INTERNATIONAL CONFERENCE ON ENGINEERING DESIGN

ICED 99 MUNICH, AUGUST 24-26, 1999
STRUCTURING A DESIGNERS WORKBENCH
WITH OBJECT ORIENTED DESIGN PLANS

Pavković Neven, Marjanović Dorian

Keywords: designers workbench, design plans, object oriented databases

1 Introduction

The need for development of designers workbench arises from growing capabilities of modern CAE systems and requirements for new engineering design methods. The goal of this research project is to develop a kernel control structure for designers workbench. Presented approach tends to establish a flexible structure, providing the tools for managing the design process and to integrate the usage of software support. Developed structure is based on the “design plan”, which represents a process of solving a design task or subtask. Design plans are structured as hierarchical trees or networks of design activities and should thus be independent of design task class and design process phase. Each node in tree or network represents a software-supported activity of processing a subset of information about product being designed.

The system is targeted to support a class of adaptive and variant design, assuming terms “adaptive” and “variant” in the sense given by Pahl and Beitz [1]. Typical product development is realised in small steps by redesigning the existing products, rather than by designing entirely new ones [2]. Traditionally, databases are used to keep track of the designed products. The stored information sets consider geometry, material, assembly structure, manufacturing process, etc. Most of these databases do not record the hidden information developed during design sessions, the decision rationale.

Conventional (relational) databases are good at managing large amounts of data, sharing data among programs, and fast value-based queries. They are not very good at modelling the relationships among data - everything must be represented as series of two-dimensional tables. An object database combines the semantics of an object oriented programming language with the data management and query facilities of a conventional database system. This makes it easy to manage large amounts of data and model the relationships among the data. If an object database is integrated with an object-oriented language then it should support the semantics of that language - relationships established in the program should automatically be represented in the database when objects are stored.

This article presents current research state and considers strategies and requirements for modelling designers workbench with design plans as main control structures, using object oriented programming environment. The results of initial research phases were reported in [3, 4, and 5]. The presented approach models the design process in a quite opportunistic way. Our goal is to develop environment that will improve and integrate the usage of existing software tools, regardless of the method used for tool implementation.

2 Design Plan Structure

The design plan is a formulated program of actions. Execution of the plan leads to the desired goal if and only if the preconditions for the plan execution are fulfilled. Action in the plan is an activity that generates effects if the preconditions for the action execution are satisfied. Design process is here treated as a sequence of transitions from initial requirements to a final design state [6]. Those transitions are observed as operators in the overall collection of information about product being designed. Each operator is represented as a node in the design plan, structured as an object with a set of attributes. Possible design plan topologies, (figure 1), the plan generation and exploitation issues are discussed in [4] and [5]. First prototype model of design plan structure has been developed using hierarchical tree topology and relational database as programming environment for generating design plans [3]. Current efforts are directed to the potentials of object oriented approach in development of support for network design process space topology. The research is focused on two main problems:

· defining the design plan class structure

· developing a set of software tools for outlining, generating and executing a design plan in a combined environment of object oriented database and WWW technology

[image: image1.wmf]
Figure 1. Linear, tree and network design plan topologies

The model of computer based support for design activities at higher levels of complexity can be built from blocks of activities from lower complexity levels. Computer based support for operations from lower levels usually includes execution of various software tools (elements of CAD systems, databases, numerical calculations, etc.). The process of software tool activation is here observed as an operator in the design process space. Therefore such software tools are here named "action functions". Each plan node triggers and controls the process of particular action function execution. The design plan structure should fulfil two main requirements:

1. determine the execution sequence of operators (model the progression in the process),

2. provide the mechanisms for the data transfer between various kinds of software tools.

The progression in design process from the initial requirements to the final design state can be controlled by design decisions and by applying design constraints. Design data can be stored in one common table. An appropriate subset of data from such table should be mapped to and form each action function (figure 3 - "design data board"). Plan nodes are structured as objects with a collection of attributes; hence two groups of attributes may be distinguished:

1. control attributes for determining the execution sequence - implemented as the rules for carrying out design decisions and for constraints verification,

2. input/output attributes - determine the data flow between nodes in a plan - in other words, between a plan ("design data board") and the action functions.

2.1 Defining an outline of a particular design plan

While defining an outline of a new design plan, the designer must have an overview of the available action functions - primary of the implemented model's description and everything about I/O data (variable names, types, formats, etc.). Therefore, a large amounts of data about action functions should thus be stored, in order to be at the designer’s disposal. The process of generating design plans must be supported by appropriate software tools to ensure accuracy of finished plans and to increase productivity. The design process structure can be decomposed to a hierarchy of design tasks and subtasks. Therefore, it is not necessary to define a design plan at the highest (most complex) level of design task abstraction. Computer based support for complex design tasks can be modelled as a hierarchy of plans and subplans. The design process control at higher abstraction levels can then be left to the designer. Previously completed and tested plans should be stored in a separate database to be available for use as subplans in a plan being defined.

Very interesting considerations about planning the design process can be found in [7]. We must ask ourselves to what extent a design process can be planned? Real design process environments generate dynamic situations - they can change while the plan is being executed in a way that makes the plan invalid [8]. As if this is not enough, real environments may also change in a way that do not invalidate a current plan, but instead, offer new possibilities for action [8].

2.2 Design plan generation

The plan generation process is not divided into clearly distinguished phases. In other words, the designer could use available software tools and procedures in any desired sequence. All the basic data about action functions are stored in one separate database. The action functions database should contain data about software tools, which are being in use in some particular design environment. This database contains categorised lists of action functions and lists with I/O attributes for each action function. Links to documents about each action function and links to a product knowledge base are included. Figure 2 represents operations allocation in the process of defining, generating and storing the design plans. When creating a new plan, the designer uses the data stored in action functions database as building blocks.

[image: image2.wmf]
Figure 2. Operations in the process of defining, generating and storing design plans

2.3 The process of the design plan execution

At the present development state, the plan generation phase is separated from the plan execution and therefore the generated plan can not be modified in the execution phase. The plan execution process starts from the first (root) node and proceeds to one of the terminal nodes. The execution procedure for each node includes the following steps:

· identification of node type, control of input attribute set and triggering the action function;

· evaluation of output attribute set;

· verification of constraints and determining the next node, according to decision rules.

A part of user interface and main data flow processes are explained on figure 3, which represents a scheme of design plan execution process. Design plan structure is generated and recorded as a local Web site. WWW technology provides a standard, widely known environment, used here for plan generation and execution. A particular HTML page is assigned to each plan node, with hyperlinks to other plan nodes. Leading software tools for designing Web sites provide the necessary mechanisms for maintaining the structure of hyperlinks, enabling to control the consistency of the design plan structure. HTML "node pages" include interactive interface elements that provide a survey of node attributes, and enable value changes. The process of plan execution is performed in WWW browser with an aid of additional interactive software procedures. The control of the node execution sequence is based on the relations in adjacency matrix (figure 4), decision rules and constraints. A separate procedure controls the execution of the triggered action function and supports the data transfer between the "design data board" and the action function I/O. "Design data board" is a subset of the overall collection of information about product being designed. Whenever a problem appears, the system awaits the user intervention. For example, if all of the node I/O attributes have not yet been set, the designer can enter or update values and proceed with the execution. At the end of the execution process, the values of the output attribute sets of all the executed nodes, recorded in the "design data board", represent the solution of the design task.

[image: image3.wmf]M

a

p

p

i

n

g

f

r

o

m

D

D

B

t

o

a

c

t

.

f

u

n

.

M

a

p

p

i

n

g

f

r

o

m

a

c

t

.

f

u

n

.

t

o

D

D

B

CONSTRAINTS

DECISIONS

COMMENTS

ACTION FUNCTION INPUT

ACTION FUNCTION OUTPUT

DESIGN DATA

BOARD (DDB)

1 var1=...

2 var2= ...

3 const1=...

4 DH= 120

5 DS= 120

15 LT=....

16 HS1=...

17 JOT=...

18 F1=...

Auxiliary hyperlinks

HTML

 “NODE PAGE”

NEXT

NODES:

Root node

node 4 (......)

node 5 (......)

node 2 (......)

(determined from

adjacency matrix)

STOP plan execution

Suggested next node:

node 5

Unfulfilled constraints:

ACTION FUNCTION:

Node 3

Current

node:

description of I/O

methods implemented

related links to knowledge base

execute this node again

The value of … should be

reconsidered because of …

when trying to accomplish ...

Recording design

rationale for reuse

Figure 3. A scheme of design plan execution (hyperlinks are in italic)

3 Storing the design plan as a collection of objects

Figure 4 shows an example of design plan representation in the form of a bi-directional graph (network topology). A part of the associated adjacency matrix is also shown. In this approach, relations between nodes are also viewed as objects. Therefore, an additional execution control mechanism may be implemented in the network topology, that is, the "class of the relation". "Models of behaviour" can then be built in such relations between nodes, as well as for the nodes themselves. The "relation class mark" can be recorded as data in the adjacency matrix (each class could have its own mark "m1", "m2", etc.). The primary problem that has to be solved in network topology is the mapping of attributes between nodes in recurring relations (going back to nodes that had been previously executed). The notion of relation behaviour is one of the ideas to be explored for solving this problem.

[image: image4.wmf]

 to node

R1
1
2
3
4
5
6
7
8
…

from
R1

m1M1
m1
m1

node
1

m1

2

3

m1
m1

4

m2

m1

5

m1

6

m2

m1

7

m3

8

….

Figure 4. An example of a plan in the form of bi-directional graph (or network) with a part of associated adjacency matrix

Each plan node and each relation between nodes should be stored as a separate object with their member functions. The design plan structure is recorded in the adjacency matrix, which serves as the basis for the plan execution process. We think that network topology control mechanisms may be developed and implemented through the use of object oriented paradigms. Different classes of nodes can be developed, with built-in "models of behaviour". The user can then work with an "open toolbox", enabling him to create his own classes of nodes and relations between them, according to his own needs. An appropriate taxonomy for the design process can be one of the starting points for outlining the classes of nodes. According to [9] this taxonomy is still emerging and will continue to evolve as research matures.

Object oriented paradigms should enable realisation of one more important function for the design support systems - the ability to derive and adopt design plans from the "sketched" general plans. This means that a plan for a particular task can be derived from the general procedural plan for a class of technical system or a class of design task. Such general plans could be, in other words, the recorded knowledge about "how to" design.

4 Conclusion

One of the difficulties with object oriented technology and object database systems is in fact that these are still maturing. A wide variety of methods have been developed, with several standardisation directions. This is a very complex area with many difficulties in practical application. In order to decide the best strategy for further development, the future research efforts will be directed towards the evaluation of the formerly mentioned methods. The main role of the design plan is to integrate computer supported activities from lower complexity levels, forming the blocks for building a support for higher level activities. We think that applicability of the proposed model will be strongly influenced by a class of design task. The design process is sometimes far too complex to be easily planned. We have started from the assumption that the proposed model could be efficiently used to support design processes for variant and adaptive classes of design tasks. This has to be proven in the future research.

References

[1] Pahl G., Beitz W., "Engineering Design", The design Council, London, 1988.

[2] Hollins B., "Design processes to develop the product generation after the product generation after next", Proceedings of the 5th International Design Conference DESIGN ’98 in Dubrovnik, FSB/WDK, Zagreb 1998, pp. 17-22.

[3] Pavković, N., "Defining and Generating Design Plans - an Approach to the First Phase in Exploitation of an ICAD System", Proceedings of the 11th International Conference on Engineering Design in Tampere, Volume 2, WDK 25, Tampere 1997, pp. 297-300.

[4] Marjanović, D., "Design Process Representation in the Development of Design Support Environment", Proceedings of the 11th International Conference on Engineering Design in Tampere, Volume 2, Schriftenreihe WDK 25, Tampere 1997, pp. 705-708.

[5] Pavković, N., Štorga, M., Marjanović, D., "Generating Design Plans in Relational Database Environment - Problems and Improving Possibilities", Proceedings of the 5th International Design Conference DESIGN ’98, FSB/WDK, Zagreb 1998, pp. 93-98.

[6] Hubka, V., Eder, W., E., "Design Science", Springer, London, 1996.
[7] Giaopulis A., Schlüter A., Ehrlenspiel K., Günther J., "Effizientes Konstruieren durch Generierendes und Korrigierendes Vorgehen", Proceedings of 10th ICED conference in Praha, Volume 2, Schriftenreihe WDK 23, Praha, 1995, pp. 477-483.
[8] Pollack, M.E, "The uses of plans", Artificial Intelligence, Vol 57, No1, 1992, pp. 43-68.
[9] Ullman, D.G., "A Taxonomy for Mechanical Design", Research in Engineering Design, Vol. 3, No. 3, 1992, pp. 179-189.
MSc Neven Pavković

Faculty of Mechanical Engineering & Naval Architecture

Chair of Design Theory

Address: 10000 Zagreb, Ivana Lučića 5

Country: Croatia

Phone: +385 1 6168 545

Fax: +385 1 6156 940

E-mail: neven.pavkovic@fsb.hr

