
DAAAM INTERNATIONAL SCIENTIFIC BOOK 2007 pp. 443-458 CHAPTER 39

WEB ORIENTED APPLICATIONS GENERATOR
DEVELOPMENT THROUGH REENGINEERING

PROCESS

RADOSEVIC, D.; OREHOVACKI, T. & KONECKI, M.

Abstract: Development of scripting model based generators is re-engineering
process, which consists of several phases: making application prototype, defining
specification elements and code templates (metaprograms) through separation of
concerns, making generator scripting model and generator implementation through
generative objects using appropriate C++ library. That process corresponds to Barry
Boehm spiral model of software development. Main benefits of that approach are
flexibility in generator development and easier maintenance of generators and
generated applications. Most suitable applications for generating by scripting model
based generators are web applications.

Key words: generative programming, generative objects, software reengineering

Authors´ data: PhD. Radosevic, D[anijel]; BSc. Orehovacki, T[ihomir]; BSc.
Konecki, M[ario], Faculty of organization and informatics, University of Zagreb,
Pavlinska 2, Varaždin, Croatia, danijel.radosevic@foi.hr, tihomir.orehovacki@foi.hr
mario.konecki@foi.hr

This Publication has to be referred as: Radosevic, D.; Orehovacki, T. & Konecki,
M. (2007). Web oriented applications generator development through reengineering
process, Chapter 39 in DAAAM International Scientific Book 2007, B. Katalinic
(Ed.), Published by DAAAM International, ISBN 3-901509-60-7, ISSN 1726-9687,
Vienna, Austria
DOI: 10.2507/daaam.scibook.2007.39

443

mailto:danijel.radosevic@foi.hr

1. Introduction

Re-engineering is the examination, analysis and alteration of an existing software system

to reconstitute it in a new form, and the subsequent implementation of the new form
(Rosenberg, 1996). The purpose of re-engineering is to understand specification, design

and implementation of some existing software and to re-develop this software in order to

achieve a higher degree of functionality, security, reliability, etc., in other words to

enhance the software. There are four general re-engineering objectives (Rosenberg,
1996):

 preparation for functional enhancement – to specify the characteristics of the
existing system that can be compared with specifications of the characteristics of

the desired system,

 improve maintainability - to re-design the system with more appropriate
functional modules and explicit interfaces,

 migration – to migrate to a newer hardware platform, operating system, or
language,

 improve reliability - the reliability of the software steadily decreases to the point

of unacceptable

2. Phases of software development

The main phases of software development, according to the level of abstraction are

(Rosenberg, 1996):

 Conceptual abstraction – functional characteristics are described only in general
terms.

 Requirement abstraction – functional characteristics are described in detailed
terms.

 Design abstraction – description of structures, algorithms, components, interfaces,

etc.

 Implementation abstraction – implementation description which is done in some

specific programming language.

As it has already been said, the starting point of re-engineering is existing source code of

some application. The process of re-engineering finishes with target software source

code as its final result. This process can be more or less complex. For example it can
only translate the software from one programming language into another; it can enhance

some characteristics or redesign the whole application, etc.

Fig. 1: General Model for Software Re-engineering

The model in Figure 2 applies three principles of re-engineering: abstraction, alteration

and refinement (types of change in stages of software development (Byrne, 1992)).

Abstraction is a gradual increase in abstraction level of software. Software
representation is created by successive replacement of existing detailed information with

information that is more abstract. This process is termed reverse engineering.

Refinement is gradual decrease in the abstraction level of software representation and it
is caused by successive replacement of existing software information with more detailed

information. This process is termed forward engineering and resembles software

development of new code, but with some process refinements. Alteration may have two

dimensions; either as a change of functionality, or as a change of implementation
technique (e.g. development technology) (Jacobson & Lindstrom, 1991).

If we want to change some software characteristics we have to do changes at abstraction
level where information about those characteristics are explicitly stated. If we want to

simply translate code into another programming language, we do this (alteration) at the

implementation level. No reverse engineering is needed here. With the increase of

abstraction level, the alteration tasks change and also the need for some tasks of reverse
engineering change. If we want to re-specify some requirements reverse engineering

must me applied to the implementation and design in order to get the functional

characteristics.

Reverse engineering is the process of analyzing software to identify its components and

relationships between them and to create representations of the system in some other

form or at a higher level of abstraction (Rosenberg, 1996).

3. Re-engineering approaches

There are 3 different approaches in re-engineering and they differ mostly by the amount

and rate of replacements that are made in existing software to get the target software
(Byrne & Gustafson, 1992).

1. Big Bang approach

2. Incremental/Phase-out approach
3. Evolutionary approach

In case of applications generator re-engineering the Incremental/Phase-out approach has
been used.

3.1 Incremental/Phase-out approach

Existing system is divided into logical sections and these sections are re-engineered and
added to the system as new versions that are needed to achieve certain functionality

(Sneed, 2005). In other words, software is dividend into components and those

components are being re-engineered. Incremental software re-engineering allows for
safer re-engineering, increased flexibility and more immediate return on investment

(Olsem, 1998). One example of incremental re-engineering is incremental

transformation of procedural systems to object oriented platforms in which a generic re-

engineering source code transformation framework is used (Ying & Kontagiannis,
2003).

Fig. 2: Incremental/Phase-out Re-engineering Approach

3.2 Hybrid Re-engineering - COTS Track Hybrid Re-engineering

Another approach to re-engineering is hybrid approach (Ajlouni & Hani, 2006). There

are many variations in this approach and COTS Track Hybrid Re-engineering is one of
them. This approach also relates to applications generator re-engineering. In the COTS

track of Hybrid re-engineering, shown in Figure 3, requirements and functions that can

be feasibly implemented using COTS must be identified (Rosenberg, 1996).

Fig. 3: COTS Track Hybrid Re-engineering

After the reverse re-engineering has been done in order to identify the requirements, it is

very important to separate requirements that must be contained in the target system

(“necessary”) from those requirements that users want in the new system because they

have become habits or if users are used to them (“nice”). This separation is critical to
COTS selection. The advantage of using COTS is in decreased development time and

increased reliability (Ajlouni & Hani, 2006). Evaluation, testing and comparing target

system with current system must also be performed.

4. Re-engineering of generators

4.1. Re-engineering phases and tasks
Re-engineering consists of 5 phases (Rosenberg, 1996) but for the process of application

generator re-engineering only 3 phases are emphasized.

These phases are:

1. Re-engineering team formation

2. Project feasibility analysis

3. Analysis and planning
4. Re-engineering implementation

5. Transition and testing

4.1.1. Analysis and planning

This re-engineering phase has three steps: analyze the current system, specify the

characteristics of the target system, and create a standard test or validation suite to

validate the correct transfer of functionality (Rosenberg, 1996).

In first step the existing system has to be described and understood. We use manuals,

documentation, code and any other usable source that could help us in understanding of

the current system.

In second step we have to define metrics that will help us in assessment of current

system and its characteristics and also to define characteristics that have to be improved,
priorities, and quality problems, all according to technical and business values. Metrics

and assessment have to be used until the very end of re-engineering process in order to

monitor all consequences of every single change, that is, to monitor its impact on the

system.

Finally, a standard test and validation suite must be created. These will be used to show

that the new system is functionally equivalent to the current system and to demonstrate
that the functionality is unchanged after re-engineering.

4.1.2. Re-engineering implementation

In this phase reverse engineering is used to describe the current system at a desired level
of abstraction. After this, forward engineering is used. Forward engineering can be

compared to standard software development process. The goal is to redesign the system

to fit new goals. Validation and measurement of progress and effects must also be
performed in order to assess the improvements and to find potential problems and risks.

4.1.3. Testing and transition

Testing is important to determine effects and functionality errors in the target system
after re-engineering. The same tests can be applied to current and target system and they

can be compared to see the effect of re-engineering. The documentation must be updated

according to changes in the system.

4.2. Analysis and planning of generators

Analysis and planning of generators consists of several phases:

1. separation of concerns
2. forming libraries of characteristics (aspects)

3. forming scripting model of generator

4.2.1. Separation of concerns

Crosscutting characteristics (aspects) are program parts that are not connected to

individual organizational program units such as functions and classes, but showing up in

various application parts, (Kiczales et al., 1997)(Lee, 2002). Aspects of various
application cases are singled out into application specification, i.e., separation of

concerns (views) is done as presented by (Stein et al., 2003). In the following example,

some parts of the code are specific for the particular program (shown in grey), and some

are common for all programs from the same problem domain:

#include <iostream.h>

int first;

float second; data declarations

char third[40];

void main(){

//entry of values

cout << "first = ";

cin >> first;

cout << "second = "; data entry

cin >> second;

cout << "third = ";

cin >> third;

// processing -forming the list of fields

cout << "List of fields:first,second,third"; list of fields

// console output of values

cout << endl << "-------------------" << endl;

cout << "first = ";

cout << first << endl;

cout << "second = "; data output

cout << second << endl;

cout << "third = ";

cout << third << endl;

}

Common parts of program forms main metaprogram:

#include <iostream.h>

#fields#

void main(){

//entry of values

#entry#

//processing -forming the list of fields

#processing#

//console output of values

cout << "-------------------" << endl;

#output#

}

The data declaration part is replaced by tag #fields#, data entry by #entry#, list of fields

by #processing# and data output by #output#. Now, the same process should be done on

each part, replaced by replacement tags, for example:

int first;

float second; data declarations

char third[40];

This is kind of repetition, because there are three declarations like following:

 <type> <variable>

It could be solved by different metaprograms for each type of variable:

field_number:

int #field_number#;

field_real:

float #field_real#;

field_char:

char #field_char#[40];

4.2.2. Application specification

It's easier to form the application specification than metaprograms, because application

specification consists only from specific properties (aspects) of particular application.
These aspects occur in different parts of application. For example, such properties in

observed program are variables first, second, and third. Program deals with that

variables (and surrounding text) in all of four main parts (declaration part, data entry,
list of fields and data output). Extracted specific properties are in hierarchic order, where

higher levels define groups and repetitions. Such relationships are shown in the

specification diagram (Radošević, 2005)(Fig. 4).

<tag 1>

<tag 1.1> <tag 1.2> <tag 1.n>

<tag n>

<tag n.1> <tag n.2> <tag n.n>

level 1

level 2

level n

Fig. 4: The specification diagram

In observed example, the specification diagram is quite simple (Fig. 5):

fields

field_

number
field_real field_char

Fig 5: The specification diagram of the observed example program

The application specification is in textual form, and is defined by the specification

diagram. Such specification of the observed program is as follows:

fields:

field_number:first

field_real:second

field_char:third

4.2.3. The metascripts diagram
The metascripts diagram (Radošević, 2005) defines connection of specification elements

to metaprograms. The structure of diagram is defined by hierarchy of metaprograms.

Metaprograms are mutually connected by links (replacement tags in metaprograms).

Each link contains data source (sources are defined in the specification diagram).
Elements of the metascripts diagram are shown in Fig. 6:

metascript

<name>

[//<comment>]

<source>

[<output code>]

link
#replacing tag#

<source> source

Fig. 6: Elements of the metascripts diagram

The metascripts diagram structure is shown in Fig. 7:

Fig. 7: Structure of metascripts diagram

The particular diagram for the observed program is shown in Fig. 8:

Two-level application generator

1. level

Two-level generator

two_level

generator.template

application.cpp

#fields#

field_

#processing#

field_

field_number

field_number.templat

e

field_real

field_real.template

field_char

field_char.template

2. level

#field_number#

field_number

#field_real#

field_real

#field_char#

field_char

list_fields

list_fields.template

#list_fields#

&list(field_)

#entry#

field_

#output#

field_

entry

entry.template

#field_entry#

field_

output

output.template

#field_output#

field_

Fig. 8: The metascripts diagram of two-level application generator from the example

First level of the metascripts diagram shows the application in a whole, with main

metaprogram and its replacement tags (here called links). Second level deals with main

parts of observed program. Sources in first level are defined as groups (names ends with

"_" sign), while sources on the second level are connected to specific specification
elements on the second level of specification diagram (Fig. 5).

4.3. Re-engineering implementation
For the purpose of generators development, the C++ library was made (Radošević,

Orehovački & Konecki, 2007.). That library enables implementation of generators based

on scripting model, through generative objects. Generative objects are objects from

classes which are included in programs in a form of libraries. For that purpose, the
appropriate library for C++ was developed.

4.3.1. C++ library for generator development

The library defines two classes for generator development: cgenerator, and

cspecification. The cgenerator class enables implementation of generating functions,
while the cspecification class inherits cgenerator, adding methods for working with

application specification.

4.3.2. Class cgenerator

The cgenerator class enables implementation of simple one-level generator in C++
language, which is shown in the next diagram (Fig. 9).

<metascript

name>

<source file>

<output file>

#<link>#

<source>

metascript

link

source

Fig. 9: Single level generator

Operations supported by appropriate methods from cgenerator class are following:

 loading program code templates (metascripts)

 simple generating by exchanging links using appropriate exchange contents
(sources)

 saving generated program code into output file

 different operations on character strings, like concatenation of generated code and

assembling templates

4.3.3. Class cspecification

The cspecification class enables work with application specification. Application

specification is proposed by specification diagram (Fig. 3). The cspecification class

inherits cgenerator and enables implementation of specification linked list, all
operations connected to application specification and implementation of more complex

generating functions. The application specification is in a simple textual file, in a form

of label-value pairs, like the following example:

title:students
field_int:id
field_char:surname_name

field_float:average_mark

The linked list of application specification is formed by loading from textual

specification (Fig. 10).

<label>

<vralue>

<methods>

head of the list

title

students

field_int

id

field_char

surname_name

field_float

average_mark

N
U

L
L

specification

Fig. 10: Linked list of specification

Operations supported by appropriate methods from cspecification class are following:

 loading specification to specification linked list

 implementation of simple single level generator (Fig. 9)
 selecting parts of specification, due to proper connection sources to metascripts.

4.3.4. The structure of generator
The general structure of generator based on C++ generative objects is shown in Fig. 11:

cgen_01

method_1

.

.

.

method_M1

cgenerator

method_1

.

.

.

method_M

cspecification

method_1

.

.

.

method_M

cgen_N

method_1

.

.

.

method_MN

.

.

.

.

.

.

.

Fig. 11: General structure of generator based on C++ generative objects

As shown in Fig. 11, particular generators are implemented by appropriate classes,

which are inherited from cspecification. Particular branches of metascripts diagram are
implemented by appropriate methods.

4.3.5. Implementation of generator in C++

Generator in C++ uses library that defines classes cgenerator and cspecification (Fig.

11). The following statements defines working with application specification and the

main metascript:

// cspecif1 inherits cspecification

 cspecif1 *specification=new cspecif1;

 // loading specification

 specification->load("generator_cpp.specification");

 // loading metascript

 specification->metascript("two_level_generator.template");

 // generirating code

 specification->generating_script();

 // saving generated code

 specification->save(output_filename);

Class cspecif1 is used for generating program code:

class cspecif1:public cspecification{

 public:

 void generating_script (){

 cspecification *current=this->next;

 //title and name od the table

 char colector[3000]="";

 current=this-> next;

 while (current){

 easy_generator(current,"","field_int","# field_int #",NULL);

 easy_generator(current,"","field_float","# field_float#",NULL);

 easy_generator(current,"","field_char","# field_char#",NULL);

 current=current-> next;

 }//while

.

.

};//cspecif1

The method easy_generator is used for implementing a single one-level generator (Fig.
9). Generating starts with reading the specification and specifying the exchange of

replacement tags (marked with # sign) by values from specification which is involved in

easy_generator method.

4.4. Generator and application maintenance

The whole process of generator and application maintenance could be shown in next

diagram, according to Boehm spiral model of software development (Boehm, 1988)

(Fig. 12).

Fig. 12: Generative application development as spiral development using the Boehm

(Boehm, 1988) model

4.5. Web applications and generators

Web applications seem to be the most suitable for generating by various model based

generators. This is so because of the very nature of web applications. They are in most

cases already a sort of generators because they generate html code (PHP scripts, ASP
scripts, etc.). Web application consist of many small parts (scripts) written in some

programming language (PHP, ASP, JAVA, etc) and according to scripting model it is

easier to make a lost of small and simple generators than one big and complex generator.

5. Conclusion

It is shown in this paper that scripting model of generators can be implemented by
appropriate object model by using some software reengineering approaches, like

incremental model and hybrid COTS. For that purpose, the appropriate library for C++

was developed, as well as an example of C++ source code generator. Development of
applications and their generators is adapted to Boehm's spiral model of software

development (Boehm, 1988). It also shows the whole process of generator development,

started from prototype program reengineering through separation of concerns, making

scripting model of generator and generator implementation through generative objects.
Web applications are mentioned as the most suitable for generating by scripting model

based generators. The main strengths of this approach lie in several benefits:

 development of new applications should not start from the beginning if there exist

some similar projects. In some cases it can start from changing application

specification (that could be done by non-programmer), sometimes the

metaprograms base should be updated, but changes in the generator have to be

done only in case of conceptual changes in application problem domain.

 optimization. Generative programming offers optimization in relation to standard,
generic approach because including of features into application depends on

application specification (no use of generic components which cover needs of all

possible applications that could be produced).

 in relation to existing object model, based on UML diagrams, offered scripting

model is easier, and offer some advantages in development of generators:

o scripting model is model of aspects, while UML is model of data and
functionalities,

o scripting model defines application generator, not an individual application

o scripting model is independent to target programming language.

6. References

Ajlouni, N. & Hani, F. B. (2006). Redesigning legacy systems using hybrid re-
engineering, International Conference on Information & Communication Technologies:

from Theory to Applications, pp. 2784- 2785, ISBN: 0-7803-9521-2, Damascus (Syria),

24-28 April 2006, IEEE Computer Society Press
Boehm, B.W. (1988). A Spiral Model of Software Development and Enhancement,

Computer, Vol. 21, No. 5, May 1988, pp. 61-72, ISSN: 0018-9162

Byrne, E. J. & Gustafson, D. A. (1992). A software re-engineering process model,

Proceedings of the Sixteenth Annual International Computer Software and Applications
Conference, pp. 25-30, ISBN: 0-8186-3000-0, Chicago (USA), 21-25 September 1992,

IEEE Computer Society Press

Byrne, E. J. (1992). A conceptual foundation for software re-engineering, Proceedings
of the Conference on Software Maintenance, pp. 226-235, ISBN: 0-8186-2980-0,

Orlando (USA), 9-12 November 1992, IEEE Computer Society Press

Jacobson, I. & Lindstrom, F. (1991). Re-engineering of old systems to an object-

oriented architecture, Conference proceedings on Object-oriented programming
systems, languages, and applications, pp. 340-350, Phoenix (USA), 6-11 October 1991,

Vol. 26, No. 11, ISSN: 0362-1340

Olsem, M. R. (1998). An incremental approach to software systems re-engineering,

Journal of Software Maintenance: Research and Practice, Vol.10, No.3, May 1998, pp.
181-202, ISSN: 1040-550X

Radošević, D. (2005). Integration of Generative Programming and Scripting Languages.

Doctoral thesis, Faculty of organization and informatics, Varaždin, 2005.
Radošević, D.; Orehovački, T. & Konecki M. (2007). PHP Scripts Generator for Remote

Database Maintenance based on C++ Generative Objects. Proceedings of 30th MIPRO

International Convention, Vol. III, pp. 167 - 171, Opatija, Croatia, May 21-25, 2007.

Rosenberg, L. H. (1996). Software Re-engineering, Available from:

http://satc.gsfc.nasa.gov/support/reengrpt.PDF, Accessed: 2007-03-12

Sneed, H. M. (2005). An incremental approach to system replacement and integration,

Ninth European Conference on Software Maintenance and Reengineering, Manchester,
(UK), pp. 196-205, ISBN: 0-7695-2304-8, March 2005, IEEE Computer Society Press

Stein, D.; Hanenberg, S. & Unland R. (2003). Position Paper on Aspect-Oriented

Modelling: Issues on Representing Crosscutting Features, International Conference on

Aspect-Oriented Software Development, Boston (USA), 17-21 March 2003
Ying, Z. & Kontagiannis, K. (2003). Incremental transformation of procedural systems

to object oriented platforms, Proceedings of 27th Annual International Computer

Software and Applications Conference, ISBN:0-7695-2020-0, Dallas (USA), pp. 290-
295, 3-6 November 2003, IEEE Computer Society Press.

