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Abstract 

In this paper a modification of the nonlinear 
dynamic discrete-time neuron model, the so-called 
Dynamic Elementary Processor (DEP), is 
proposed. DEP disposes of local memory, in that it 
has dynamic states. Instead of the most popular 
unipolar and bipolar Sigmoidal neuron activation 
functions, the Gauss activation function with 
adaptive parameters is applied. Based on the DEP 
neurons in hidden layer a modified dynamic neural 
network (MDNN) without any Bias neurons is 
proposed. For such neural network, the Error Back- 
Propagation and RPROP learning strategies are 
compared in solving of two benchmarks, the Glass-
Mackey time series prediction and XOR 
classification problem. 
 
1. INTRODUCTION 

The first version of DEP neuron was presented 
in [1]. Dynamic neural network based on DEP 
neurons in hidden layer was trained according the 
Error Back–Propagation (EBP) learning procedure. 
It is well known that such learning algorithm is quite 
slow. Over the last decade, many improvement 
strategies have been developed to speed up the 
EBP algorithm and improve neural network 
learning and generalization features. All of them 
can be separated in three basic categories.  

The first category deals with the improvement of 
the EBP learning algorithm [2]. The second 
category deals with the neurons weights initial 
values [3, 4] and the third category deals with 
neural network topology optimization [5]. Therefore 
in this paper two directions or strategies for MDNN 
learning speed up are discussed. The first one 
deals with neural network topology optimization, 
and the second one deals with different type of the 
learning algorithm. According to the first strategy, 
the DEP neuron structure modification and 
activation function (AF) with adaptive parameters 
are proposed for modified dynamic neural network 
(MDNN). With such adaptive Gauss AF we wish to 
eliminate the Bias neuron from all network layers.  
That leads to minimization of neural network 

topology. But before doing that, we must answer to 
some fundamental questions. The first one is, why 
is the Bias neuron so important, and the second 
one is, can we eliminate Bias neuron for hidden 
layer?  

It is well known that any nonlinear, smooth, 
differentiable, and preferably non-decreasing 
function can be used as AF in hidden layer. The 
two most popular activation functions are the 
unipolar Logistic and the bipolar Sigmoidal 
functions. For those types of activation functions, 
Bias neuron is very important, and the error-back 
propagation neural network without Bias neuron for 
hidden layer does not learn [6]. Shortly, the Bias 
weights have control of the shape, orientation and 
steepness of all types of Sigmoidal functions 
through data mapping space. However, if one uses 
Gauss AF with adaptive parameters, than the Bias 
neuron with related weights can be excluded. 
Gauss function parameters controls the AF shapes 
and orientation, and the position of activation 
functions in data mapping space. According to the 
second strategy the RPROP algorithm [7] is 
proposed and compared with EBP algorithm. 
Although RPROP algorithm was originally designed 
for feed–forward neural networks, it shows the 
great learning potentials for recurrent neural 
networks as well.  
 
2. MODIFIED DYNAMIC NEURAL NETWORK 

The basic idea of the dynamic neuron concept 
is to introduce some dynamics to the neuron 
activation function (AF), such that the neuron 
activity depends on the internal neuron states. In 
this study, an ARMA (Auto Regressive Moving 
Average) filter is integrated within the well-known 
static neuron model. This filter allows the neuron to 
act like an infinite impulse response filter, and the 
neuron processes past values of its own activity 
and input signals. Therefore some good network 
properties in signal filtering can be expected [8]. 
The structure of a proposed dynamic neuron model 
is plotted in figure 1. The filter input and output at 
time instant (n) are given in (1) and (2) and 
respectively [1]: 
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The hidden layer neuron output is given with (3), 

y(n) ( y(n))= γ , (3) 

where (n )γ represents the adaptive neuron 
activation function defined in (4). 
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Figure 1. Discrete-time DEP neuron model 

 
Adaptive means that AF parameters σ and C 

can be adapted by neural network learning 
algorithm. MDNN shown in figure 2 has three 
layers. Each i-th neuron in the first, input layer has 
single input that represents the external input to the 
neural network. 
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Figure 2. Modified dynamic neural network 

The second layer consists of dynamic neurons, 
which are presented by figure 1. Each j-th dynamic 
neuron in hidden layer has an input from every 
neuron in the first layer. And finally, each k-th 
neuron in the third, output layer has an input from 
every neuron in the second layer. The adaptive 
neuron activation function given by (4) is chosen 
activation function for static neurons in output layer. 
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2
1
2 , (5) 

where k=1,2,…,K is the number of neural network 
outputs.  

All error measures are reported using non-
dimensional Normalized Root Mean Square error 
index NRMS [1, 9]. Normalized means that the root 
mean square is divided by the standard deviation 
of the target or output desired data. 

In all hereafter performed experiments the 
training started with random weights values 
between -1 and +1. All σ parameters were set to 
0.5 and all C parameters were set to zeros. The 
filter coefficients a1, a2, b1 and b2 were initialized to 
zeros, while the coefficients b0 were initialized to 
ones to support a stable learning procedure. For 
equal networks topologies the same initial learning 
parameters were used in all learning procedures. 
 
3. EBP LEARNING ALGORITHM 

The goal of the supervised learning algorithm is 
to adjust the neural network parameters (the 
weights, filter coefficients and activation function 
parameters) based on a given set of input and 
desired output pairs. Therefore for the neural 
network plotted in figure 2, the EBP and RPROP 
learning strategies are compared. 
For the EBP learning algorithm the index 
performance E is defined as follows: 

2

1

1
2

N

d
p

E (O ( p) O( p))
=

= −∑ , (6) 

where N is the training set size, and the error is the 
signal defined as difference between the desired 
response Od(p) and the actual output neuron 
response O(p). 

To determine the optimal network learning 
parameter ϑ  (V, W, a1, a2, b0, b1, b2, C, σ) that 
minimizes the index performance E a gradient 
method can be applied. Iteratively, the optimal 
learning parameters are approximated by moving 
in the direction of steepest descent: 

new old= + ∆ϑ ϑ ϑ , (7) 

EE ∂ϑ η η
∂ϑ

∆ = − ∇ = − , (8) 

where η is a user-selected positive learning 
constant (learning rate). 
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The choice of the learning constant depends 
strongly on the class of the learning problem and 
on the network architecture. The learning rate 
values ranging from 10-4 to 102 have been reported 
throughout the literature as successful for many 
computational back-propagation experiments. For 
large constants, the learning speed can be 
drastically increased. However, the learning may 
not be exact, with tendencies to overshoot, or it 
may be never stabilized at any minimum. To 
accelerate the convergence of the EBP learning 
algorithm given in (7), the momentum method is 
usually applied. The method [1, 10] is given in (9) 
and involves supplementing the current learning 
parameter adjustment (8) with a fraction of the 
most recent parameter adjustment. This is usually 
done according to the formula: 

E(n)(n) E(n) (n )
(n)

∆ = − ∇ = − + ∆ −1∂ϑ η η α ϑ
∂ϑ

, (9) 

where the arguments n and n-1 indicates the 
current and the most recent training step (instant 
time), respectively, and α is a user-selected 
positive momentum constant. 

Typically, α is chosen between 0.1 and 0.8. To 
simplify the derivation of the learning algorithm, a 
linear time shifting operator can be defined by 
equation (10). 
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Using the time shifting operator defined in (10), 
three cases can be distinguished: 
1) ϑ is a filter coefficient of the numerator B(z) : 

[ ] [ ] [ ]y(n) zD (n) net(n)
A( z)bi

ϑ
∂

∂ϑ ϑ

−

= =
=

1
. (11) 

2) ϑ is a filter coefficient of the denominator A(z) : 

[ ] [ ] [ ]y(n) zD (n) y(n)
A( z)ai

ϑ
∂

∂ϑ ϑ

−−
= =

=

1
. (12) 

3) ϑ is a neuron input weight : 

[ ] [ ] j
y( n) B( z)D (n) u (n)

A( z)w j
ϑ

∂
∂ϑ ϑ

 = =  
=

. (13) 

Dϑ(n) is a current parameter state within the 
dynamic filters described on the right side of 
equations (11), (12) and (13). Thus, to determine 

the change of the dynamic neuron activity 
depending on a filter, activation function and weight 
parameters, the gradient has to be calculated 
through time by the memory of the used filter. 

EBP algorithm was used both, in batch and 
pattern learning procedure. Pattern means that 
learning parameters adaptation occurs for each 
input-output data pair or pattern from learning data 
set. Thus the one learning step implies the pattern 
number of changes of the learning parameters. On 
the other side the batch procedure implies only one 
change of the learning parameters per one learning 
step. Therefore one can expect that the batch 
learning procedure requires less processing time. 
In all experiments, we used the same constant 
learning parameters as follows: 

η α0.02 , 0.8= =  . (14) 

 
4. RPROP LEARNING ALGORITHM 

RPROP (Resilient back-PROPagation) learning 
algorithm is typical representative of batch learning 
procedures. Many reports points to its fast 
convergence in learning of feed forward neural 
networks. Our goal was to determine the possibility 
of usage the RPROP learning algorithm for 
recurrent neural networks. In this paper the New 
Weight-Backtracking RPROP scheme was used 
[7]. All learning parameters ϑ can be adapted 
according to the pseudo-code as follows: 
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In all experiments, we used the same constant 
learning parameters as follows: 



CIM2007  June, 13-17, 2007 Biograd, Croatia 
 
                                                                                                                

 206 

η η (0)

min max

1.2 , 0.8, 0.02 ,
0.0001 , 5.0 .

+ −= = ∆ =
∆ = ∆ =

 (16) 

 

5. XOR CLASSIFICATION PROBLEM 
One of the famous neural networks testbed is 

the logical XOR problem given in table 1. XOR is a 
typical representative of the class of linear non-
separable classification problems. According to the 
table 1, the input layer consists of 2 neurons, and 
output layer consists of one static neuron. For the 
hidden layer we used 2 dynamic neurons. 

 
Table 1. XOR problem 

Input Z1 Input  Z2 Desired output  D 
0 0 0 
0 1 1 
1 0 1 
1 1 0 

 
The networks were trained until the error index 

NRMS dropped to 0.01. The comparison of the 
learning algorithms is given in table 2. 
 
Table 2. The learning results  

Learning 
MDNN EBP - Batch EBP - Pattern RPROP
NLS* 8571 196 59 
CPU** 100 2.52 1.10 
NRMS 0.01 0.01 0.01 
*  - the Number of Learning Steps 
** - required CPU time (%) 

 
It is obvious that EBP algorithm with batch 

learning procedure is bad choice. Such algorithm 
has very slowly convergence. It requires a lot of 
learning steps (epochs) i.e. CPU time. On the other 
hand the EBP learning algorithm with pattern 
learning procedure needs less learning steps. It is 
almost 40 times faster than batch procedure, 
although it's one learning step requires more CPU 
time than one batch learning step. But if one chose 
the RPORP algorithm, the required learning steps 
and CPU time can be additionally reduced. In 
comparison with EBP pattern learning procedure, 
the RPROP learning algorithm in this experiment is 
more than twice faster. 
 
6. GLASS-MACKEY TIME SERIES PREDICTION  

Many conventional signal processing tests, 
such as correlation function analysis, cannot 
distinguish deterministic chaotic behaviour from 
stochastic noise. Particularly difficult systems to 
predict are those that are nonlinear and chaotic. It 
is known that chaos has a technical definition 
based on nonlinear, dynamic systems theory [9].  
Examples of chaotic systems in nature include 
chemical reactions, plasma physics, turbulence in 
fluids, lasers, to name a few. When parameters are 
varied, chaotic systems also display the full range 
of nonlinear behaviour (limit cycles, fixed points, 

etc.). Therefore chaotic systems provide a good 
testbed in which to investigate techniques of 
nonlinear signal processing, such as neural 
networks. Lapedes and Farber [9] suggested the 
Glass-Mackey time series as a good benchmark for 
learning algorithms, because it has a simple 
definition, yet its elements are hard to predict (the 
series is chaotic). Glass-Mackey equation given in 
(15) is a nonlinear differential delay equation with 
an initial condition specified by an initial function 
defined over a strip with τ. 

ax(t )x bx(t )
x (t )

−
= −

+ −101
τ
τ

 (17) 

Choosing the initial function to be constant 
function, with a = 0.2,   b = 0.1 and τ = 17 yields a 
time series x(t) obtained by equation (17), that is 
chaotic with a fractal attractor of dimension 2.1. 
Increasing τ to 30 yields more complicated 
evolution and fractal dimension (dA) of 3.5. The 
time series for 1000 time steps for  τ = 30 (time in 
units of τ) is plotted in figure 3. 
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Figure 3. The Glass-Mackey Time Series with 

a = 0.1, b = 0.2, τ = 30 
 

The goal of the task is to use known values of the 
time series up to the point x(t), to predict the value 
x(t+P) at some point P  in the future . The standard 
method for this type of prediction is to create a 
mapping  f()  as follows : 

( )x(t P ) f x(t ),x(t ),x( t ),...,x(t m )+ = − ∆ − ∆ − ∆2 , (18) 

where P is a prediction time into the future, ∆ is a 
time delay , and m is an integer. 

According to the (18) an attractor can be 
reconstructed from a time series by using a set of 
time delayed samples of a series. By choosing P=∆ 
[9] it is possible to predict the value of time series 
at any multiple of ∆ time steps in the future, by 
feeding the output back into the input and iterating 
the solution. In this study we choose to use P=∆=6, 
since results can be compared with previous 
experiments where P=6. Takens theorem [11] 
states the range for dimension of the attractor (dA): 

A Ad m d< + < +1 2 1 (19) 
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For  τ = 30  we choose m=4. It is obvious that for 
P=∆=6 and m=4 the expansion (18) has the 
following form: 

x(t ) f ( x( t ),x( t ),x( t ),
x(t ),x( t ))

+ = − −
− −

6 6 12
18 24

 (20) 

Takens theorem unfortunately gives no information 
on the form of the f() in equation (20). Therefore, it 
is necessary to point out that the neural networks 
provide a robust approximating procedure for 
continuous f(). 

According to the equation (20) the input layer 
consists of 5 neurons (input buffer), and output 
layer consists of one static neuron. In the hidden 
layer we suggested 10 dynamic neurons. For 
training the neural network, we used first 500 
values plotted in figure 3. The networks were 
trained until the error index NRMS dropped to 0.05. 
The comparison of the learning algorithms is given 
in table 3. 
 
Table 3. Comparison of the learning algorithms  

Learning 
MDNN EBP - Batch EBP - Pattern RPROP 
NLS* 16805 2127 1987 
CPU** 100 15.9 11.6 
NRMS 0.05 0.05 0.05 
*  - the Number of Learning Steps 
** - required CPU time (%) 

 
The obtained learning results are quite similar 

with the results in previous benchmark problem. 
Again the RPROP learning algorithm shows the 
best learning performances. He requires the least 
number of learning steps i.e. CPU time. 

After learning the networks generalization 
features were tested through many tests. The 
trained network were used to predict new sets of 
values x(t) in the future. Some of the tests results 
are given in table 4.  
 
Table 4. MDNN testing procedure 

Testing (NRMS) 
Test EBP - Batch EBP- Pattern RPROP

1 0.052 0.084 0.058 
2 0.046 0.068 0.059 
3 0.047 0.081 0.061 
4 0.048 0.077 0.058 
5 0.047 0.076 0.061 

 
According to the table 4., all networks generalizes 
very well and in many practical applications such 
differences can be neglected. 

In this experiment the EBP algorithm with batch 
learning procedure shows the best generalization 
features. However, such generalization advantages 
are not significant toward the fact that EBP batch 
learning algorithm requires the huge number of 
learning steps i.e. CPU processing time. Also, 

some of that one can perceive throughout the plots 
with test results given in figures 4-9. The figures 4, 
5 and 6 reveal that all neural networks solved the 
problem. 
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Figure 4. DNN output for Test 1. 
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Figure 5. DNN output for Test 2. 
 
 

0 150 300 450 600 750 900
0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00
Desired
EBP Batch
EBP Pattern
RPROP

x(t+6)

 t    
 

Figure 6. DNN output for Test 5. 
 

Real differences between generalization 
features of the used learning algorithms can be 
better visible in figures 7, 8 and 9. These figures 
present some characteristic zooms of figures 4, 5 
and 6. It is obvious that differences in 
generalization for all learning algorithms are 
negligible. 
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Figure 7. The set of 100 data points from test 1. 
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Figure 8. The set of 100 data points from test 2. 
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Figure 9. The set of 100 data points from test 5. 
 
7. CONCLUSION 

We established a dynamic neuron model, which 
processes multi inputs and does not require past 
values of the process measurements or prior 
information about its activity functions. 

The main advantage of the proposed dynamic 
neuron model is that it reduces the network input 
space. Additionally, because of elimination of the 
Bias neuron, the neural network with adaptive 
Gauss activation function has the less number of 
neurons and learning parameters. Trained neural 
network with smaller topology has much faster 
response. With reduced CPU time and memory 
needed, such neural network is more promising in 
real-time domain applications. With RPROP 

learning algorithm MDNN learns much faster and at 
the same time has very good generalization 
property. The proposed neural network offers a 
great potential in signal filtering and in solving 
many problems that occurs in system modelling 
with a special emphasis on the systems with 
characteristics such as nonlinearity, time delays, 
saturation or time-varying parameters. 
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