

11th INTERNATIONAL SCIENTIFIC CONFERENCE ON PRODUCTION ENGINEERING –CIM2007
Croatian Association of Production Engineering, Zagreb 2007

MODIFIED DYNAMIC NEURON MODEL

Dubravko Majetić, Danko Brezak, Josip Kasać, Branko Novaković

Prof.dr.sc. D. Majetić, University of Zagreb, FSB, I. Lucica 5, 10000 Zagreb
Mr.sc. D. Brezak, University of Zagreb, FSB, I. Lucica 5, 10000 Zagreb
Dr.sc. J. Kasać, University of Zagreb, FSB, I. Lucica 5, 10000 Zagreb

Prof.dr.sc. B. Novaković, University of Zagreb, FSB, I. Lucica 5, 10000 Zagreb

Keywords: dynamic neural network, adaptive
activation function, bias neuron, error back–
propagation, RPROP

Abstract

In this paper a modification of the nonlinear
dynamic discrete-time neuron model, the so-called
Dynamic Elementary Processor (DEP), is
proposed. DEP disposes of local memory, in that it
has dynamic states. Instead of the most popular
unipolar and bipolar Sigmoidal neuron activation
functions, the Gauss activation function with
adaptive parameters is applied. Based on the DEP
neurons in hidden layer a modified dynamic neural
network (MDNN) without any Bias neurons is
proposed. For such neural network, the Error Back-
Propagation and RPROP learning strategies are
compared in solving of two benchmarks, the Glass-
Mackey time series prediction and XOR
classification problem.

1. INTRODUCTION

The first version of DEP neuron was presented
in [1]. Dynamic neural network based on DEP
neurons in hidden layer was trained according the
Error Back–Propagation (EBP) learning procedure.
It is well known that such learning algorithm is quite
slow. Over the last decade, many improvement
strategies have been developed to speed up the
EBP algorithm and improve neural network
learning and generalization features. All of them
can be separated in three basic categories.

The first category deals with the improvement of
the EBP learning algorithm [2]. The second
category deals with the neurons weights initial
values [3, 4] and the third category deals with
neural network topology optimization [5]. Therefore
in this paper two directions or strategies for MDNN
learning speed up are discussed. The first one
deals with neural network topology optimization,
and the second one deals with different type of the
learning algorithm. According to the first strategy,
the DEP neuron structure modification and
activation function (AF) with adaptive parameters
are proposed for modified dynamic neural network
(MDNN). With such adaptive Gauss AF we wish to
eliminate the Bias neuron from all network layers.
That leads to minimization of neural network

topology. But before doing that, we must answer to
some fundamental questions. The first one is, why
is the Bias neuron so important, and the second
one is, can we eliminate Bias neuron for hidden
layer?

It is well known that any nonlinear, smooth,
differentiable, and preferably non-decreasing
function can be used as AF in hidden layer. The
two most popular activation functions are the
unipolar Logistic and the bipolar Sigmoidal
functions. For those types of activation functions,
Bias neuron is very important, and the error-back
propagation neural network without Bias neuron for
hidden layer does not learn [6]. Shortly, the Bias
weights have control of the shape, orientation and
steepness of all types of Sigmoidal functions
through data mapping space. However, if one uses
Gauss AF with adaptive parameters, than the Bias
neuron with related weights can be excluded.
Gauss function parameters controls the AF shapes
and orientation, and the position of activation
functions in data mapping space. According to the
second strategy the RPROP algorithm [7] is
proposed and compared with EBP algorithm.
Although RPROP algorithm was originally designed
for feed–forward neural networks, it shows the
great learning potentials for recurrent neural
networks as well.

2. MODIFIED DYNAMIC NEURAL NETWORK

The basic idea of the dynamic neuron concept
is to introduce some dynamics to the neuron
activation function (AF), such that the neuron
activity depends on the internal neuron states. In
this study, an ARMA (Auto Regressive Moving
Average) filter is integrated within the well-known
static neuron model. This filter allows the neuron to
act like an infinite impulse response filter, and the
neuron processes past values of its own activity
and input signals. Therefore some good network
properties in signal filtering can be expected [8].
The structure of a proposed dynamic neuron model
is plotted in figure 1. The filter input and output at
time instant (n) are given in (1) and (2) and
respectively [1]:

J

j j
j

net(n) w u .
−

=

= ∑
1

1
 (1)

CIM2007 June, 13-17, 2007 Biograd, Croatia

 204

y(n) b net(n) b net(n) b net(n)
a y(n) a y(n).

= + − + − −

− − − −
0 1 2

1 2

1 2
1 2

 (2)

The hidden layer neuron output is given with (3),

y(n) (y(n))= γ , (3)

where (n)γ represents the adaptive neuron
activation function defined in (4).

y c

y(n) (y(n)) e
− −  σ = γ =

21
2 (4)

∑ 2b1z− 2z− γ
net(n) y(n) y(n)

1u

2u

3u

Ju

1w

Jw

3w

2w

0b

1b

1a

2a

Figure 1. Discrete-time DEP neuron model

Adaptive means that AF parameters σ and C

can be adapted by neural network learning
algorithm. MDNN shown in figure 2 has three
layers. Each i-th neuron in the first, input layer has
single input that represents the external input to the
neural network.

γ k γ k
γ k

γ j γ j γ j

∑ ∑∑

∑ ∑ ∑

O1 O2 KO

Z2 Zi ZI

1

1

B
A

2

2

B
A

J

J

B
A

w12

w11

v11

v12

v21

Knet 1 Knet 2
KKnet

Jnet 1 Jnet 2 JJnet

Z1

Figure 2. Modified dynamic neural network

The second layer consists of dynamic neurons,
which are presented by figure 1. Each j-th dynamic
neuron in hidden layer has an input from every
neuron in the first layer. And finally, each k-th
neuron in the third, output layer has an input from
every neuron in the second layer. The adaptive
neuron activation function given by (4) is chosen
activation function for static neurons in output layer.

Kk k
k

net c

k KkO (n) (net (n)) e
 −

−  σ = γ =

2
1
2 , (5)

where k=1,2,…,K is the number of neural network
outputs.

All error measures are reported using non-
dimensional Normalized Root Mean Square error
index NRMS [1, 9]. Normalized means that the root
mean square is divided by the standard deviation
of the target or output desired data.

In all hereafter performed experiments the
training started with random weights values
between -1 and +1. All σ parameters were set to
0.5 and all C parameters were set to zeros. The
filter coefficients a1, a2, b1 and b2 were initialized to
zeros, while the coefficients b0 were initialized to
ones to support a stable learning procedure. For
equal networks topologies the same initial learning
parameters were used in all learning procedures.

3. EBP LEARNING ALGORITHM

The goal of the supervised learning algorithm is
to adjust the neural network parameters (the
weights, filter coefficients and activation function
parameters) based on a given set of input and
desired output pairs. Therefore for the neural
network plotted in figure 2, the EBP and RPROP
learning strategies are compared.
For the EBP learning algorithm the index
performance E is defined as follows:

2

1

1
2

N

d
p

E (O (p) O(p))
=

= −∑ , (6)

where N is the training set size, and the error is the
signal defined as difference between the desired
response Od(p) and the actual output neuron
response O(p).

To determine the optimal network learning
parameter ϑ (V, W, a1, a2, b0, b1, b2, C, σ) that
minimizes the index performance E a gradient
method can be applied. Iteratively, the optimal
learning parameters are approximated by moving
in the direction of steepest descent:

new old= + ∆ϑ ϑ ϑ , (7)

EE ∂ϑ η η
∂ϑ

∆ = − ∇ = − , (8)

where η is a user-selected positive learning
constant (learning rate).

June, 13-17, 2007 Biograd, Croatia CIM2007

 205

The choice of the learning constant depends
strongly on the class of the learning problem and
on the network architecture. The learning rate
values ranging from 10-4 to 102 have been reported
throughout the literature as successful for many
computational back-propagation experiments. For
large constants, the learning speed can be
drastically increased. However, the learning may
not be exact, with tendencies to overshoot, or it
may be never stabilized at any minimum. To
accelerate the convergence of the EBP learning
algorithm given in (7), the momentum method is
usually applied. The method [1, 10] is given in (9)
and involves supplementing the current learning
parameter adjustment (8) with a fraction of the
most recent parameter adjustment. This is usually
done according to the formula:

E(n)(n) E(n) (n)
(n)

∆ = − ∇ = − + ∆ −1∂ϑ η η α ϑ
∂ϑ

, (9)

where the arguments n and n-1 indicates the
current and the most recent training step (instant
time), respectively, and α is a user-selected
positive momentum constant.

Typically, α is chosen between 0.1 and 0.8. To
simplify the derivation of the learning algorithm, a
linear time shifting operator can be defined by
equation (10).

[] []

[]
[]
[]

i

B(z)y(n) net(n)
A(z)

z net(n) net(n i)

A(z) y(z) y(n) a y(n) a y(n)

B(z) net(n) b net(n) b net(n)
b net(n)

−

=

= −

= + − + −

= + − +

+ −

1 2

0 1

2

1 2

1
2

 (10)

Using the time shifting operator defined in (10),
three cases can be distinguished:
1) ϑ is a filter coefficient of the numerator B(z) :

[] [] []y(n) zD (n) net(n)
A(z)bi

ϑ
∂

∂ϑ ϑ

−

= =
=

1
. (11)

2) ϑ is a filter coefficient of the denominator A(z) :

[] [] []y(n) zD (n) y(n)
A(z)ai

ϑ
∂

∂ϑ ϑ

−−
= =

=

1
. (12)

3) ϑ is a neuron input weight :

[] [] j
y(n) B(z)D (n) u (n)

A(z)w j
ϑ

∂
∂ϑ ϑ

 = =  
=

. (13)

Dϑ(n) is a current parameter state within the
dynamic filters described on the right side of
equations (11), (12) and (13). Thus, to determine

the change of the dynamic neuron activity
depending on a filter, activation function and weight
parameters, the gradient has to be calculated
through time by the memory of the used filter.

EBP algorithm was used both, in batch and
pattern learning procedure. Pattern means that
learning parameters adaptation occurs for each
input-output data pair or pattern from learning data
set. Thus the one learning step implies the pattern
number of changes of the learning parameters. On
the other side the batch procedure implies only one
change of the learning parameters per one learning
step. Therefore one can expect that the batch
learning procedure requires less processing time.
In all experiments, we used the same constant
learning parameters as follows:

η α0.02 , 0.8= = . (14)

4. RPROP LEARNING ALGORITHM

RPROP (Resilient back-PROPagation) learning
algorithm is typical representative of batch learning
procedures. Many reports points to its fast
convergence in learning of feed forward neural
networks. Our goal was to determine the possibility
of usage the RPROP learning algorithm for
recurrent neural networks. In this paper the New
Weight-Backtracking RPROP scheme was used
[7]. All learning parameters ϑ can be adapted
according to the pseudo-code as follows:

n n

E En n

n n
E n

n n n
E En n

n n
E n E n

n n n
E n

ϑ

ϑ ϑ
η

ϑ
ϑ

ϑ ϑ ϑ

ϑ ϑ
η

ϑ ϑ ϑ

ϑ

for each do

if then

elseif then

if then

max

() ()

min

(1) ()>0

() min((1) ,)

sign ()

(1) () ()

(1) ()<0

() max((1) ,)
()> (1)
(1) () (1)

(

+

−

∂ ∂
− •

∂ ∂
∆ = ∆ − • ∆

∂ ∆ = − •∆ ∂ 
+ = + ∆
∂ ∂

− •
∂ ∂

∆ = ∆ − • ∆

−
+ = − ∆ −

∂
∂

E En n

En n n

n n n

ϑ ϑ

ϑ
ϑ

ϑ ϑ ϑ

elseif then

fi
od

) 0

(1) ()=0

() sign () ()

(1) () ()

=

∂ ∂
− •

∂ ∂
∂ ∆ = − • ∆ ∂ 

+ = + ∆
 (15)

In all experiments, we used the same constant
learning parameters as follows:

CIM2007 June, 13-17, 2007 Biograd, Croatia

 206

η η (0)

min max

1.2 , 0.8, 0.02 ,
0.0001 , 5.0 .

+ −= = ∆ =
∆ = ∆ =

 (16)

5. XOR CLASSIFICATION PROBLEM
One of the famous neural networks testbed is

the logical XOR problem given in table 1. XOR is a
typical representative of the class of linear non-
separable classification problems. According to the
table 1, the input layer consists of 2 neurons, and
output layer consists of one static neuron. For the
hidden layer we used 2 dynamic neurons.

Table 1. XOR problem

Input Z1 Input Z2 Desired output D
0 0 0
0 1 1
1 0 1
1 1 0

The networks were trained until the error index

NRMS dropped to 0.01. The comparison of the
learning algorithms is given in table 2.

Table 2. The learning results

Learning
MDNN EBP - Batch EBP - Pattern RPROP
NLS* 8571 196 59
CPU** 100 2.52 1.10
NRMS 0.01 0.01 0.01
* - the Number of Learning Steps
** - required CPU time (%)

It is obvious that EBP algorithm with batch

learning procedure is bad choice. Such algorithm
has very slowly convergence. It requires a lot of
learning steps (epochs) i.e. CPU time. On the other
hand the EBP learning algorithm with pattern
learning procedure needs less learning steps. It is
almost 40 times faster than batch procedure,
although it's one learning step requires more CPU
time than one batch learning step. But if one chose
the RPORP algorithm, the required learning steps
and CPU time can be additionally reduced. In
comparison with EBP pattern learning procedure,
the RPROP learning algorithm in this experiment is
more than twice faster.

6. GLASS-MACKEY TIME SERIES PREDICTION

Many conventional signal processing tests,
such as correlation function analysis, cannot
distinguish deterministic chaotic behaviour from
stochastic noise. Particularly difficult systems to
predict are those that are nonlinear and chaotic. It
is known that chaos has a technical definition
based on nonlinear, dynamic systems theory [9].
Examples of chaotic systems in nature include
chemical reactions, plasma physics, turbulence in
fluids, lasers, to name a few. When parameters are
varied, chaotic systems also display the full range
of nonlinear behaviour (limit cycles, fixed points,

etc.). Therefore chaotic systems provide a good
testbed in which to investigate techniques of
nonlinear signal processing, such as neural
networks. Lapedes and Farber [9] suggested the
Glass-Mackey time series as a good benchmark for
learning algorithms, because it has a simple
definition, yet its elements are hard to predict (the
series is chaotic). Glass-Mackey equation given in
(15) is a nonlinear differential delay equation with
an initial condition specified by an initial function
defined over a strip with τ.

ax(t)x bx(t)
x (t)

−
= −

+ −101
τ
τ

 (17)

Choosing the initial function to be constant
function, with a = 0.2, b = 0.1 and τ = 17 yields a
time series x(t) obtained by equation (17), that is
chaotic with a fractal attractor of dimension 2.1.
Increasing τ to 30 yields more complicated
evolution and fractal dimension (dA) of 3.5. The
time series for 1000 time steps for τ = 30 (time in
units of τ) is plotted in figure 3.

0 200 400 600 800 1000
0.20

0.40

0.60

0.80

1.00

1.20

1.40
x(t)

t
Figure 3. The Glass-Mackey Time Series with

a = 0.1, b = 0.2, τ = 30

The goal of the task is to use known values of the
time series up to the point x(t), to predict the value
x(t+P) at some point P in the future . The standard
method for this type of prediction is to create a
mapping f() as follows :

()x(t P) f x(t),x(t),x(t),...,x(t m)+ = − ∆ − ∆ − ∆2 , (18)

where P is a prediction time into the future, ∆ is a
time delay , and m is an integer.

According to the (18) an attractor can be
reconstructed from a time series by using a set of
time delayed samples of a series. By choosing P=∆
[9] it is possible to predict the value of time series
at any multiple of ∆ time steps in the future, by
feeding the output back into the input and iterating
the solution. In this study we choose to use P=∆=6,
since results can be compared with previous
experiments where P=6. Takens theorem [11]
states the range for dimension of the attractor (dA):

A Ad m d< + < +1 2 1 (19)

June, 13-17, 2007 Biograd, Croatia CIM2007

 207

For τ = 30 we choose m=4. It is obvious that for
P=∆=6 and m=4 the expansion (18) has the
following form:

x(t) f (x(t),x(t),x(t),
x(t),x(t))

+ = − −
− −

6 6 12
18 24

 (20)

Takens theorem unfortunately gives no information
on the form of the f() in equation (20). Therefore, it
is necessary to point out that the neural networks
provide a robust approximating procedure for
continuous f().

According to the equation (20) the input layer
consists of 5 neurons (input buffer), and output
layer consists of one static neuron. In the hidden
layer we suggested 10 dynamic neurons. For
training the neural network, we used first 500
values plotted in figure 3. The networks were
trained until the error index NRMS dropped to 0.05.
The comparison of the learning algorithms is given
in table 3.

Table 3. Comparison of the learning algorithms

Learning
MDNN EBP - Batch EBP - Pattern RPROP
NLS* 16805 2127 1987
CPU** 100 15.9 11.6
NRMS 0.05 0.05 0.05
* - the Number of Learning Steps
** - required CPU time (%)

The obtained learning results are quite similar

with the results in previous benchmark problem.
Again the RPROP learning algorithm shows the
best learning performances. He requires the least
number of learning steps i.e. CPU time.

After learning the networks generalization
features were tested through many tests. The
trained network were used to predict new sets of
values x(t) in the future. Some of the tests results
are given in table 4.

Table 4. MDNN testing procedure

Testing (NRMS)
Test EBP - Batch EBP- Pattern RPROP

1 0.052 0.084 0.058
2 0.046 0.068 0.059
3 0.047 0.081 0.061
4 0.048 0.077 0.058
5 0.047 0.076 0.061

According to the table 4., all networks generalizes
very well and in many practical applications such
differences can be neglected.

In this experiment the EBP algorithm with batch
learning procedure shows the best generalization
features. However, such generalization advantages
are not significant toward the fact that EBP batch
learning algorithm requires the huge number of
learning steps i.e. CPU processing time. Also,

some of that one can perceive throughout the plots
with test results given in figures 4-9. The figures 4,
5 and 6 reveal that all neural networks solved the
problem.

0 150 300 450 600 750 900
0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00
Desired
EBP Batch
EBP Pattern
RPROP

x(t+6)

t

Figure 4. DNN output for Test 1.

0 150 300 450 600 750 900
0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00
Desired
EBP Batch
EBP Pattern
RPROP

x(t+6)

 t

Figure 5. DNN output for Test 2.

0 150 300 450 600 750 900
0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00
Desired
EBP Batch
EBP Pattern
RPROP

x(t+6)

 t

Figure 6. DNN output for Test 5.

Real differences between generalization
features of the used learning algorithms can be
better visible in figures 7, 8 and 9. These figures
present some characteristic zooms of figures 4, 5
and 6. It is obvious that differences in
generalization for all learning algorithms are
negligible.

CIM2007 June, 13-17, 2007 Biograd, Croatia

 208

350 375 400 425 450
0.60

0.80

1.00

1.20

1.40

Desired
EBP Batch
EBP Pattern
RPROP

x(t+6)

 t

Figure 7. The set of 100 data points from test 1.

250 275 300 325 350
0.40

0.60

0.80

1.00

1.20

1.40

Desired
EBP Batch
EBP Pattern
RPROP

x(t+6)

 t

Figure 8. The set of 100 data points from test 2.

150 175 200 225 250
0.20

0.40

0.60

0.80

1.00

1.20

1.40

Desired
EBP Batch
EBP Pattern
RPROP

x(t+6)

 t

Figure 9. The set of 100 data points from test 5.

7. CONCLUSION

We established a dynamic neuron model, which
processes multi inputs and does not require past
values of the process measurements or prior
information about its activity functions.

The main advantage of the proposed dynamic
neuron model is that it reduces the network input
space. Additionally, because of elimination of the
Bias neuron, the neural network with adaptive
Gauss activation function has the less number of
neurons and learning parameters. Trained neural
network with smaller topology has much faster
response. With reduced CPU time and memory
needed, such neural network is more promising in
real-time domain applications. With RPROP

learning algorithm MDNN learns much faster and at
the same time has very good generalization
property. The proposed neural network offers a
great potential in signal filtering and in solving
many problems that occurs in system modelling
with a special emphasis on the systems with
characteristics such as nonlinearity, time delays,
saturation or time-varying parameters.

8. REFERENCES
[1] Novakovic, B., Majetic, D., Siroki, M., 1998,

Artificial Neural Networks, Faculty of
Mechanical Engineering and Naval
Architecture, Zagreb, Croatia.

[2] Smagt, P., 1994, Minimization methods for
training feed-forward networks, Neural
Networks 7, pp. 1-11.

[3] Nguyen, D., Widrow, B., 1990, Improving the
Learning Speed of Two-Layer Networks by
Choosing Initial Values of the Adaptive
Weights, Proceedings of International Joint
Conference on Neural Networks, Sand Diego,
Vol. 3, pp. 21-26.

[4] Darken, C., Moody, J., 1991, Note of Learning
Rate Schedules for Stochastic Optimization,
Neural Information Processing Systems, pp.
832-838.

[5] Lawrence, S., Giles, C.L., Tsoi, A.C., 1996,
What Size of Neural Network Gives Optimal
Generalization, Convergence Properties of
Back-Propagation, Technical Report
UMIACS-TR-96-22 and CS-TR-3617, Institute
of Advanced Computer Studies, Maryland.

[6] Kecman, V., 2001, Learning and Soft
Computing, MIT Press, England.

[7] Igel, C., Husken, M., 2000, Improving the
RPROP Learning Algorithm, Proceedings of
the Second International Symposium on
Neural Computation, NC’2000, ICSC
Academic Press, pp. 115–121.

[8] Brezak, D., Majetic,D., Udiljak, T., Novakovic,
B., Kasac, J., 2006, Adaptive Control Model
for Maintaining Tool Wear Rate in the
Predefined Cutting Time, 17.th DAAAM
International Symposium, Vienna, pp. 63-64.

[9] Lapedes, A.S., Farber, R., 1987, Nonlinear
Signal Processing Using Neural Networks:
Prediction And System Modeling, Technical
Report, Los Alamos National Laboratory, Los
Alamos, New Mexico.

[10] Zurada, J.M., 1992, Artificial Neural Systems,
W.P. Company, USA

[11] Takens, T., 1981, Detecting Strange Attractor
In Turbulence, Lecture Notes in Mathematics,
D.Rand, L.Young (editors), Springer Berlin,
pp. 366.

