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Abstract

A numerical procedure for the computation of a natural gas molar heat capacity, the isentropic exponent, and the Joule–Thomson coefficient has
been derived using fundamental thermodynamic equations, DIPPR AIChE generic ideal heat capacity equations, and AGA-8 extended virial-type
equations of state. The procedure is implemented using the Object-Oriented Programming (OOP) approach. The results calculated are compared
with the corresponding measurement data. The flow-rate through the orifice plate with corner taps is simulated and the corresponding error due to
adiabatic expansion is calculated. The results are graphically illustrated and discussed.
c© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

When a gas is forced to flow through a differential device
(see Fig. 1) it expands to a lower pressure and changes its
density. Flow-rate equations for differential pressure meters
assume a constant density of a fluid within the meter. This
assumption applies only to incompressible flows. In the case of
compressible flows, a correction must be made. This correction
is known as the adiabatic expansion factor, which depends
on several parameters including the differential pressure, the
absolute pressure, pipe diameter, the differential device bore
diameter, and the isentropic exponent. The isentropic exponent
has a limited effect on the adiabatic correction factor, but needs
to be calculated if accurate flow-rate measurements are needed.

When a gas expands through a restriction to a lower
pressure, it also changes its temperature. This process occurs
under the conditions of constant enthalpy and is known as
Joule–Thomson expansion [1]. It can also be considered as an
adiabatic effect, because the pressure change occurs too quickly
for significant heat transfer to take place. The temperature
change is related to pressure change and is characterized by
the Joule–Thomson coefficient. The temperature drop increases
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with the increase of the pressure drop and is proportional to
the Joule–Thomson coefficient. According to [2], the upstream
temperature is used for the calculation of flow-rates, but
the temperature is preferably measured downstream of the
differential device. The use of downstream instead of upstream
temperatures may cause a flow-rate measurement error due to
the difference in the gas density caused by the temperature
change. Our objective is to derive the numerical procedure for
the calculation of the natural gas specific heat capacity, the
isentropic exponent, and the Joule–Thomson coefficient that
can be used to compensate for the adiabatic expansion effects
in real-time flow-rate measurements.

2. Procedure

This section outlines the procedure for the calculation
of specific heat capacities at a constant pressure cp and
at a constant volume cv , the Joule–Thomson coefficient
µJT, and the isentropic exponent κ of a natural gas based
on thermodynamic equations, AGA-8 extended virial type
characterization equations [3,4], and DIPPR generic ideal heat
capacity equations [5]. First, the relation of the molar heat
capacity at constant volume to the equation of state will be
derived. Then the relation will be used to calculate a molar
heat capacity at constant pressure, which will then be used
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Fig. 1. Schematic diagram of the gas flow-rate measurement using an orifice plate with corner taps.
for the calculation of the Joule–Thomson coefficient and the
isentropic exponent. The total differential for entropy, related
to temperature and molar volume [6], is:

ds =

(
∂s
∂T

)
vm

dT +

(
∂s

∂vm

)
T

dvm, (1)

where s denotes entropy, T denotes temperature, and vm is a
molar volume of a gas. By dividing the fundamental differential
for internal energy du = T · ds − p · dvm by dT while holding
vm constant, the coefficient of dT in Eq. (1) becomes cm,v/T
since the molar heat at constant volume is defined by cm,v =

(∂u/∂T )vm . The Maxwell relation (∂s/∂vm)T = (∂p/∂T )vm ,
is used to substitute the coefficient of dvm . Finally, the Eq. (1)
becomes:

ds =
cm,v

T
dT +

(
∂p
∂T

)
vm

dvm . (2)

Similarly, starting from a total differential for entropy related to
temperature and pressure [6] ds = (∂s/∂T )p dT +(∂s/∂p)T dp
and by dividing the fundamental differential for enthalpy dh =

T · ds + vm · dp by dT while holding p constant, the coefficient
of dT in the total differential becomes cm,p/T , since the
molar heat capacity at constant pressure is defined by cm,p =

(∂h/∂T )p. The Maxwell relation (∂s/∂p)T = (∂vm/∂T )p
is used to substitute the coefficient of dp and the following
relation is obtained:

ds =
cm,p

T
dT +

(
∂vm

∂T

)
p

dp. (3)

Subtracting Eq. (2) from Eq. (3), and then dividing the resulting
equation by dvm while holding p constant, and finally inverting
the partial derivative (∂T/∂vm)p, the following equation is
obtained:

cm,p − cm,v = T
(

∂vm

∂T

)
p

(
∂p
∂T

)
vm

. (4)

The total differential of the thermodynamic property
Eqs. (2) and (3) must be the exact differential, i.e. the order
of forming the mixed second derivative is irrelevant. The par-
tial derivative of the first coefficient with respect to the second
variable equals to the partial derivative of the second coefficient
with respect to the first variable. By applying this property to
Eq. (2) and by assuming T to be the first variable with the cor-
responding coefficient cm,v/T , and vm the second variable with
the corresponding coefficient (∂p/∂T )vm , we obtain:(

∂cm,v

∂vm

)
T

= T
(

∂2 p
∂T 2

)
vm

. (5)

The Eq. (5) can be rewritten in the following integral form:

cm,v = cm,v I + T
∫ vm

vm I →∞(T =const)

(
∂2 p
∂T 2

)
vm

dvm (6)

where cm,v I , vm I , and νm denote the ideal molar heat capacity
at constant volume, the corresponding molar volume of the
ideal, and the real gas at temperature T respectively. Real gases
behave more like ideal gases as the pressure approaches zero or
vm I → ∞. After substituting vm = 1/ρm , p = RT Zρm and
cm,v I = cm,pI − R, the Eq. (6) transforms to:

cm,v = cm,pI − R − RT

×

∫ ρm

ρm I →0(T =const)

1
ρm

(
2
(

∂ Z
∂T

)
ρm

+ T
(

∂2 Z
∂T 2

)
ρm

)
dρm

(7)

where cm,pI denotes the temperature dependent molar heat
capacity of the ideal gas at constant pressure, R is the universal
gas constant, Z is the compression factor, and ρm I and ρm are
the corresponding molar densities of the ideal and the real gas
at temperature T . After substituting the first and the second
derivative of the AGA-8 compressibility equation [4],

Z = 1 + Bρm − ρr

18∑
n=13

C∗
n

+

58∑
n=13

C∗
n

(
bn − cnknρkn

r

)
ρbn

r e−cnρ
kn
r (8)

into the Eq. (7) and after integration we obtain

cm,v = cm,pI − R + RTρr (2C0 + T C1 − C2) (9)
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with

C0 =

18∑
n=13

C∗′
n −

B ′

K 3 (10)

C1 =

18∑
n=13

C∗′′
n −

B ′′

K 3 (11)

C2 =

58∑
n=13

(
2C∗′

n + T C∗′′
n
)
ρbn−1

r e−cnρ
kn
r (12)

where ρr is the reduced density (ρr = K 3ρm), B is the
second virial coefficient,

{
C∗

n
}

are the temperature dependent
coefficients, K is the mixture size parameter, while {bn}, {cn},
and {kn} are the parameters of the equation of state. The mixture
size parameter K is calculated using the following equation [4]:

K 5
=

(
N∑

i=1

yi K 5/2
i

)2

+ 2
N−1∑
i=1

N∑
j=i+1

yi y j (K 5
i j − 1)(Ki K j )

5/2, (13)

where yi denotes the molar fraction of the component i , while
{Ki } and

{
Ki j

}
are the corresponding size parameters and the

binary interaction parameters given in [4]. According to [4],
the second virial coefficient is calculated using the following
equation:

B =

18∑
n=1

anT −un
N∑

i=1

N∑
j=1

yi y j B∗

ni j Eun
i j (Ki K j )

3/2 (14)

and the coefficients
{

B∗

ni j

}
,
{

Ei j
}

and
{
Gi j

}
are defined by

B∗

ni j = (Gi j + 1 − gn)gn (Qi Q j + 1 − qn)qn

× (F1/2
i F1/2

j + 1 − fn) fn

· (Si S j + 1 − sn)sn (Wi W j + 1 − wn)wn , (15)

Ei j = E∗

i j (Ei E j )
1/2 (16)

and

Gi j = G∗

i j (Gi + G j )/2, (17)

where T is the temperature, N is the total number of gas
mixture components, yi is the molar fraction of the component
i , {an}, { fn}, {gn}, {qn}, {sn}, {un}, and {wn} are the parameters
of the equation of state, {Ei }, {Fi }, {Gi }, {Ki }, {Qi }, {Si }, and
{Wi } are the corresponding characterization parameters, while{

E∗

i j

}
and

{
G∗

i j

}
are the corresponding binary interaction

parameters. The main symbols and units are given in Table 1.
For additional symbols and units refer to ISO-12213-2 [4]. The
temperature dependent coefficients

{
C∗

n ; n = 1, . . . , 58
}

and
the mixture parameters U , G, Q, and F are calculated using
the equations [4]:

C∗
n = an (G + 1 − gn)gn (Q2

+ 1 − qn)qn

× (F + 1 − fn) fn U un T −un , (18)
Table 1
Symbols and units (for additional symbols and units refer to ISO-12213-2 [4])

Symbols and units

Symbol Description Unit

B Second virial coefficient m3
∗ kmol−1

B∗
ni j Mixture interaction coefficient –

C Coefficient of discharge –
cm,p Molar heat capacity at constant pressure J/(mol K)

cm,v Molar heat capacity at constant volume J/(mol K)

C∗
n Temperature and composition dependent

coefficients
–

cn AGA-8 equation of state parameter –
cp Specific heat capacity at constant pressure J/(kg K)

cm,pI Ideal molar heat capacity of the natural gas mixture J/(mol K)

C j
m,pi Ideal molar heat capacity of the gas component j J/(mol K)

D Upstream internal pipe diameter m
d Diameter of orifice m
h Specific enthalpy J/kg
K Size parameter –
p Absolute pressure Pa
qm Mass flow-rate kg/s
R Molar gas constant 8314.51 J/(kmol K)

s Specific entropy J/(kg K)

T Absolute temperature K
vm Molar specific volume m3/kmol
vm I Molar specific volume of ideal gas m3/kmol
yi Molar fraction of i-th component in gas mixture –
Z Compression factor –
β Diameter ratio d/D –
1p Differential pressure Pa
1ω Pressure loss Pa
κ Isentropic exponent –
µJT Joule–Thomson coefficient K/Pa
ρm Molar density kmol/m3

ρm I Molar density of ideal gas kmol/m3

ρr Reduced density –

U 5
=

(
N∑

i=1

yi E5/2
i

)2

+ 2
N−1∑
i=1

N∑
j=i+1

yi y j (U 5
i j − 1)(Ei E j )

5/2, (19)

G =

N∑
i=1

yi Gi + 2
N−1∑
i=1

N∑
j=i+1

yi y j (G∗

i j − 1)(Gi + G j ), (20)

Q =

N∑
i=1

yi Qi , (21)

and

F =

N∑
i=1

y2
i Fi , (22)

where, Ui j is the binary interaction parameter for mixture
energy. The first and the second derivatives of the coefficients
B and C∗

n , with respect to temperature, are:

B ′
= −

18∑
n=1

anunT −un−1
N∑

i=1

N∑
j=1

yi y j B∗

ni j Eun
i j (Ki K j )

3/2 (23)
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Table 2
The DIPPR/AIChE gas heat capacity constants

Natural gas component DIPPR/AIChE ideal gas heat capacity constants
a b c d e

Methane — CH4 33 298 79 933 2086.9 41 602 991.96
Ethane — C2H6 40 326 134 220 1655.5 73 223 752.87
Propane — C3H8 51 920 192 450 1626.5 116 800 723.6
B ′′
=

18∑
n=1

anun(un + 1)T −un−2

×

N∑
i=1

N∑
j=1

yi y j B∗

ni j Eun
i j (Ki K j )

3/2 (24)

C∗′
n = −

un

T
C∗

n (25)

C∗′′
n = −

un + 1
T

C∗′
n . (26)

The ideal molar heat capacity cpI is calculated by

cm,pI =

N∑
j=1

y j c
j
m,pi (27)

where y j is the molar fraction of component j in the gas
mixture and C j

m,pi is the molar heat capacity of the same
component. The molar heat capacities of the ideal gas mixture
components can be approximated by the DIPPR/AIChE generic
equations [5], i.e.

c j
m,pi = a j + b j

(
c j/T

sinh(c j/T )

)2

+ d j

(
e j/T

cosh(e j/T )

)2

,

(28)

where c j
m,pi is the molar heat capacity of the component j of the

ideal gas mixture, a j , b j , c j , d j , and e j are the corresponding
constants, and T is the temperature. The constants a, b, c, d,
and e for some gases are shown in Table 2.

The partial derivative of pressure with respect to temperature
at constant molar volume, and the partial derivative of molar
volume with respect to temperature at constant pressure, are
defined by the equations:(

∂p
∂T

)
vm

= Rρm [Z + T (C3 − ρr C0)] (29)

and(
∂vm

∂T

)
p

=
R
p

[
Z +

(
∂ Z
∂T

)
p

T

]
(30)

where,

C3 =

58∑
n=13

(
C∗′

n D∗
n
)
, (31)

Dn = (bn − cnknρkn
r )ρbn

r e−cnρ
kn
r , (32)(

∂ Z
∂T

)
p

=
R(T Z)2C3 − pZ [T K 3C0 + C4]

R(T Z)2 + pT C4
, (33)
C4 = C5 +

58∑
n=13

C∗
n D1n (34)

C5 = B − K 3
18∑

n=13

C∗
n (35)

and

D1n = K 3
[b2

n − cnkn(2bn + kn − cnknρkn
r )ρkn

r ]

× ρbn−1
r e−cnρ

kn
r . (36)

The isentropic exponent is defined by the following relation

κ = −
cm,p

cm,v

(
∂p
∂vm

)
T

(
vm

p

)
= −

cm,p

cm,vρm p

(
∂p
∂vm

)
T

, (37)

where(
∂p
∂vm

)
T

=

(
∂p
∂ρm

)
T

(
∂ρm

∂vm

)
T

= −RTρ2
m (Z + ρmC4) . (38)

The Joule–Thomson coefficient is defined by the following
equation [2]:

µJT =
RT 2

pcm,p

(
∂ Z
∂T

)
p
. (39)

The derivation of the Eq. (39) is given in [6] and [7].

3. Implementation

The procedure for the calculation of the natural gas density,
compression, molar heat capacity, isentropic exponent, and the
Joule–Thomson coefficient is implemented in the OOP mode,
which enables an easy integration into new software projects.
The interface to the software object is shown in Fig. 2. The
input/output parameters and functions are accessible, while
the internal structure is hidden from the user. The function
“Calculate” maps the input parameters (pressure, temperature,
and the molar fractions of natural gas components) into the
output parameters (density, compression, molar heat capacity,
isentropic exponent, and Joule–Thomson coefficient). Table 3
depicts the calculation procedure. Prior to the calculation of
the molar heat capacities, the isentropic exponent, and the
Joule–Thomson coefficient, the density and the compression
factor of a natural gas must be calculated. The false position
method is combined with the successive bisection method
to calculate the roots of the equation of state [4]. Using
CORBA [8] or DCOM [9], the component can be accessed
remotely.
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Fig. 2. Interface to the software object that implements the calculation of the natural gas properties.
Table 3
The input/output parameters and the procedure for the computation of the
natural gas properties

Input parameters—constant:
• Molar gas constant (R = 8314.51 J/(kmol K))
• Natural gas equation of state parameters (an , bn , cn , kn , un , gn , qn , fn ,

sn , wn ; n = 1, 2, . . . , 58), characterization parameters (Mi , Ei , Ki , Gi ,
Qi , Fi , Si , Wi ; i = 1, . . . , 21) and binary interaction parameters (E∗

i, j ,

Ui, j , Ki, j , G∗
i, j ) (see ISO 12213-2)

• DIPPR/AIChE gas heat capacity constants (a j , b j , c j , d j , e j ; j = 1, 2,

. . . , N )
Input parameters—time varying:
• Absolute pressure: p (MPa)
• Absolute temperature: T (K)
• Molar fractions of the natural gas mixture: yi ; i = 1, 2, . . . , N
Calculation procedure:
1 Mixture size parameter K (Eq. (13)), second virial coefficient

B (Eq. (14)) and temperature dependent coefficients C∗
n (Eq. (18))

2 Compression factor Z (Eq. (8)) (see ISO-12213-2 for details of
calculation)

3 Molar density ρm = p/RT Z , reduced density ρr = K 3ρm and molar
volume vm = 1/ρm .

4 Coefficients Dn and D1n (Eqs. (32) and (36))
5 1st and 2nd derivative of the second virial coefficient B: B′ (Eq. (23)) and

B′′ (Eq. (24))
6 1st and 2nd derivative of the coefficient C∗

n : C∗′
n (Eq. (25)) and

C∗′′
n (Eq. (26))

7 1st derivative of the compression factor Z : (∂ Z/∂T )p (Eq. (33))
8 Partial derivatives of pressure: (∂p/∂T )vm (Eq. (29)) and (∂p/∂vm )T

(Eq. (38))
9 Ideal molar heat capacity of a gas mixture at constant pressure: cm,pI

(Eq. (27))
10 Molar heat capacity of a gas mixture at constant volume: cm,v (Eq. (9))
11 Molar heat capacity of a gas mixture at constant pressure: cm,p (Eq. (4))
12 Isentropic exponent κ (Eq. (37))
13 Joule–Thomson coefficient µJT (Eq. (39))

4. Application

We investigated the combined effect of the Joule–Thomson
coefficient and the isentropic exponent of a natural gas on
the accuracy of flow-rate measurements based on differential
devices. The measurement of a natural gas [4] flowing in a
pipeline through an orifice plate with corner taps (Fig. 1) is
assumed to be completely in accordance with the international
standard ISO-5167-2 [10]. The detailed description of the flow-
rate equation with the corresponding iterative computation
scheme is given in [2] and [10]. The flow-rate through the
orifice is proportional to the expansibility factor, which is
related to the isentropic exponent. According to [10], the
expansibility factor ε for the orifice plate with corner taps is
defined by:

ε = 1 − (0.351 + 0.256β4
+ 0.93β8)[1 − (p2/p1)

1/κ
] (40)

where β denotes the ratio of the diameter of the orifice to
the internal diameter of the pipe, while p1 and p2 are the
absolute pressures upstream and downstream of the orifice
plate, respectively. The corresponding temperature change 1T
of the gas for the orifice plate with corner taps is defined by

1T = T1 − T2 ≈ µJT(p1, T2)1ω (41)

where T1 and T2 indicate the corresponding temperatures
upstream and downstream of the orifice plate, µJT(p1, T2) is
the Joule–Thomson coefficient at upstream pressure p1 and
downstream temperature T2, and 1ω is the pressure loss across
the orifice plate [11], defined by

1ω =

√
1 − β4

(
1 − C2

)
− Cβ2√

1 − β4
(
1 − C2

)
+ Cβ2

1p (42)

where C denotes the coefficient of discharge for the orifice plate
with corner taps [10], and 1P is the pressure drop across the
orifice plate. According to [2], the temperature of the fluid shall
preferably be measured downstream of the primary device, but
upstream temperature shall be used for the calculation of the
flow-rate. Within the limits of the application of ISO-5167 [2],
it is generally assumed that the temperature drop across the
differential device can be neglected, but it is also suggested that
it be taken into account if higher accuracies are required. It is
also assumed that the isentropic exponent can be approximated
by the ratio of the specific heat capacity at constant pressure
to the specific heat capacity at constant volume of the ideal
gas. The above approximations may produce a measurement
error. The relative flow measurement error Er is estimated by
comparing the approximate (qm2) and the corrected (qm1) mass
flow-rate i.e.

Er = (qm2 − qm1) /qm1. (43)
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Table 4
The procedure for the correction of the mass flow-rate due to adiabatic
expansion effects

Step Description

1 Calculation of Joule–Thomson coefficient µJT (p1, T2) by using the
procedure outlined in Table 3 with upstream pressure p1 and
downstream temperature T2

2 Estimation of upstream temperature T1 using the Eq. (41)
3 Calculation of density ρ = Mρm and isentropic exponent κ using

the procedure outlined in Table 3 with upstream pressure p1 and
estimated upstream temperature T1

4 Calculation of viscosity (residual viscosity function) [12]
5 Calculation of mass flow-rate in accordance with [10]

Fig. 3. Calculated and measured molar heat capacities at constant pressure of
the natural gas mixture.

Fig. 4. Calculated and measured Joule–Thomson coefficients of the natural gas
mixture.

The individual and the combined relative errors due to the
approximations of the temperature drop and the isentropic
exponent are calculated. The procedure for the correction of the
mass flow-rate due to the adiabatic expansion effects is shown
in Table 4. The calculation procedures are implemented in the
OOP mode. The results are presented in the following section.
Table 5
Difference between the calculated and measured specific heat capacity at
constant pressure of a natural gas

P (MPa): T (K) 250 275 300 350
(cp calculated − cp measured) (J/(g ∗ K))

0.5 −0.015 −0.018 −0.018 −0.012
1.0 −0.002 −0.014 −0.016 −0.011
2.0 −0.012 −0.019 −0.022 −0.020
3.0 −0.032 −0.020 −0.023 −0.026
4.0 −0.041 −0.023 −0.021 −0.027
5.0 −0.051 −0.022 −0.025 −0.029
7.5 −0.055 −0.032 – –

10.0 −0.077 −0.033 −0.048 −0.042
11.0 −0.075 – – –
12.5 −0.092 −0.030 – –
13.5 −0.097 −0.039 – –
15.0 −0.098 −0.033 −0.082 −0.069
16.0 – −0.036 – –
17.5 – −0.043 −0.075 –
20.0 −0.081 −0.048 −0.066 −0.134
25.0 −0.082 −0.033 −0.064 −0.171
30.0 −0.077 −0.025 −0.070 −0.194

Table 6
Difference between the calculated and measured Joule–Thomson coefficient of
a natural gas

P (MPa): T (K) 250 275 300 350
(µJT calculated − µJT measured) (K/MPa)

0.5 −0.014 −0.023 −0.075 −0.059
1.0 −0.032 −0.024 −0.068 −0.053
2.0 – – – −0.051
3.0 −0.092 −0.032 −0.069 −0.049
5.0 −0.022 −0.036 −0.044 −0.026
7.5 0.043 – – –

10.0 0.060 0.096 0.019 0.030
12.5 0.034 – – –
15.0 0.113 0.093 0.050 0.061
20.0 0.029 0.084 0.009 0.047
25.0 0.025 0.059 0.002 0.043
30.0 0.031 0.052 0.005 0.012

5. Measurement results

In order to compare the calculation results, for the specific
heat capacity cp and the Joule–Thomson coefficient µJT, with
the corresponding high accuracy measurement data [13] (Ernst
et al.), we assume identical artificial natural gas mixtures with
the following mole fractions: xCH4 = 0.79942, xC2H6 =

0.05029, xC3H8 = 0.03000, xCO2 = 0.02090, and xN2 =

0.09939. The results of the measurements [13] and the
results of the calculation of the specific heat capacities cp
and the Joule–Thomson coefficients µJT of the natural gas
mixtures, for absolute pressures ranging from 0 to 30 MPa
in 0.5 MPa steps and for four upstream temperatures (250,
275, 300, and 350 K), are shown in Fig. 3 and Fig. 4,
respectively. The differences between the calculated values and
the corresponding measurement results [13], for cp and µJT,
are shown in Table 5 and Table 6, respectively. From Table 5,
it can be seen that the calculated values of cp are within
±0.08 J/(g ∗ K) of the measurement results for pressures up
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to 12 MPa. At higher pressures, up to 30 MPa, the difference
increases, but never exceeds ±0.2 J/(g ∗ K). For pressures
up to 12 MPa, the relative difference between the calculated
and experimentally obtained cp never exceeds ±2.00%. From
Table 6, it can be seen that the calculated values of µJT are
within ±0.113 K/MPa, with the experimental results for the
pressures up to 30 MPa. The relative difference increases with
the increase in pressure, but never exceeds ±2.5% for pressures
up to 12 MPa. At higher pressures, when the values of µJT are
close to zero, the relative difference may increase significantly.
The results of the calculations obtained for pure methane and
methane–ethane mixtures are in considerably better agreement
with the corresponding experimental data [13] than those for
the natural gas mixture shown above. We estimate that the
relative uncertainties of the calculated cp and µJT of the
AGA-8 natural gas mixtures in common industrial operating
conditions (pressure range 0–12 MPa and temperature range
250–350 K) are unlikely to exceed ±3.00% and ±4.00%,
respectively. Fig. 5 shows the results of the calculation of
the isentropic exponent. Since the isentropic exponent is a
theoretical parameter, there exist no experimental data for its
verification.

In order to simulate a flow-rate measurement error caused
by an inappropriate compensation for the adiabatic expansion,
a natural gas mixture (Gas 3) form Annex C of [4] is
assumed to flow through the orifice plate with corner taps [9]
shown in Fig. 1. Following the recommendations [2], the
absolute pressure is assumed to be measured upstream (p1),
and the temperature downstream (T2), of the primary device.
A natural gas analysis in mole fractions is the following:
methane 0.859, ethane 0.085, propane 0.023, carbon dioxide
0.015, nitrogen 0.010, i-butane 0.0035, n-butane 0.0035, i-
pentane 0.0005, and n-pentane 0.0005. Fig. 6 illustrates the
temperature drop due to the Joule–Thomson effect calculated
in accordance with Eq. (41). The results calculated are given
for two discrete differential pressures, 1p (20 and 100 kPa),
for absolute pressures p1 ranging from 1 to 60 MPa in 1 MPa
steps, and for six equidistant upstream temperatures T1 in the
range from 245 to 345 K. From Fig. 6 it can be seen that
for each temperature there exists the corresponding pressure
where the Joule–Thomson coefficient changes its sign, and
consequently alters the sign of the temperature change. A
relative error in the flow-rate measurements (Fig. 1) due to the
Joule–Thomson effect is shown in Fig. 7. The error is calculated
in accordance with Eq. (43) by comparing the approximate
mass flow-rate (qm2) with the corrected mass flow-rate (qm1).
The procedure for the precise correction of the mass flow-
rate is shown in Table 4. The approximate flow-rate and the
corresponding natural gas properties (density, viscosity, and
isentropic exponent) are calculated at upstream pressure p1,
downstream temperature T2, and differential pressure 1p, by
neglecting the temperature drop due to the Joule–Thomson
effect (T2 = T1). The results are shown for two discrete
differential pressures 1p (20 and 100 kPa), for absolute
upstream pressures p1 ranging from 1 to 60 MPa in 1 MPa
steps, and for four equidistant downstream temperatures T2 in
the range from 245 to 305 K.
Fig. 5. Calculated isentropic exponent of the natural gas mixture.

Fig. 6. Temperature drop due to the Joule–Thomson effect 1T = µJT1ω

when measuring flow-rate of the natural gas mixture through the orifice plate
with corner taps (ISO-5167-2). The upstream pressure varies from 1 to 60 MPa
in 1 MPa steps and upstream temperature from 245 to 305 K in 20 K steps for
each of two differential pressures 1p (20 and 100 kPa). The internal diameters
of the orifice and pipe are: d = 120 mm and D = 200 mm.

Fig. 7. Relative error Er = (qm2 − qm1) /qm1 in the flow-rate of the natural
gas mixture measured by the orifice plate with corner taps (ISO-5167-2) when
using downstream temperature with no compensation for the Joule–Thomson
effect (qm2) instead of upstream temperature (qm1). The upstream pressure
varies from 1 to 60 MPa in 1 MPa steps, and downstream temperature from
245 to 305 K in 20 K steps for each of two differential pressures 1p (20 and
100 kPa). The internal diameters of the orifice and pipe are: d = 120 mm and
D = 200 mm.
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Fig. 8. Relative error Er = (qm2 − qm1) /qm1 in the flow-rate of the natural
gas mixture measured by the orifice plate with corner taps (ISO-5167-2) when
using the isentropic exponent of the ideal gas (qm2) instead of the real gas
(qm1). The upstream pressure varies from 1 to 60 MPa in 1 MPa steps, and
downstream temperature from 245 to 305 K in 20 K steps, for each of two
differential pressures 1p (20 and 100 kPa). The internal diameters of the orifice
and pipe are: d = 120 mm and D = 200 mm.

Fig. 8 illustrates the relative error in the flow-rate
measurements due to the approximation of the isentropic
exponent by the ratio of the ideal molar heat capacities.
The error is calculated by comparing the approximate mass
flow-rate (qm2) with the corrected mass flow-rate (qm1) in
accordance with Eq. (43). The procedure for the precise
correction of the mass flow-rate is shown in Table 4. The
approximate flow-rate calculation is carried out in the same
way, with the exception of the isentropic exponent, which
equals the ratio of the ideal molar heat capacities (κ =

cm,pI /(cm,pI − R)). The results are shown for two discrete
differential pressures 1p (20 and 100 kPa), for absolute
upstream pressures p1 ranging from 1 to 60 MPa in 1 MPa
steps, and for four equidistant downstream temperatures T2 in
the range from 245 to 305 K.

Fig. 9 shows the flow-rate measurement error produced
by the combined effect of the Joule–Thomson and the
isentropic expansions. The error is calculated by comparing the
approximate mass flow-rate (qm2) with the corrected mass flow-
rate (qm1) in accordance with Eq. (43). The procedure for the
precise correction of the mass flow-rate is shown in Table 4.
The approximate flow-rate and the corresponding natural gas
properties are calculated at upstream pressure p1, downstream
temperature T2, and differential pressure 1p, by neglecting the
temperature drop due to the Joule–Thomson effect (T2 = T1)

and by substituting the isentropic exponent with the ratio of the
ideal molar heat capacities, κ = cm,pI /(cm,pI − R). The results
are shown for two discrete differential pressures 1p (20 and
100 kPa), for absolute upstream pressures p1 ranging from 1 to
60 MPa in 1 MPa steps, and for four equidistant downstream
temperatures T2 in the range from 245 to 305 K.

The results obtained for the Joule–Thomson coefficient
and isentropic exponent are in complete agreement with
the results obtained when using the procedures described
in [7] and [14], which use natural gas fugacities to derive
the molar heat capacities and are, therefore, considerably
more computationally intensive and time consuming. The
Fig. 9. Relative error Er = (qm2 − qm1) /qm1 in the flow-rate of the natural
gas mixture measured by an orifice plate with corner taps (ISO-5167-2) when
using downstream temperature, with no compensation for the Joule–Thomson
effect and the isentropic exponent of the ideal gas at downstream temperature
(qm2) instead of upstream temperature, and the corresponding real gas
isentropic exponent (qm1). The upstream pressure varies from 1 to 60 MPa in
1 MPa steps and downstream temperature from 245 to 305 K in 20 K steps for
each of two differential pressures 1p (20 and 100 kPa). The internal diameters
of the orifice and pipe are: d = 120 mm and D = 200 mm.

calculation results are shown up to a pressure of 60 MPa,
which lies within the wider ranges of application given
in [4], of 0–65 MPa. However, the lowest uncertainty for
compressibility is for pressures up to 12 MPa, and no
uncertainty is quoted in Reference [4] for pressures above
30 MPa. It would therefore seem sensible for the results of
the Joule–Thomson and the isentropic exponent calculations
to be used with caution above this pressure. From Fig. 9 it
can be seen that the maximum combined error is lower than
the maximum individual errors, because the Joule–Thomson
coefficient (Fig. 7) and the isentropic exponent (Fig. 8) show
the countereffects on the flow-rate error. The error always
increases by decreasing the operating temperature. The total
measurement error is still considerable, especially at lower
temperatures and higher differential pressures, and cannot be
overlooked. The measurement error is also dependent on the
natural gas mixture. For certain mixtures, like natural gases
with a high carbon dioxide content, the relative error in
the flow-rate may increase up to 0.5% at lower operating
temperatures (245 K), and up to 1.0% at very low operating
temperatures (225 K). Whilst modern flow computers have a
provision for applying a Joule–Thomson coefficient and an
isentropic exponent correction to measured temperatures, this
usually takes the form of a fixed value supplied by the
user. The calculations in this paper show that any initial error
in choosing this value, or subsequent operational changes
in temperature, pressure or gas composition, could lead to
significant systematic metering errors. Our further work will be
directed towards the improvement of the model, with the aim
of simplifying the calculation procedure and further decreasing
the uncertainty of the calculation results.

6. Conclusion

This paper describes the numerical procedure for the
calculation of the natural gas molar heat capacity, the
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Joule–Thomson coefficient and the isentropic exponent. The
corresponding equations have been derived by applying the
fundamental thermodynamic relations to AGA-8 extended
virial-type equations of state. The DIPPR AIChE generic
ideal heat capacity equations have been used to calculate the
ideal molar heat capacities of a natural gas mixture. The
implementation of the procedure in an OOP mode enables
its easy integration into new software developments. An
example of a possible application of the procedure in the
flow-rate measurements has been given. The procedure can be
efficiently applied in both off-line calculations and real time
measurements.
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