.
Consequently, turbulent-diffusion time scales are

τ (z) ∼
(∫ −z

0
K −1/2 dz

)2

.

If the integration goes up to z = He, it will correspond
to the natural time scale for the steady katabatic flow
defined by (or at least proportional to) σ−1. More about
τ, H, zj and their relations to turbulent fluxes can be
found in GOb. Needless to say, the MO length does not
appear here, but seems to be close to h. Next we want
to see how eq. (8a) relates to state-of-the-art numerical
models.

4. A numerical modeling perspective

4.1. Background

Here we indicate that our K is consistent with tur-
bulence schemes in mesoscale numerical models. Be-
sides the scaling argument in the former section re-
lating the input K-parameters to the flow, this section
provides an additional and independent view of the
WKB validity.

We will relate K to TKE via turbulent length scales.
First we show that KWKB has its maximum above or
at the max(TKE) that is numerically modeled. Know-
ing turbulent length scales and K (z), one can calculate

the TKE(z), e.g., from the steady-state balance among
shear production, buoyancy loss, transport and dissi-
pation of the TKE, e.g., Pielke (1984), Stull (1988). In
a numerical model with a higher-order closure tur-
bulence parameterization scheme, typically K ∼ L
(TKE)1/2, where L is the master turbulent length scale
and TKE is a prognostic variable (Pielke, 1984; Arritt
and Pielke, 1986; Nappo and Rao, 1987; Stull, 1988;
Enger, 1990). The modeled katabatic TKE profile
looks like that more described in Arritt and Pielke
(1986), Nappo and Rao (1987), Stull (1988), Denby
(1999), or as simply sketched in Fig. 1. In short, the
principal max(TKE) is above zj, since min(TKE) oc-
curs at zj, where TKE shear production is lacking.
Above zj, the shear reactivates, usually under a rela-
tively weaker stratification than below zj, and conse-
quently the absolute max(TKE) appears.

Suppose that L is either of the Blackadar type, LB,
or the ‘z-less stratification’ type, LS in a considered
mesoscale model (e.g., Pielke, 1984; Enger, 1990;
Grisogono, 1995b). The latter is governed by the lo-
cal buoyancy frequency or shear (Hunt et al., 1988;
Tjernström, 1993; Schumann and Gerz, 1995). The
former has its upper approximate value L∞, which
will be also used here for normalizing height, thus
ζ ≡ z/L∞, 0 ≤ ζ < ∞. This summarized reasoning
concerning K, TKE and L is fairly general and ac-
cepted in the modeling community, though with nu-
merous details of various complexity; it is our starting
point for relating the heights of the K and TKE max-
ima via the appropriate L. Normalizing eq. (8a) by,
e.g., e1/2 KMAX, we obtain

K (ζ ) = aζ exp(−bζ 2), (8b)

where a and b are positive constants obtained straight-
forwardly from eq. (8). While the constant a in
eq. (8b) is unimportant for the discussion, b is an im-
portant parameter, b ≡ 0.5(L∞/h)2 < O(1), typically
0 < b < 0.5. The smallness of b is not arbitrary, but it
results from the fact that L∞ ≤ zj < h. In very stable
boundary layers, as considered here, it is only conceiv-
able that L∞ < h. If opposite, then the characteristic
eddy size would be allowed to mix the SBL thoroughly
because h ∼ H (h ≤ H ). However, this is impossible
in the very stable and steady boundary layer (e.g.,
Mahrt, 1998). The maximum of eq. (8b) is at ζK =
(2b)−1/2, corresponding to the maximum of eq. (8a)
at z = h. The normalized TKE is

TKE(ζ ) = (K/L)2. (12)
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Thus, dimensionless K and TKE are related via tur-
bulent length scales. [In eq. (12) Pr, which is con-
stant in this study, is already absorbed.] Numerical
mesoscale models usually choose smoothly the mini-
mum between LB and LS. Now, we address separately
the choice of L in eq. (12), namely LB, and LS.

4.2. The length scale of Blackadar type, LB

From the definition LB(z) ≡ kzL∞/(kz + L∞) the
dimensionless form becomes

LB(ζ ) = kζ/(1 + kζ ), (13)

where k is the von Karman constant. Combining
eqs. (8b), (12) and (13), we find

TKE(ζ ) = (a/k)2 exp(−2bζ 2)(1 + kζ )2. (14)

The max[TKE(ζ )] is obtained by equating
d(TKE)/dζ = 0 from eq. (14) and solving for ζ

to find the height of max(TKE), ζTKE. One ends up
with a quadratic expression for ζTKE, where only one
root is positive and has a physical meaning:

ζTKE = [(2b)−1 + (2k)−2]1/2 − (2k)−1. (15)

Now, for all values of b that are realistic for the consid-
ered SBL, ζTKE < ζK = (2b)−1/2, which is an impor-
tant and not previously stated result. It should be men-
tioned that Nappo and Rao (1987), using only a version
of eq. (13), obtained a set of realistic katabatic profiles
and the related TKE [see their eqs. (4)–(6) and Fig. 6].
From their work it implies a K that corresponds to our
KWKB having its maximum above zj. A similar conclu-
sion follows from Arritt and Pielke (1986), where also
K ∼ TKE1/2, and the elevated max(TKE) is above z j .
It is interesting to add that Arritt and Pielke (1986) use
the O’Brien (1970) profile, the one that is generalized
in GOa and here, for their model initialization.

4.3. A “z-less” type of length scale, LS

Typically, here in the dimensional form

LS = D min[(TKE)1/2/N , (TKE)1/2/S], 0 < D ≤ 1,

(16)

where the choice is determined locally by the gradi-
ent Richardson number, Ri = N/S, N and S being the
local buoyancy frequency and absolute shear, respec-
tively. Note that using “min” form in eq. (16) is similar
to 1/LS ∼ (S/TKE + N/TKE) which has the same
mathematical structure as 1/LB. For 0 < Ri < 1, it is

S that determines the turbulence frequency scale and
the corresponding LS, while N does the same for Ri ≥
1; for details see Hunt et al. (1988) and Schumann
and Gerz (1995). This LS does not sense the height,
namely LS �= LS(z). Hence, from eq. (12) TKE be-
haves as

TKE(ζ ) = const K 2, (17)

where “const” is a physical parameter not containing
the height; eq. (17) has its maximum at ζTKE = ζK =
(2b)−1/2. It is interesting to note the implication of
LS �= LS(z) in a more general context. A tedious cal-
culation, based on N and S from eq. (7) entering eqs.
(12) and (16), results in an infinite number of zeros
identifying the TKE extremes (i.e., infinitely many
solutions to a transcendental equation for the height
where TKE reaches extreme values). This is the math-
ematical manifestation of the “z-less” physical concept
for the length scale. Since there is no preference to
which zero solution of d(TKE)/dζ = 0 to choose, any
idea of LS(z) has to be abandoned, and the name of “z-
less” length scale appears naturally (as it has been used
in the modeling community). The conclusion of this
section considering a numerical modeling perspective
is that K and TKE are related, so that ζTKE ≤ ζK for
the assumed K, eqs. (8a) and (8b), used to describe
pure katabatic flows with the WKB method. This is
in agreement with the WKB requirement addressed in
the former two sections.

5. Conclusions

An analytic model of Prandtl type (Prandtl, 1942;
Defant, 1949; Egger, 1990) for katabatic flows was for-
mulated and solved for almost any gradually varying
eddy diffusivity K (z) = KWKB(z). The asymptotic so-
lution employed the WKB method to solve the fourth-
order governing equation, but the method was not fully
justified. The justification is provided here as an exten-
sion of GOa and GOb, where the steady problem was
solved, and the flux calculation was presented, respec-
tively. The WKB justification, presented here, is based
on two independent arguments: a scale analysis and a
philosophy of the higher-order closure for turbulence
parameterization in mesoscale numerical modeling.

Simultaneously with the WKB justification, the
main parameters for eddy diffusivity and conductiv-
ity K (z) in pure katabatic flows, namely max(K) and
its height h, are estimated and related to the flow
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variables, potential temperature deficit and katabatic
wind (�, u). It is shown here that because the
max(TKE) occurs above the low-level jet, zj, where the
min(TKE) appears, the max(K) should also be above
both zj, and the strongest part of the near-surface in-
version. Hence, K (z) must vary more gradually than
the calculated (�, u), see Fig. 1 (which is exactly the
WKB requirement for the pure katabatic flow), an as-
sumption made a priori in GOa and GOb and justified
here. Auxiliary work is done here, in Oerlemans (1998)
and in GOb relating the two K parameters, max(K) and
its height h, to the calculated (�, u).

In principle, the same method could be used for
the Ekman layer, which is often employed in theoreti-
cal studies of large-scale dynamics highly parametriz-
ing boundary-layer effects. Such a study, combining

results from Grisogono (1995a) and GOa, is in
progress. More field data are needed addressing in-
terplays among the low-level jet, the near-surface in-
version, and the upper part of the SBL. This is also on
its way using data from another glacier on Iceland. We
know next to nothing about entrainment processes and
intermittent wave-breaking that may take place around
the SBL top, say a few tens of metres above the ground.
Along these lines, there is much need for more turbu-
lence measurements above the low-level jet.
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