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Abstract: Program execution time is one of the major parameters used in the performance 
evaluation of the computationally intensive engineering software. Unfortunately, computer 
systems based on Microsoft Windows platforms under the Intel's x86 architecture lack 
sufficiently precise timing capabilities needed for performing measurements of some short 
executions. Therefore, in this paper a precise timing routine capable of successfully measuring 
executions at the processor clock cycle level is proposed and discussed. Furthermore, its 
complete source code is provided. Finally, the utility of this timing routine is demonstrated on 
an example of comparative efficiency evaluation of two well-known two-point function 
approximations. 
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1 INTRODUCTION 
 
The central processing unit (CPU) time needed for program execution is traditionally 
used as one of the major parameters in computationally intensive engineering software 
efficiency evaluation and comparison [1]. Furthermore, some authors have concluded 
that "in spite of its obvious shortcomings, the direct measurement of the CPU time is 
still the most reliable way of comparing different minimization algorithms" [2]. 
 Execution timing may be surprisingly complex [3], since at least two problems are 
usually imposed: the available standard library routines are often not very precise, and 
the other processes running concurrently may significantly deteriorate the accuracy and 
utility of the obtained results. 
 When the computer systems based on Microsoft Windows platforms under the 
Intel's x86 architecture are concerned, a resolution of the available timers is given in 
Table 1. System timer is too low-resolution. A slightly better performance may be 
achieved by using the multimedia timer. Finally, the high-resolution performance 
counter provides the greatest precision. However, it can be shown that on some 
systems, the accuracy of that timer deteriorates significantly for the measurement 
readings below some 50 μs, Fig. 1. For the sake of completeness, a resolution of the 
StopWatch routine proposed in this paper is also included in Table 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 The influence of other processes may be reduced to some extent by giving the 
highest system priority to the measured code. However, it should be clearly realized 

Table 1. Resolution of the available timers 
Timer Resolution/μs 
System timer 10,000 
Multimedia timer 1,000 
High-resolution performance counter 0.279a 

StopWatch routine (this paper)b 0.001a 

a Processor dependent; Intel Pentium III/1003.3 MHz 
b Should not be confused with the same named timing package by Mitchell [4] 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. Percent difference in readings between the high-resolution performance counter and a 
StopWatch routine (Intel Pentium III/1003.3 MHz, Microsoft Windows 2000 Professional SP4) 
 
that some system processes are completely out of the user control [3]. Although this 
problem could play a prominent role, the full list of measurement issues is much larger 
[3, 5]. 
 The software solution presented herein is developed to Microsoft Windows 
platforms and Intel's 32-bit and 64-bit x86 processor architectures. However, the key 
concepts presented are quite general and therefore, applicable to other platforms. 
 
2 EXECUTION TIMING 
 
Strictly speaking, there is a difference between the so-called wall time (real time) and 
the bare CPU time, where the wall time includes the CPU time and the system time. In 
what follows we would refer the measured time as a CPU time, although the majority 
of timing routines actually measure the wall time. That way, it will always cause 
overestimates of the true execution time [3]. Hopefully, if the system time is 
sufficiently bounded, the difference between the real (wall) time and the CPU time 
practically vanishes. Although the system time is a major source of timing overhead, it 
is not the only one. For example, the timing routine itself is a source of overhead too. 
 Different timing routines utilize different measurement units. Some routines deal 
with time units, usually milliseconds, while others apply some kind of counters. The 
value of the count is processor dependent. If the count is the cycle rate of the processor 
clock, the following timing equation apply 
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where CPUt  is the CPU time measured, expressed in seconds, ENDc  and STARTc  are 
counter readings at the end and start of timing, respectively, expressed in processor 
cycles, while OVERHEADc  is the timing routine overhead, expressed in processor cycles 
too. Finally, CPUf  is the processor clock frequency, expressed in cycles per second, 
Hz. 



 According to [6], the Intel time-stamp counter is a 64-bit model specific register 
(MSR) that is incremented every clock cycle. Its content is accessible by the rdtsc 
instruction, that loads the current count of the time-stamp counter into the EDX:EAX 
registers. On computer reset, the time-stamp counter is set to zero. Since the recent 
processor frequencies are usually in excess of 2 GHz, the extremely fine timing 
resolutions of less than a half of nanosecond are readily available. 
 As already mentioned in Introduction section, the concurrent processes running in 
the background could drastically deteriorate the accuracy of timing measurements. 
However, some other events might also impact heavily the utility of conducted 
measurements: 
 (i) Cache effects. If some data or instructions are not already present in the 
cache, the additional access to the slower memory is required. Such transactions 
significantly slow- down the overall performance. This unfavourable behaviour might 
be avoided to some level by a so-called cache warming [5] − the technique of filling 
memory into a cache before it is actually used. 
 (ii) Out-of-order execution. The out-of-order code execution becomes a standard 
feature of recent processors based on the Intel's architecture. That means that some 
program instructions could be executed earlier than it follows from its relative position 
in the program source code. A practical workaround is to execute some serializing 
instruction, i.e. the instruction that force completion of the entire preceding program 
code, e.g. cpuid, [5]. 
 (iii) Measurement overhead. The timing routine itself produces some overhead, 
and this fact should be taken into account. Moreover, when short code segments are 
timed, the influence of the timing overhead could become predominant. In general, the 
mean timing overhead might be estimated by averaging the readings of multiple 
successive calls of the timing routine. 
 
3 DESCRIPTION OF A STOPWATCH ROUTINE 
 
This Section details the structure and operations performed by the StopWatch timing 
routine and the associated subroutines. The complete source code is provided in Fig. 2. 
Fig. 3 provides a sample main routine that calls the StopWatch(). Finally, in Fig. 4, a 
Fortran 90/95 wrapper of the StopWatch() routine is given. 
 The attached source code is thoroughly commented and hence self-explanatory. In 
order to better explain all related processes, in this Section some additional information 
are also provided. The code is successfully compiled, linked and tested with Microsoft 
Visual C++ Version 6.0 Professional compiler, enriched with the Processor Pack, 
readily available from the manufacturer's web site. If compiled by a different compiler, 
some minor changes may be required. Nevertheless, consultation of the respective 
compiler documentation could be helpful. 
 The proposed timing routine contains three C/C++ language functions: 
StopWatch(), GetCPUFrequency(), and GetRDTSC(). 
 
3.1 GetRDTSC() 
This function, a heart of the proposed timing routine, is derived from the code segment 
written by the staff of Intel Corporation [5]. Actually, it is an inline assembly code that  

 



 
Fig. 2. StopWatch routine source code listing 

 
executes the cpuid and rdtsc processor instructions, where the cpuid sole intention 
in this case is to ensure that all preceding instructions in the code are completed before 
execution of the rdtsc. This way, the cpuid acts as a code serialization instruction. 



 GetRDTSC() passes no arguments. Its return value is a current status of the time-
stamp counter, expressed as an unsigned 64-bit integer. 
 
3.2 GetCPUFrequency() 
This function performs processor clock speed measurement. It is derived from the code 
segment written by Chad Austin [7]. 
 This function passes no arguments too. Its return value is a processor clock speed, 
expressed in Hertz. Due to straightforward arithmetic (the unsigned 64-bit integer 
arithmetic is not supported by many systems), all function variables are declared and 
treated as double floating-point values. 
 The processor clock speed is determined as a number of processor cycles executed 
during the specified time frame. In this case a millisecond time frame is adopted. This 
function utilizes a high-resolution performance counter functions 
QueryPerformanceCounter() and QueryPerformanceFrequency(). Since the reading of 
the QueryPerformanceFrequency() function is processor dependent, it is combined 
with the GetRDTSC() to ensure the processor clock speed in cycles per second (Hz). 
 
3.3 StopWatch() 
This is a user callable timing routine. It expects one argument (control string that 
directs further execution) and returns the elapsed time in seconds. As in the case of 
GetCPUFrequency() function, all variables are declared and treated as double floating-
point values. 
 Program execution is determined by a control string named Event. If the Event 
is equal to START, the program initializes the stopwatch. Otherwise, the program 
determines the elapsed clock cycles and, by using the already determined processor 
clock speed, calculates the elapsed time in seconds. 
 StopWatch() initialization comprises of five operations: 
 (i) Taking priority. Initially, by calling the SetThreadPriority() function, 
program takes the maximum thread priority, to minimize the influence of other 
processes that run concurrently. However, it should be clearly understood that the real 
impact of this measure is actually limited - some computer processes could not be 
suppressed by any user action, by any means. For instance, the unexpected disk activity 
is one of the signs of such processes. 
 (ii) Processor speed determination. The program calls the GetCPUFrequency() 
to obtain the processor clock current speed. 
 (iii) Instruction serialization and cache warming. The program performs four 
consecutive calls to GetRDTSC(), to minimize the effects of instruction and memory 
cache. The auxiliary purpose of this operation is to provide sufficient information for 
the GetRDTSC() function overhead determination. 
 (iv) Timing overhead. In this operation the program determines the total overhead 
incurred by the timing routine. In general, this value could be determined by summing 
up the individual overheads of the involved routines. In the proposed procedure the 
total overhead is composed of two parts. The first one is overhead caused by the 
GetRDTSC() function alone. The second part is the overhead caused by other 
processes. The second overhead is taken into account by the Calibrator parameter. 
This constant, expressed by the number of clock cycles, is processor specific and 
should be determined by experiment. 



 
 
 
 
 
 
 
 
 

 
 

 Table 2 provides some overhead measurement results obtained on two 
workstations. Each measurement contained 10,000 consecutive StopWatch runs. 
Furthermore, each measurement has been repeated five times. The presented data are 
those that expressed least standard deviation of the measurement results.  
 (v) Timer restart. Finally, the program restarts the CStart variable by assigning 
the current time-step counter value. After that, the program execution is returned to the 
caller routine. The corresponding return value is arbitrary set to zero. 
 Since all function variables are declared as static, their last values will be retained 
upon the next call of the StopWatch() routine. 
 Similar to the StopWatch() initialization, its measurement phase comprises of four 
operations: 
 (i) Timing. First, the program reads the current state of the time-stamp counter and 
calculates the elapsed time since the timer's last initialization. During calculation, the 
timing routine overhead is taken into account.  
 (ii) Releasing priority. Since the measurement is completed, the StopWatch() 
routine releases the time-critical thread priority. This is achieved by the second call of 
the SetThreadPriority() function and setting normal thread priority. 
 (iii) Timer restart. In this step, the program restarts the CStart variable again by 
assigning the current time-step counter value. This operation may be valuable in the 
cases when more consecutive measurements are required. However, it should be taken 
into account that the timing process already lost its thread priority and the greater result 
fluctuations may be expected. 
 (iv) Suppressing misleading results. Sometimes, when the extremely short code 
sections are timed, it is possible that, due to the predefined value of the Calibrator 
parameter, the calculated elapsed time becomes negative. In such occurrences, the 
StopWatch() routine return value is arbitrary set to zero. 
 
3.4 Sample main routine 
In Fig. 3, a typical application of the StopWatch() routine is presented. Furthermore, 
the provided source code contains all the necessary function prototypes and data 
declarations. 
 If a series of consecutive measurements is required, the main routine has to be 
modified. Two approaches are possible. The first one is by multiple calls to 
StopWatch() and multiple use of the STOP argument, except the first time, when the 
START argument is applied, and the second one, by multiple calls to StopWatch() and 
interchangeable use of the START and STOP arguments. The latter approach, although 
slightly slower, has a better behaviour regarding the possible influence of other 
processes running concurrently. 

Table 2. Overhead measurement results (N = 10,000 StopWatch runs) 
Computer system A B 
Processor architecture 32-bit 64-bit, dual core 
Processor clock speed, MHz 2593.7 2133.4 
Total overhead, cycles 737 418 
Mean calibrator, cycles 220 125 
Calibrator standard deviation, cycles 125 27 



 
Fig. 3. Sample main routine source code listing 

 
3.5 Fortran 90/95 wrapper 
For those who prefer a Fortran programming language in their software development, a 
simple Fortran to C/C++ wrapper is provided in Fig. 4. The code is successfully 
compiled, linked and tested with the Compaq Visual Fortran Professional Version 6.6C 
compiler. For other Fortran implementations some minor code changes may be 
required. In any case, consultation of the respective compiler documentation could be 
helpful. 
 

 
Fig. 4. StopWatch Fortran 90 wrapper source code listing 

 
4 EXAMPLE: A COMPARISON OF TWO-POINT FUNCTION 
APPROXIMATIONS 
 
For example application, a comparison of direct function evaluation and two mid-range 
function approximations is selected. 
 The purpose of this example is twofold. First, it should verify the hypothesis that 
the appropriate function approximation scheme might provide some gain when the 
computationally expensive functions are evaluated. Second, it should provide some 
insight regarding the relative computational efficiency of these two approximations. 
 For timing purposes the cost function of the cam design problem (Problem No. 
332 of [8]) is utilized. 
 
4.1 Problem statement 
The cam design problem has two design variables, two general inequality constraints 
and four design variable bounds. A feasible starting point is (0.75, 0.75) and the 
minimum cost function value is 114.95 at the point (0.911, 0.029). 
 The cost function is given with 
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 Due to a 100 member series sum, a significant computation costs are incurred by 
the frequent trigonometric and logarithmic functions evaluation. By using appropriate 
function approximation it is reasonable to expect that some reduction in the 
computational costs might be obtained. In this case, a Generalized Convex 
Approximation (GCA) of Chickermane and Gea [9] and Two-Point Adaptive 
Nonlinearity Approximation (TANA-3) of Xu and Grandhi [10] has been used. 
 
4.2 Timing results 
Timing measurements were performed during the actual optimization process by the 
RQPOpt v2.0 design optimization package [11]. The test runs were performed on a 
Hewlett-Packard xw4400 workstation (2.133 GHz, dual core, 64-bit processor) in 
double precision arithmetic using the Compaq Visual Fortran Professional Version 
6.6C compiler and Microsoft Windows XP Professional SP2 operating system. 
 The measurement comprised of three test runs. In the first one all function values 
were obtained by the direct calculation. During the second and third test runs, all 
function values were approximated, whenever possible, by the GCA or TANA-3 
approximations, respectively. 
 After 24 iterations and 34 line search cost function evaluations, all three test runs 
converged to the same point * (0.909,0.033)=x  with *( ) 115.028f =x  and the 
maximum constraint violation * 5( ) 8.28 10V −= ×x . 
 Timing results are summarized in Fig. 5. Since both approximation schemes need 
some initially unavailable information, at least the first function evaluation is 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 5. Timing results 



performed by the direct calculation, irrespective of the function approximation mode. 
 If the first five cost function evaluations or approximations are omitted in order to 
exclude some start-up effects, the mean execution times are as follows: 11.79 μs for 
direct function evaluation and 1.30 and 3.59 μs for GCA and TANA-3 approximations, 
respectively. In other words, the GCA approximation requires 36% calculation time 
with respect to the TANA-3 approximation. 
 During the tests all executions were also measured with a CPU_TIME, a Fortran 
95 standard intrinsic subroutine provided by Compaq Visual Fortran Professional 
Version 6.6C [12]. However, all measurement results were equal to zero. 
 In order to obtain a meaningful time measurements with the CPU_TIME, it was 
necessary, for each timing, to execute a multiple function evaluations in a loop. All 
other measurement circumstances were equal to the previous single-evaluation tests. 
The mean execution times during 100,000 consecutive evaluations are summarized in 
Table 3. For evaluation purposes the corresponding StopWatch times are also included. 
 
 
 
 
 
 
 
 
 
The generally shorter execution times recorded could be attributed to the absence of 
cache operations. Namely, during the cost function multiple evaluations all instructions 
and data remain into the cache unchanged. These results lead to an important 
conclusion that it is improper to directly compare a single-evaluation with multiple-
evaluation measurement results. Otherwise, the times provided by the StopWatch and 
CPU_TIME routines are quite comparable. 
 
5 CONCLUSIONS 
 
In the paper, a precise execution timing routine is proposed and discussed. This routine 
could be a valuable tool in evaluation of engineering algorithms and software. 
 Execution timing is prone to various side effects that may deteriorate the accuracy 
and utility of performed measurements. Therefore, as in all other measurements, some 
common sense measures are always recommended: perform multiple measurements to 
obtain results repeatability and to justify its accuracy. 
 In general, dual core processors provide more stable timing. Such behaviour could 
be mainly attributed to a better management of the processes running concurrently. 
 After the code compilation and initial testing it is reasonable to collect the 
provided timing routines into the self-contained object library, say StopWatch.lib, to 
make them easily accessible and callable whenever required. 
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Table 3. Mean execution times during 100,000 evaluations in 
a loop, μs 
Timing routine CPU_TIMEa StopWatch
Direct evaluation 11.56 11.54 
GCA approximation 0.99 0.98
TANA-3 approximation 3.20 3.19
aCompaq Visual Fortran Professional Version 6.6C
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