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a b s t r a c t

Objectives. The purpose of this research was to determine the mass concentrations of ions

eluted from dental ceramic after an exposure to hydrochloric acid and, drawing on those

results, to develop a feedforward backpropagation neural network (NN).

Materials and methods. Four dental ceramics were selected for this study. The experimental

measurement was conducted after 1, 2, 3, 6 and 12 months of exposure to hydrochloric acid.

The results of the 1, 2, 6 and 12 months of immersion were used for training a 13-13-5 model

of NN. For evaluating NN efficiency, the regression analysis of input variables obtained by

the experiment and output variables provided by the trained network was used.

Results. The measured data from the 3-month acid exposure and data obtained by the neural

network estimation were compared.

High correlation coefficient (R) and low normalized root mean square error (NRMSE) between

the measured and estimated output values were observed.

Conclusions. It could be concluded that the artificial neural network has a great potential as

an additional method in investigating the properties of dental materials.

© 2007 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Dental materials have to satisfy strict criteria because of their
long therapeutic durability in the oral cavity. One of the most
important properties of all restorative dental materials is their
chemical resistance. Chemical resistance or chemical durabil-
ity depends on the structure and composition of the material,
laboratory conditions, and environment, which is in this case
the oral cavity.

There are several methods for testing the chemical resis-
tance of restorative materials. ISO [1] and ADA [2] standards
are usually recommended. Both methods use a 4% acetic
acid as a solution medium for faster degradation of dental
ceramics. The goal of these methods is to find out the weight
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loss of ceramic samples after an exposure to the mentioned
acid. There are also methods that test chemical resistance of
ceramic in more detail, in different media, for a longer period,
etc. [3–11]. However, technical literature does not mention any
method which could predict the amount of chemical degrada-
tion of ceramic material after the measuring interval and at all
points during the interval. For this reason a neural network is
developed. A neural network is a computer simulation of the
behavior of a material based on the experimental research of
its properties. This method has been used for testing materi-
als in mechanical engineering [12]. However, neural networks
are rarely used for testing dental materials and never for eval-
uating the chemical resistance of dental ceramics [13,14]. The
purpose of this research was to determine the mass concen-
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Fig. 1 – Principle of the feedforward backpropagation training
algorithm.

trations of ions eluted from a dental ceramic after an exposure
to hydrochloric acid and, drawing on those results, to develop
a feedforward backpropagation neural network.

2. Artificial neural network

Artificial neural networks (ANN) are inspired by the biological
neural system and its ability to learn through example. Instead
of following a group of well-defined rules specified by the
user, neural networks learn through intrinsic rules obtained
from presented samples. The most commonly used ANN
architecture is the multilayer backpropagation neural network.
Backpropagation was created by generalizing the Widrow-
Hoff learning rule to multiple-layer networks and nonlinear
differentiable transfer functions [15]. Input vectors and the
corresponding target vectors are used to train the network
until it can approximate a function, associate input vectors
with specific output vectors. Standard backpropagation is a
gradient descent algorithm, as is the Widrow-Hoff learning
rule, in which the network weights are moved along the neg-
ative of the gradient of the performance function. The term
backpropagation refers to the manner in which the gradient is
computed for nonlinear multilayer networks. Backpropagation
neural networks often have one or more hidden layers of sig-
moid neurons followed by an output layer of linear neurons.
Multiple layers of neurons with nonlinear transfer functions
allow the network to learn nonlinear and linear relationships
between input and output vectors. There are numerous varia-
tions of the basic algorithm that are based on other standard
optimization techniques, such as conjugate gradient and New-
ton methods [15]. The one used in this paper is the feedforward
backpropagation training algorithm designed to minimize the
mean square error (MSE) between the actual (estimation) out-
put (a, A) and the desired (target) output (d, T). Fig. 1 shows the
principle of the feedforward backpropagation training algorithm.
The basic learning algorithm can be summarized as follows:

Step 1. Set the initial values of weights Vij and Wjk.

Step 2. Compute the outputs of all neurons layer-by-layer,
starting with the input layer as shown below:

netj =
I∑

i=1

VijXi, j = 1, 2, . . . , J − 1, i = 1, 2 . . . , I (1)

Yj = f (netj) (2)

netk =
J∑

j=1

WjkYj, j = 1, 2, . . . , J − 1, k = 1, 2, . . . , K

(3)

Yk = f (netk) (4)

where Vij is the weight between the input layer and
the hidden layer, Wjk the weight between the hidden
layer and the output layer, Xi the input signals (value of
chemical composition), i the number of neurons of the
input layer, I the number of inputs of neuron j in the
hidden layer, Yj the output of the hidden neurons, j the
number of neurons of the hidden layer, J the number
of inputs of neuron k in the output layer. Yk the output
signals (mass of eluted ions per gram of samples), and
k is the number of neurons of the output layer. In the
case of sigmoidal transfer function of the hidden layer,
the following equation applies:

f (x) = 2
1 + e−x

− 1 (5)

Step 3. Compute system error E:

E = 1
2

K∑
k=1

(dk − ak)2 (6)

where K represents the total number of patterns, dk

the desired outputs (experimental values) and ak the
actual outputs.

Step 4. If E is small enough or learning iteration is too big, stop
learning.

Step 5. Compute learning errors for every neuron layer-by-
layer:

ık = (dk − ak)f ′(netk), k = 1, 2, . . . , K (7)

ık =
K∑

k=1

Wjkıkf ′(netj), j = 1, 2, . . . , J − 1, k = 1, 2, . . . , K

(8)

Step 6. Update weights along negative gradient of E:

Wjk(n + 1) = Wjk(n) + lrıkYj + ˛(Wij(n) − Wij(n − 1)) (9)

Vji(n + 1) = Vji(n) + lrıjXi + ˛(Vji(n) − Vji(n − 1)) (10)

where lr is the learning rate, ˛ the momentum, and n
is the current iteration step.

Step 7. Repeat from Step 2.
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Fig. 2 – Schematic drawing of the model of the used neural network.

3. Material and methods

Four dental ceramics were selected for this study: feldspathic
ceramic (IPS-Classic, Ivoclar-Vivadent, Schaan, Liechtenstein),
hydrothermal ceramic (Duceragold, Ducere Dental, Rosbach,
Germany) and two glass ceramics with different composition
(IPS-Empress for staining and layering technique, Ivoclar-
Vivadent, Schaan, Liechtenstein). The selection of the ceramic
materials was based on their mutual compositional differ-
ences. One specimen of each ceramic material was fabricated
using a Plexiglas mold (10 mm × 10 mm × 2 mm). The ceramic
materials were prepared strictly following their producers’
instructions. A creamy mixture of feldspathic ceramic or
hydrothermal ceramic was put in the mold and thoroughly
condensed. Then the mold was removed and the specimens
left on top of a platinum foil and baked. Wax patterns were
used for heat-pressed ceramics. The surfaces were ground
using 500- and 1000-grit (18 �m) SiC-paper on a disc rotating
at 150 rpm, and then glazed.

The samples were cleaned in an ultrasonic bath (Ultra Sonic
Bath Model 1510 DTH, Electron Microscopy Sciences) and left
to dry for 4 h at 150 ± 5 ◦C (Sterilizer, Instrumentaria, Zagreb,
Croatia). The samples were then placed in a plastic flask (PP,
25.0 ml) filled with 10−3 mol dm−3 HCl at 50 ◦C. The mass con-
centrations of eluted Na+, K+ and Ca2+ ions were determined
using the ATOMIC ABSORPTION SPECTROPHOTOMETER (AAS,
AA-6800, SHIMADZU, Kyoto, Japan) and the mass concentra-
tions of Si4+ and Al3+ ions using the SPECTROPHOTOMETER

UV/VIS (COLEMAN 55, PERKIN ELMER, Norwalk, USA). The
measurements were conducted after 1, 2, 3, 6 and 12 months
of immersion.

4. Model of the neural network

The work included experimenting with a two-layer (13-13-5)
feedforward backpropagation neural network, whose simplified
model is shown in Fig. 2. The input layer is made up by the
data on the chemical composition of a dental ceramic (SiO2,
Al2O3, K2O, Na2O, CaO, MgO, BaO, B2O3, CeO2, pigment, LiO2,
TiO2) and on the time of exposure (time), and the output layer

Table 1 – Training parameters of neural network

Parameter Value

Performance goal 0.0001
Learning rate 0.01
Ratio to increase learning rate 1.05
Ratio to decrease learning rate 0.5
Maximum performance increase 1.04
Minimum performance gradient 1e−10
Momentum constant 0.9
Number of layers 2
Number of neurons 13-13-5
Transfer functions Tansig & purelin
Training function Traingdx
Number of epochs to train 15,000
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Table 2 – Data sets for training (non-shaded) and testing (shaded) of the neural network

Key: sample 1, feldspathic ceramic; sample 2, hydrothermal ceramic; sample 3, glass ceramic for staining; sample 4, glass ceramic for layering.

Table 3 – Comparison of the measured data (ME) and data estimated by the neural network (NN)

Key: ME, values obtained by measure; NN, values obtained by neural network; � = NN − ME; � (%) = ((NN − ME)/NN) × 100; shaded rows, data sets
for testing of the neural network.
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Fig. 3 – Comparison of the measured data (ME) and data estimated by the neural network (NN) for Al3+ for the complete
immersion period.

is made up by the data on mass concentrations of ions (Al3+,
Si4+, Na+, K+, Ca2+) eluted from dental ceramics. The chosen
model with 13 input neurons, 13 neurons in the hidden layer,
and 5 output neurons is the result of the author’s experiment-
ing and practical experiences obtained during work [12,16].
For modelling, MathWorks, Neural Network Toolbox, Release
4.0.1 was used [17] according to whose rules hidden layers
of the network were marked. As the transfer function of the
first hidden layer, the function of sigmoidal type (tansig) was
applied, and of the second hidden layer – the function of
linear type (purelin). As a training function, traingdx – gradi-
ent descent with momentum and the adaptive learning rate
backpropagation function was applied. Training parameters
of the network are shown in Table 1. Because of relatively
small numbers of input training data, it was not possible to
define a separate group for validation of the network dur-
ing the training process and to apply some of the methods
(e.g. early stopping) for improving generalization of the net-
work. Input–output data for training the network are shown
in Table 2. Data obtained during 1, 2, 6, and 12 months of
the experiment were included in the network training pro-
cess. Data obtained during the 3rd month of the experiment
were excluded from the training process, and used for network
testing.

For the estimation of performance of the learning algo-
rithm in solving the specified task, performance index was
defined. Performance index enabled comparison of the
applied neural network algorithm with the other learning

algorithms. The most frequent performance index is the nor-
malized root mean square error—NRMSE [15]:

NRMSE =

√∑N

n=1(dn − an)2/N

�dn
(11)

�dn
=

√√√√ 1
N

N∑
n=1

(dn − d̄)
2

(12)

d̄ = 1
N

N∑
n=1

dn (13)

where N is the total number of patterns, dn the desired (target,
T) outputs, an the actual (estimation, A) outputs and �dn

is the
standard deviation.

5. Results

Using experimental data, the feedforward backpropagation neu-
ral network for estimation of the wear resistance of dental
ceramics was modelled (Fig. 2).

The results of the 1, 2, 6 and 12 months of immersion were
used for training a 13-13-5 model of neural network and the
results of the 3-month immersion period were used for its
testing (Table 2).
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Fig. 4 – Comparison of the measured data (ME) and data estimated by the neural network (NN) for Si4+ for the complete
immersion period.

Fig. 5 – Comparison of the measured data (ME) and data estimated by the neural network (NN) for Na+ for the complete
immersion period.



Author's personal copy

24 d e n t a l m a t e r i a l s 2 4 ( 2 0 0 8 ) 18–27

Fig. 6 – Comparison of the measured data (ME) and data estimated by the neural network (NN) for K+ for the complete
immersion period.

Fig. 7 – Comparison of the measured data (ME) and data estimated by the neural network (NN) for Ca2+ for the complete
immersion period.
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Fig. 8 – Correlation coefficient (R) and normalized root mean square error (NRMSE) of the measured data (ME) and data
estimated by the neural network (NN) for Al3+ for the complete immersion period and the 3-month immersion period.

Fig. 9 – Correlation coefficient (R) and normalized root mean square error (NRMSE) of the measured data (ME) and data
estimated by the neural network (NN) for Si4+ for the complete immersion period and the 3-month immersion period.

Fig. 10 – Correlation coefficient (R) and normalized root mean square error (NRMSE) of the measured data (ME) and data
estimated by the neural network (NN) for Na+ for the complete immersion period and the 3-month immersion period.
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Fig. 11 – Correlation coefficient (R) and normalized root mean square error (NRMSE) of the measured data (ME) and data
estimated by the neural network (NN) for K+ for the complete immersion period and the 3-month immersion period.

Numerical comparisons of measured values (ME), mass of
eluted ions per gram of samples and the values obtained by
estimation of the neural network are shown in Table 3.

Figs. 3–7 show the graphic comparison of the measured
data (ME) and data estimated by the neural network (NN), both
for all ions and for the 3-month immersion period.

The correlation coefficient (R) and normalized root mean
square error (NRMSE) of the measured data (ME) and data esti-
mated by the neural network (NN) for eluted ions for the
complete immersion period and for the 3-month immersion
period are shown in Figs. 8–12.

6. Discussion

Hydrochloric acid was used for testing the chemical durability
of dental ceramics. This departs from the standard ISO method
[1] which uses acetic acid for testing the chemical durability
of dental ceramic because of its frequent use in households.
The authors find hydrochloric acid suitable since there are

patients with gastric disorders, who have lower pH-values in
the oral cavity due to the presence of hydrochloric acid (gastric
reflux, regurgitation, and bulimia), similar to Grossman et al.
[8]. The duration and the temperature of the experiment also
differ from the ISO-Standard. It was desirable to include in
this research the longest possible elution of ions from dental
ceramics in order to test the long-term predicting possibilities
of this method.

The artificial neural network method presented in this
study is currently being used in different fields of engineer-
ing for testing different materials [12]. The dental ceramic was
used because of its chemical inertness [4,5]. The only purpose
of experimental data in this study was to train the neural net-
work and to determine its efficiency and limits. The chemical
stability of dental ceramic was not evaluated. The results of
previous studies [3,18] of the same group of authors allowed a
presumption that the ions’ elution from dental ceramic in an
acid solution was very low. The number of measuring inter-
vals was relatively low. Even then the method of the artificial
neural network showed a very accurate prediction of the wear

Fig. 12 – Correlation coefficient (R) and normalized root mean square error (NRMSE) of the measured data (ME) and data
estimated by the neural network (NN) for Ca2+ for the complete immersion period and the 3-month immersion period.
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behavior of dental ceramics. A high correlation coefficient (R)
and a low normalized root mean square error (NRMSE) between
measured and estimated output values were observed. The
single problem was an underfitting within the process of neu-
ral network training. It was caused by the insufficiency of
input data sets for training network. The reason for a small
number of input data sets is that the results of investigating
the ceramics corrosion were to be used for another investiga-
tion which did not require further measurements. However,
even that number of measurements showed only minimal dif-
ferences obtained between measured and estimated mass of
eluted ions per gram of dental ceramic sample.

Artificial neural network has a great potential for investi-
gating not only the chemical stability of materials, but also
other properties, such as wear resistance, flexural strength,
etc., which are changing under the influence of one or more
parameters. The value of this method is also in the possibility
of predicting future events in correlation with the number of
experimental data. The higher number of experimental data
allows for more accurate prediction.

It could be concluded that the artificial neural network has
great potential as an additional method for investigating the
properties of dental materials.
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