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Abstract—1In this paper a new class of globally stable finite
dimensional repetitive controllers for nonlinear passive systems
is proposed. The passivity-based design of the proposed repet-
itive controller avoids the problem of tight stability conditions
and slow convergence of the conventional, internal model-
based, repetitive controllers. The existing internal and external
model-based repetitive controllers can be derived as the special
cases of the proposed controller. Also, it is possible a simple
extension of the basic algorithm by an adaptive notch filter
which provide asymptotic tracking of periodic signal with
unknown signal frequency. The simulation results on a two
degrees of freedom planar elbow manipulator illustrate the
controller performances.

I. INTRODUCTION

Many tracking systems, such as computer disk drives [1],
rotation machine tools [2], or robots [3], have to deal with
periodic reference and/or disturbance signals. A promising
control approach to achieving the tracking of periodic refer-
ence signals is learning control or repetitive control. In con-
trast with the conventional approaches to trajectory tracking
control, repetitive control schemes are easy to implement and
do not require the exact knowledge of the dynamic model.

Repetitive controllers can be classified as being either in-
ternal model-based or external model-based [4]. Controllers
using the internal model are linear and have periodic signal
generators [5], [6]. In the external model controllers the
disturbance model is placed outside the basic feedback loop
(31, [7].

The internal model controllers are based on a delayed
integral action which produces an infinite number of poles
on imaginary axes. However, the asymptotic convergence
can only be guaranteed under restrictive conditions in the
plant dynamics. Further, the positive feedback loop used to
generate the periodic signal decreases the stability margin.
So, the repetitive controller is likely to make the system un-
stable. To enhance the robustness of these repetitive control
schemes, the repetitive update rule is modified to include the
so-called Q-filter [5], [6]. Unfortunately, the use of the Q-
filter eliminates the ability of tracking errors to converge to
zero. Therefore, the trade-off between stability and tracking
performance has been considered to be an important factor
in the repetitive control system.

Another problem is that, due to infinite dimensional dy-
namics of delayed line, a large memory space is required

for digital implementation of the control law. To overcome
this problem, in [8] a finite dimensional approximation of
delayed line is proposed in the form of a cascade connection
of N harmonic oscillators and one integrator.

The advantages of the internal model controllers are that
they are linear, making analysis and implementation easier.
The disadvantages are that the stability is almost entirely
governed by the feedback loop of the repetitive compen-
sator. The frequency response of the system is altered and
robustness to noise and unmodelled dynamics is reduced.

The external model controllers are based on the feedfor-
ward compensation of inverse dynamics. The disturbance
model is adjusted adaptively to match the actual disturbance.
The central idea in [3] is that the disturbance can be repre-
sented as a linear combination of basis functions like Fourier
series expansion. In this way, an adaptive control law with
regressor matrix containing basis functions is obtained. In [7]
unknown disturbance functions are represented by integral
equations of the first kind involving a known kernel and
unknown influence functions. The learning rule indirectly
estimates the unknown disturbance function by updating the
influence function.

The main advantage of the external model approach is that
there is no significant influence on the stability conditions
of the control system. The map between the feedforward
function error and the tracking errors is strictly passive. Thus,
the control system is robust to the imprecise estimation of the
robot inverse dynamics. The disadvantage is that the analysis
and implementation are more complex than for the internal
model-based algorithms.

In this paper a new class of internal model-based repetitive
controllers for nonlinear passive systems is proposed. The
proposed finite dimensional repetitive controller is founded
on the passivity-based design and has a structure in the
form of a parallel connection of N linear oscillators and
one integrator. The passive interconnection of the proposed
controller with nonlinear passive systems has the same
stability conditions as the controller with the exact feed-
forward compensation of nonlinear systems dynamics.

This paper is organized as follows. The problem formu-
lation and stability analysis are presented in Section II and
III. The passivity properties of the proposed controllers are
considered in Section IV. The equivalence between internal



and external repetitive controllers is shown in Section V.
The extension of the proposed controller with the frequency
estimator is presented in Section VI. The simulation results
are presented in Section VII. Finally, the concluding remarks
are emphasized in Section VIII.

II. REPETITIVE LEARNING CONTROL

A. Problem Formulation

Consider the error dynamics of a learning control task
described by the following state equation examined in [7]
and [9]

é= flet) + Ble, t)[w(t) —w(t)], (1)

where e(t) € R”™ is the error between state and refer-
ence/disturbance vector, w(t) € R™ is an unknown nonlinear
function (desired inverse dynamics) and w(t) € R™ is an
estimate of w(t). In other words, w(t) provides feed-forward
compensation of the desired inverse dynamics w(t¢). The
functions f(e,t) € R™ and B(e,t) € R™*™ are bounded
when e(t) is bounded.

In a similar manner as [7], we suppose that (1) satisfies
the following assumptions.

Assumption 1: The origin of the error system e(t) = 0 is
uniformly asymptotically stable for

é= flet). 2

Moreover, there exist a first-order differentiable, positive-
definite function Vij(e,t) € R, a positive-definite matrix
Q € R™*™, and a known matrix R € R™*" such that

Vi(e,t) < —eTQe + T Ru(t), (3)

where w(t) € R™ is the estimation error term defined by
w(t) = w(t) — w(t). )
Assumption 2: The unknown nonlinear function w(t) is
periodic with a known period T, so that w(t) = w(t — T).

Further, the function w(t) can be represented by the infinite
Fourier series expansion

w(t) =Y [ax cos(kwt) + by sin(kwt)], ®)
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where @y, b, € R™ are unknown constant vectors.
Assumption 3: The periodic reference trajectory x4(t) with
the period T can be represented in the form of Fourier series

N
zq(t) = Z[ak cos(kwt) + by, sin(kwt)], (6)
k—

[}

where w = 2% is the fundamental frequency, and aq, ax, by, €
R™ are constant vectors.

The control objective for the general problem given in (1)
is to design a finite dimensional learning-based estimate w(t)
such that error e(t) for ¢t — oo can be made arbitrary small.

B. Class of Finite-Dimensional Repetitive Controllers

We consider the control law given by

N
(1) = keRe + Qozo + D Qe ™
k=1
i+ K2w?z, = QuRYe, k=1,...,N, (8
2 =QoR"e, ©)
where @ € R™*™ (k = 0,..., N) are constant positive-
definite diagonal matrix and k. € R is a positive constant
control gain.

The parallel interconnection of the /N harmonic oscillators
(8) and the integrator (9) represents the internal model of
the periodic reference signal z,4(t) including higher order
harmonics which are induced by the nonlinear system dy-
namics, so that the condition N > N must be satisfied.

III. STABILITY ANALYSIS
A. Error Equations
Introducing the change of variables z;, = 2, — 2}, k =
0,1,...,N, with
2% = Qg ao, (10)
zi = k~'w Q) Hak sin(kwt) — by cos(kwt)], (11)

the following error equations are obtained

é = fle,t) — Ble,t)w + B(e, t)d(t), (12)
N

w = kR e+ Qoo+ Y Qi (13)
k=1

Zr+ k2?2, = QuRTe, k=1,..,N, (14)

Zo = QoR"e, (15)

where we used the Fourier series expansion (5) of the
function w(t) and property Z; + k*w?z} = 0. The function
d(t) in (12) is the error in estimation of the desired robot
inverse dynamics which consists harmonics of N + 1 order

Z [@), cos(kwt) + by sin(kwt)].
k=N+1

d(t) = (16)

From the equation (16) we can conclude that the tracking
error has zero harmonic content at the repetitive frequency
and its harmonics up to N (where NN is the number of
harmonic oscillators in the controller). Also, the bound on
the tracking error decreases with V. In the limit N — oo the
above model of the repetitive controller works as well as the
ideal infinity dimensional model in achieving perfect tracking
of periodic reference signals [10]. Note that this conclusion is
valid only for continuously differentiable periodic reference
signals.

B. Lyapunov-Based Stability Analysis

We consider stability of the unperturbed systems (12)-
(15), where d(t) = 0, by the Lyapunov’s direct method.
First, we propose appropriate Lyapunov function candidate.
Then, global stability conditions on the controller gains are
established. Finally, LaSalle invariance principle is invoked
to guarantee the asymptotic stability.



1) Lyapunov function candidate: We define the Lyapunov
function candidate V' = V; + V5, where Vj(e,t) satisfies
assumption (3) and V5 is defined by

1 1 5o 1
Vo = 5};@% - 5w2;k25,z“gk + 5% Zo- (A7)

Taking the derivative of V' with respect to time yields

N N
V< —e"Qe—c"Ruw(t) + > H i +w? > K 4+
k=1 k=1

~T 2

+ Zy 20 (18)

Substituting (13)-(15) in the previous equation, we obtain

N
V < —GTQG —e'R (kCRTe 4+ QoZo + Z Qk%c) +

k=1
N N

+ Y A (K2 + QuRTe) + WP Y K 5 +
k=1 k=1

+ 2l QoRTe = —e” (Q + kCRRT) e< —elQe (19)

2) LaSalle invariance principle: Since the time derivative
of Lyapunov function V is not a negative definite function
then only a negative semi-definite one, we must apply
LaSalle invariance principle to conclude asymptotic stability.
It remains to prove that the maximal invariant set of (12)-(15)
contained in the set

Q = {z e R"ENTU™ | v () = 0}, (20)

T T 3T 5T T

consists of the origin o = [eT 20" 2T 21 .. 2L Z{]" = 0.
Since V() = 0 means e = 0, substitution of ¢ = 0 and
e = 0 into (12)-(15) leads to

N
QoZo+ Y _ Qizr =0, 1)
k=1

Z0=0, Zp+k*w?2,=0, k=1,..,N. (22)
The following step is to show that the differential-algebraic
system (21)-(22) has only trivial solution zy = 0, 2z = sz =
0, where k = 1, ..., N. We prove that by using contradiction.
Suppose that there exists a solution of differential equations
(22), 29 = C; and Z, = Cysin(kwt) + C5 cos(kwt), k =
1,...,N, where C7, Cy and C3 are some constant vectors.
Inserting this solutions in equality (21) we get

N
QoCi +w Z kEQp[Cs cos(kwt) — Cysin(kwt)] = 0. (23)
k=1

In the above mentioned expression, the right side of equality
is a sum of linearly independent functions, which can not be
equal to zero except for C; = Cs = C3 = 0, in other words,
for Zo = Z, = 2, = 0, where k =1,..., N.

So, since the maximal invariant set in R+ is
composed only of the origin, we conclude that the origin
is asymptotically stable.

2N+1)m

IV. PASSIVITY PROPERTIES OF REPETITIVE
CONTROLLER

Unknown and unmodeled nonlinearities play an impor-
tant role in the high-precision control. Any cancellation of
nonlinearities by feedback which is not exact, may produce
undesirable closed-loop behavior like large tracking errors,
limit cycles and stick-slip motion. In contrast with model-
dependent controllers, the passivity-based controllers are
robust to model uncertainties and external disturbances. In
this section we prove the passivity properties of the proposed
repetitive controller.

Proposition 1. The error dynamics

¢ = f(e,t) — B(e,t)us + B(e, t)wy, (24)
in closed-loop with
uy = k.R%e, (25)

is output strictly passive from the input torque w; to the
output yy; = R”e, with a radially unbounded positive definite

storage function V; defined by (3), i.e.
wiys = Va(e.t) +dlllP, (26)

where § = k..
Proof. Taking the derivative of V7 with respect to time
yields

Vi

IN

—eTQe + eTR(—u1 +wp) =
—eTQe — k.e’ RRYe + T Ruwy =
= —e"Qe — keyi y1 + yi wi,

27)

where we used (24) and definition of the output y;. From
the last line of expression (27) directly follows (26).
Proposition 2. The system
2k + EPw? s = Quuwe,

Zo = Qowz,

k=1,.,N, (28)

(29)
is gassive from the input ws to the output yo = Qozo +

D ket Qrz, with a radially unbounded positive definite

storage function V5 defined by (17),
wy Y2 > Va(Zo, 21, 21, oy 2N, 2N). (30)

Proof. Taking the derivative of V7 with respect to time
yields

N N
Vo= Hh+0? Y K5+ 555 =
k=1 k=1
N N
= > H (-Kw 5 + Quwa) +w? Y K 5 +
k=1 k=1
N
+ 25 Qows = wy (Qozo + ZQ@) = w3 ya, (31)
k=1

where we used (28), (29) and definition of the output ys.
From the last line of expression (31) directly follows (30).



Proposition 3. The feedback interconnection of the system
(24)-(25) with the system (28)-(29),

w1 = —Y2 +w, w2 =y, (32)

is output strictly passive from the input torque w to the
output y; = R”'e, with a radially unbounded positive definite
storage function V = V) + Vs,

wly, >V + 6|, (33)

where where § = k

Proof. Inserting wy =
we get (33).

Proposition 4. The feedback interconnection of the system
(24)-(25) with the system (28)-(29) has finite Lo gain v < %
where § = k.. For proof see e.g. [11].

From the above mentioned propositions follows two im-
portant properties of the proposed repetitive controller. First,
comparing expression (33) with (26) and (30) we can con-
clude that the repetitive controller preserve the closed loop
stability. In other words, the passive feedback interconnection
between the proposed repetitive controller and robot dynam-
ics doesn’t decrease stability margin which is characteristics
for classical internal model based repetitive controllers [5]
and their finite dimensional representations [8]. Second, the
map between the inverse dynamics estimation error d(t) and
output error R”e is strictly passive which means that the
control system is robust to the imprecise estimation of the
robot inverse dynamics.

—1ys +w, we = y1 in (26) and (30)

V. EQUIVALENCE BETWEEN INTERNAL AND EXTERNAL
REPETITIVE CONTROLLERS

In this section we show that the proposed control law (7)-
(9) provides a unified framework for the existing internal
and external repetitive controllers. Although the internal and
external repetitive controllers are based on different control
strategies and their control algorithms seem very different,
they can be considered as the special cases of the repetitive
controller (7)-(9).

A. Kernel-Based Representation

The equation (8) can be rewritten as

Tig | O I Tk 0]
PR By P FA T

where 1, = 2k, Tor = 41, y = RTe, I € R™*™ is the unit
matrix and O € R™*™ is the zero matrix.
The solution of (34) for the initial conditions x1x = X2 =

0is .
[m} = / e =T By (r)dr, (35)
T2k 0
where
0] I 0
Ak_|:k2w2] O:la Bk_|:Qk::| (36)
The matrix exponential can be evaluated as
L .
ARt _ cos(kwt)] 5 sin(kwt) T , 37)
—kwsin(kwt)I cos(kwt)I

so that finally we get
Top, = /0 t Qr cos [kw(t — )] y(7)dr. (38)
Inserting (38) in (7) we get
B(t) = key(t +ZQk / cos [kw(t — 7)] y(r)dr. (39)

The above-mentioned expression can be rewritten as

/KtT

T) = Z Q3 cos [kw(t —7)].

k=0

w(t) = key(t) (40)

where we used notation

(41)

Note that the learning algorithm (40) with (41) can be con-
sidered as a simplified version of the kernel-based repetitive
controller [7].

B. Infinity Dimensional Internal Repetitive Controllers

For the choice Q% = %1, Q2 = 2k where k = 1,2, ...
and N — oo the function K (¢,7) becomes the Dirac comb
function

K(t,7) =k i ot — 1 —kT),

k=—oc0

(42)
where we used the Fourier representation of the Dirac comb

Zét—T—kT) —+ Zcoskwt—T)] (43)

k=—o0 k 1

Inserting (42) in (40) and using properties of the Dirac
function, the following expression is obtained

W(t) = key(t) + ke Zyt—kT) (44)
k=1
or
W(t) = bt —T) + key(t). (45)

The control law (45) is the standard repetitive update rule
proposed by [5]. From the expression (44) follows that the
standard repetitive update rule cannot guaranty boundedness
of w(t). To address the boundedness problem associated with
the standard repetitive update rule, saturated versions of the
update rule (45) are proposed in [10] and [9].

C. External Repetitive Controllers

Using the addition formula for cosine function, the expres-
sion (39) can be rewritten as

N t
= Q2 sin(kwt) Sin(kuﬂ') (T)dT +
320 st [ sty

+ cos(k:wt)/o Cos(kwT)y(T)dT> + key(t). (46)



The above mentioned expression can be rewritten as

N
w(t) = Z (9](61) sin(kwt) + 9,(62) cos(kwt)) + key(t), (47)

k=0
where
0(1) Q72 sin(kwt)y(t), (48)
9(2) Q3 cos(kwt)y(t), (49)
for kK = 0,1,..., N. The adaptive control law (47)-(49) can

be expressed in the more compact form

Zemk + key(t), (50)
O, = Qion(t)y(b), (51)
for k=0,1,...,2N, where
[ coslkwt] if k<N
k() = {sin[(k‘ — N)wt] if k>N~ (52)

The adaptive algorithm (50) and (51) with (52) is known
as the Desired Compensation Learning Law [12], the Basis
Function Algorithm [4] or the Repetitive Fourier Controller
[13].

VI. REPETITIVE CONTROL WITH UNKNOWN
FUNDAMENTAL FREQUENCY

The main drawbacks of repetitive control is the require-
ment of exact knowledge of the period-time of the external
reference/disturbance signals. In literature several solutions
have been proposed, most of them considering an adaptive
scheme to estimate the period-time on the base of gradient
minimization of a cost function [14] or using multiple
memory-loops with aim to decrase the sensitivity to small
changes in signal frequency [15]. Unfortunately, the men-
tioned algorithms are relatively complex for implementation
and cannot guaranty perfect asymptotic tracking.

Another possible approach to repetitive control for track-
ing periodic signals with unknown frequency is by using fre-
quency estimators. There exist several algorithms for online
estimation of the frequency of a sinusoidal signal. The most
of them are based on the Regalia notch filter [16]. The first
continuous version of the adaptive notch filter is proposed
in [17], and first globally convergent frequency estimator is
proposed in [18]. The above-mentioned algorithms cannot
be applied to standard repetitive controllers because they
provide frequency estimation of a single sinusoidal signal.

In [19] and [20] are proposed algorithms which provide
estimation of frequencies of a multi-sinusoidal signal. The
frequencies estimator proposed in [19] is of 5N — 1 order
while estimator proposed in [20] is of 3N order, where
N is the number of different frequencies. So, for example,
the finite dimensional repetitive controllers [12] or [8] in
combination with frequencies estimator [20] are of 2Nn +
n + 3N order.

The repetitive controller (7)-(9) is especially suitable for
direct implementation of a simple adaptive notch filter of the
first order

W= —Y215Yj, (53)
where -y is a positive constant, z;; is the j-th component of
the vector z; in (8), y; is the j-th component of the output
vector y = RTe.

The repetitive controller (7)-(9) in combination with the
frequency estimator (53) is of 2Nn+mn+1 order. It can be a
significant reduction of the controller order, especially in the
case of high precision repetitive control tasks, where we have
N > n. The stability analysis of the repetitive controller
(7)-(9) in combination with the frequency estimator (53) is
currently under research.

VII. SIMULATION EXAMPLE

We consider a 2-DOF manipulator with revolute joints in
vertical plane, considered in [21]. The numerical values of
robot parameters have been taken from [22].

The desired periodic reference trajectories are

R sin(kwt)

—+ —_—
2 — k+1

cos(kwt)
Gaz = 1—2§:

i1 Y

qd1 =

where w = 2 rad/s.

We applied the control law (7)-(9) with (53) where the
expression (7) is extended by an additional term kp||e|le,
which provide global asymptotic stability [23], [24], so that
assumption (3) is satisfied. The error vector is e = [¢ qr
where ¢ and ¢ are robot position and velocity errors. The
matrix R has the following form R = [I «l]’ so that
passive output variable is y = q+aq.

The controller gains are chosen in accordance with sta-
bility conditions derived in [24], where the convergence
properties of the proposed controllers are demonstrated for
the case of known reference signal frequency.

Extending the repetitive controller (7)-(9) with frequency
estimator (53) it is possible asymptotic tracking of the
reference periodic signal with uncertain period-time. The
fundamental frequency of the reference signal (54) is w, =
2 rad/s, and its estimate w(0) = 2.5 rad/s is the initial
conditions for (53). The number of oscillators is N = 12.

Fig. 1. shows a comparison of the positions of the robot
manipulators and reference signals. In Fig. 2. we can see
comparison of the tracking errors for the repetitive controller
(7)-(9) with constant fundamental frequency w = 2.5 rad/s
and the repetitive controller (7)-(9) with frequency estimator
(53). In contrast with the repetitive controller (7)-(9), the
repetitive controller (7)-(9) with frequency estimator (53)
shows exponential convergence toward an arbitrary small
tracking error which depends only on the number of oscilla-
tors V. In Fig. 3. we can see convergence of the frequency
estimate w toward the fundamental frequency of the reference
signal.



Fig. 1.
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Fig. 2. The comparison of tracking errors for repetitive controller (RC)

and repetitive controller with frequency estimator (RC+FE).

VIII. CONCLUSIONS

In this paper a new class of finite dimensional repetitive
controllers for nonlinear passive systems is proposed. The
proposed repetitive controller connects the main advantage of
internal model controllers - implementation simplicity, with
robustness based on passivity of external model controllers.
In the case of periodic signals with unknown frequency,

the

proposed controller can be easily combined with the

frequency estimators.
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