
A PRECISE EXECUTION TIMING ROUTINE FOR
ENGINEERING SOFTWARE EVALUATION

Magazinović, G.

Abstract: Program execution time is one of the major parameters used in the performance
evaluation of the computationally intensive engineering software. Unfortunately, computer
systems based on Microsoft Windows platforms under the Intel's x86 architecture lack
sufficiently precise timing capabilities needed for performing measurements of some short
executions. Therefore, in this paper a precise timing routine capable of successfully measuring
executions at the processor clock cycle level is proposed and discussed. Furthermore, its
complete source code is provided. Finally, the utility of this timing routine is demonstrated on
an example of comparative efficiency evaluation of two well-known two-point function
approximations.

Keywords: Computational experiments, Performance evaluation, Software, Timing

1 INTRODUCTION

The central processing unit (CPU) time needed for program execution is traditionally
used as one of the major parameters in computationally intensive engineering software
efficiency evaluation and comparison [1]. Furthermore, some authors have concluded
that "in spite of its obvious shortcomings, the direct measurement of the CPU time is
still the most reliable way of comparing different minimization algorithms" [2].
 Execution timing may be surprisingly complex [3], since at least two problems are
usually imposed: the available standard library routines are often not very precise, and
the other processes running concurrently may significantly deteriorate the accuracy and
utility of the obtained results.
 When the computer systems based on Microsoft Windows platforms under the
Intel's x86 architecture are concerned, a resolution of the available timers is given in
Table 1. System timer is too low-resolution. A slightly better performance may be
achieved by using the multimedia timer. Finally, the high-resolution performance
counter provides the greatest precision. However, it can be shown that on some
systems, the accuracy of that timer deteriorates significantly for the measurement
readings below some 50 μs, Fig. 1. For the sake of completeness, a resolution of the
StopWatch routine proposed in this paper is also included in Table 1.

 The influence of other processes may be reduced to some extent by giving the
highest system priority to the measured code. However, it should be clearly realized

Table 1. Resolution of the available timers
Timer Resolution/μs
System timer 10,000
Multimedia timer 1,000
High-resolution performance counter 0.279a

StopWatch routine (this paper)b 0.001a

a Processor dependent; Intel Pentium III/1003.3 MHz
b Should not be confused with the same named timing package by Mitchell [4]

Fig. 1. Percent difference in readings between the high-resolution performance counter and a
StopWatch routine (Intel Pentium III/1003.3 MHz, Microsoft Windows 2000 Professional SP4)

that some system processes are completely out of the user control [3]. Although this
problem could play a prominent role, the full list of measurement issues is much larger
[3, 5].
 The software solution presented herein is developed to Microsoft Windows
platforms and Intel's 32-bit and 64-bit x86 processor architectures. However, the key
concepts presented are quite general and therefore, applicable to other platforms.

2 EXECUTION TIMING

Strictly speaking, there is a difference between the so-called wall time (real time) and
the bare CPU time, where the wall time includes the CPU time and the system time. In
what follows we would refer the measured time as a CPU time, although the majority
of timing routines actually measure the wall time. That way, it will always cause
overestimates of the true execution time [3]. Hopefully, if the system time is
sufficiently bounded, the difference between the real (wall) time and the CPU time
practically vanishes. Although the system time is a major source of timing overhead, it
is not the only one. For example, the timing routine itself is a source of overhead too.
 Different timing routines utilize different measurement units. Some routines deal
with time units, usually milliseconds, while others apply some kind of counters. The
value of the count is processor dependent. If the count is the cycle rate of the processor
clock, the following timing equation apply

 END START OVERHEAD
CPU

CPU

() ,c c ct
f

− +
= (1)

where CPUt is the CPU time measured, expressed in seconds, ENDc and STARTc are
counter readings at the end and start of timing, respectively, expressed in processor
cycles, while OVERHEADc is the timing routine overhead, expressed in processor cycles
too. Finally, CPUf is the processor clock frequency, expressed in cycles per second,
Hz.

 According to [6], the Intel time-stamp counter is a 64-bit model specific register
(MSR) that is incremented every clock cycle. Its content is accessible by the rdtsc
instruction, that loads the current count of the time-stamp counter into the EDX:EAX
registers. On computer reset, the time-stamp counter is set to zero. Since the recent
processor frequencies are usually in excess of 2 GHz, the extremely fine timing
resolutions of less than a half of nanosecond are readily available.
 As already mentioned in Introduction section, the concurrent processes running in
the background could drastically deteriorate the accuracy of timing measurements.
However, some other events might also impact heavily the utility of conducted
measurements:
 (i) Cache effects. If some data or instructions are not already present in the
cache, the additional access to the slower memory is required. Such transactions
significantly slow- down the overall performance. This unfavourable behaviour might
be avoided to some level by a so-called cache warming [5] − the technique of filling
memory into a cache before it is actually used.
 (ii) Out-of-order execution. The out-of-order code execution becomes a standard
feature of recent processors based on the Intel's architecture. That means that some
program instructions could be executed earlier than it follows from its relative position
in the program source code. A practical workaround is to execute some serializing
instruction, i.e. the instruction that force completion of the entire preceding program
code, e.g. cpuid, [5].
 (iii) Measurement overhead. The timing routine itself produces some overhead,
and this fact should be taken into account. Moreover, when short code segments are
timed, the influence of the timing overhead could become predominant. In general, the
mean timing overhead might be estimated by averaging the readings of multiple
successive calls of the timing routine.

3 DESCRIPTION OF A STOPWATCH ROUTINE

This Section details the structure and operations performed by the StopWatch timing
routine and the associated subroutines. The complete source code is provided in Fig. 2.
Fig. 3 provides a sample main routine that calls the StopWatch(). Finally, in Fig. 4, a
Fortran 90/95 wrapper of the StopWatch() routine is given.
 The attached source code is thoroughly commented and hence self-explanatory. In
order to better explain all related processes, in this Section some additional information
are also provided. The code is successfully compiled, linked and tested with Microsoft
Visual C++ Version 6.0 Professional compiler, enriched with the Processor Pack,
readily available from the manufacturer's web site. If compiled by a different compiler,
some minor changes may be required. Nevertheless, consultation of the respective
compiler documentation could be helpful.
 The proposed timing routine contains three C/C++ language functions:
StopWatch(), GetCPUFrequency(), and GetRDTSC().

3.1 GetRDTSC()
This function, a heart of the proposed timing routine, is derived from the code segment
written by the staff of Intel Corporation [5]. Actually, it is an inline assembly code that

Fig. 2. StopWatch routine source code listing

executes the cpuid and rdtsc processor instructions, where the cpuid sole intention
in this case is to ensure that all preceding instructions in the code are completed before
execution of the rdtsc. This way, the cpuid acts as a code serialization instruction.

 GetRDTSC() passes no arguments. Its return value is a current status of the time-
stamp counter, expressed as an unsigned 64-bit integer.

3.2 GetCPUFrequency()
This function performs processor clock speed measurement. It is derived from the code
segment written by Chad Austin [7].
 This function passes no arguments too. Its return value is a processor clock speed,
expressed in Hertz. Due to straightforward arithmetic (the unsigned 64-bit integer
arithmetic is not supported by many systems), all function variables are declared and
treated as double floating-point values.
 The processor clock speed is determined as a number of processor cycles executed
during the specified time frame. In this case a millisecond time frame is adopted. This
function utilizes a high-resolution performance counter functions
QueryPerformanceCounter() and QueryPerformanceFrequency(). Since the reading of
the QueryPerformanceFrequency() function is processor dependent, it is combined
with the GetRDTSC() to ensure the processor clock speed in cycles per second (Hz).

3.3 StopWatch()
This is a user callable timing routine. It expects one argument (control string that
directs further execution) and returns the elapsed time in seconds. As in the case of
GetCPUFrequency() function, all variables are declared and treated as double floating-
point values.
 Program execution is determined by a control string named Event. If the Event
is equal to START, the program initializes the stopwatch. Otherwise, the program
determines the elapsed clock cycles and, by using the already determined processor
clock speed, calculates the elapsed time in seconds.
 StopWatch() initialization comprises of five operations:
 (i) Taking priority. Initially, by calling the SetThreadPriority() function,
program takes the maximum thread priority, to minimize the influence of other
processes that run concurrently. However, it should be clearly understood that the real
impact of this measure is actually limited - some computer processes could not be
suppressed by any user action, by any means. For instance, the unexpected disk activity
is one of the signs of such processes.
 (ii) Processor speed determination. The program calls the GetCPUFrequency()
to obtain the processor clock current speed.
 (iii) Instruction serialization and cache warming. The program performs four
consecutive calls to GetRDTSC(), to minimize the effects of instruction and memory
cache. The auxiliary purpose of this operation is to provide sufficient information for
the GetRDTSC() function overhead determination.
 (iv) Timing overhead. In this operation the program determines the total overhead
incurred by the timing routine. In general, this value could be determined by summing
up the individual overheads of the involved routines. In the proposed procedure the
total overhead is composed of two parts. The first one is overhead caused by the
GetRDTSC() function alone. The second part is the overhead caused by other
processes. The second overhead is taken into account by the Calibrator parameter.
This constant, expressed by the number of clock cycles, is processor specific and
should be determined by experiment.

 Table 2 provides some overhead measurement results obtained on two
workstations. Each measurement contained 10,000 consecutive StopWatch runs.
Furthermore, each measurement has been repeated five times. The presented data are
those that expressed least standard deviation of the measurement results.
 (v) Timer restart. Finally, the program restarts the CStart variable by assigning
the current time-step counter value. After that, the program execution is returned to the
caller routine. The corresponding return value is arbitrary set to zero.
 Since all function variables are declared as static, their last values will be retained
upon the next call of the StopWatch() routine.
 Similar to the StopWatch() initialization, its measurement phase comprises of four
operations:
 (i) Timing. First, the program reads the current state of the time-stamp counter and
calculates the elapsed time since the timer's last initialization. During calculation, the
timing routine overhead is taken into account.
 (ii) Releasing priority. Since the measurement is completed, the StopWatch()
routine releases the time-critical thread priority. This is achieved by the second call of
the SetThreadPriority() function and setting normal thread priority.
 (iii) Timer restart. In this step, the program restarts the CStart variable again by
assigning the current time-step counter value. This operation may be valuable in the
cases when more consecutive measurements are required. However, it should be taken
into account that the timing process already lost its thread priority and the greater result
fluctuations may be expected.
 (iv) Suppressing misleading results. Sometimes, when the extremely short code
sections are timed, it is possible that, due to the predefined value of the Calibrator
parameter, the calculated elapsed time becomes negative. In such occurrences, the
StopWatch() routine return value is arbitrary set to zero.

3.4 Sample main routine
In Fig. 3, a typical application of the StopWatch() routine is presented. Furthermore,
the provided source code contains all the necessary function prototypes and data
declarations.
 If a series of consecutive measurements is required, the main routine has to be
modified. Two approaches are possible. The first one is by multiple calls to
StopWatch() and multiple use of the STOP argument, except the first time, when the
START argument is applied, and the second one, by multiple calls to StopWatch() and
interchangeable use of the START and STOP arguments. The latter approach, although
slightly slower, has a better behaviour regarding the possible influence of other
processes running concurrently.

Table 2. Overhead measurement results (N = 10,000 StopWatch runs)
Computer system A B
Processor architecture 32-bit 64-bit, dual core
Processor clock speed, MHz 2593.7 2133.4
Total overhead, cycles 737 418
Mean calibrator, cycles 220 125
Calibrator standard deviation, cycles 125 27

Fig. 3. Sample main routine source code listing

3.5 Fortran 90/95 wrapper
For those who prefer a Fortran programming language in their software development, a
simple Fortran to C/C++ wrapper is provided in Fig. 4. The code is successfully
compiled, linked and tested with the Compaq Visual Fortran Professional Version 6.6C
compiler. For other Fortran implementations some minor code changes may be
required. In any case, consultation of the respective compiler documentation could be
helpful.

Fig. 4. StopWatch Fortran 90 wrapper source code listing

4 EXAMPLE: A COMPARISON OF TWO-POINT FUNCTION
APPROXIMATIONS

For example application, a comparison of direct function evaluation and two mid-range
function approximations is selected.
 The purpose of this example is twofold. First, it should verify the hypothesis that
the appropriate function approximation scheme might provide some gain when the
computationally expensive functions are evaluated. Second, it should provide some
insight regarding the relative computational efficiency of these two approximations.
 For timing purposes the cost function of the cam design problem (Problem No.
332 of [8]) is utilized.

4.1 Problem statement
The cam design problem has two design variables, two general inequality constraints
and four design variable bounds. A feasible starting point is (0.75, 0.75) and the
minimum cost function value is 114.95 at the point (0.911, 0.029).
 The cost function is given with

[]{
[] }

100
2

2 1
1

2
2 1

() log() sin() cos()
3.6

log() cos() sin() ,

i i i
i

i i i

f t x t x t

t x t x t

π

=

= + + +

+ + −

∑x
 (2)

where

 1 1 , 1,...,100.
3 180i

it iπ −⎛ ⎞= + =⎜ ⎟
⎝ ⎠

 (3)

 Due to a 100 member series sum, a significant computation costs are incurred by
the frequent trigonometric and logarithmic functions evaluation. By using appropriate
function approximation it is reasonable to expect that some reduction in the
computational costs might be obtained. In this case, a Generalized Convex
Approximation (GCA) of Chickermane and Gea [9] and Two-Point Adaptive
Nonlinearity Approximation (TANA-3) of Xu and Grandhi [10] has been used.

4.2 Timing results
Timing measurements were performed during the actual optimization process by the
RQPOpt v2.0 design optimization package [11]. The test runs were performed on a
Hewlett-Packard xw4400 workstation (2.133 GHz, dual core, 64-bit processor) in
double precision arithmetic using the Compaq Visual Fortran Professional Version
6.6C compiler and Microsoft Windows XP Professional SP2 operating system.
 The measurement comprised of three test runs. In the first one all function values
were obtained by the direct calculation. During the second and third test runs, all
function values were approximated, whenever possible, by the GCA or TANA-3
approximations, respectively.
 After 24 iterations and 34 line search cost function evaluations, all three test runs
converged to the same point * (0.909,0.033)=x with *() 115.028f =x and the
maximum constraint violation * 5() 8.28 10V −= ×x .
 Timing results are summarized in Fig. 5. Since both approximation schemes need
some initially unavailable information, at least the first function evaluation is

Fig. 5. Timing results

performed by the direct calculation, irrespective of the function approximation mode.
 If the first five cost function evaluations or approximations are omitted in order to
exclude some start-up effects, the mean execution times are as follows: 11.79 μs for
direct function evaluation and 1.30 and 3.59 μs for GCA and TANA-3 approximations,
respectively. In other words, the GCA approximation requires 36% calculation time
with respect to the TANA-3 approximation.
 During the tests all executions were also measured with a CPU_TIME, a Fortran
95 standard intrinsic subroutine provided by Compaq Visual Fortran Professional
Version 6.6C [12]. However, all measurement results were equal to zero.
 In order to obtain a meaningful time measurements with the CPU_TIME, it was
necessary, for each timing, to execute a multiple function evaluations in a loop. All
other measurement circumstances were equal to the previous single-evaluation tests.
The mean execution times during 100,000 consecutive evaluations are summarized in
Table 3. For evaluation purposes the corresponding StopWatch times are also included.

The generally shorter execution times recorded could be attributed to the absence of
cache operations. Namely, during the cost function multiple evaluations all instructions
and data remain into the cache unchanged. These results lead to an important
conclusion that it is improper to directly compare a single-evaluation with multiple-
evaluation measurement results. Otherwise, the times provided by the StopWatch and
CPU_TIME routines are quite comparable.

5 CONCLUSIONS

In the paper, a precise execution timing routine is proposed and discussed. This routine
could be a valuable tool in evaluation of engineering algorithms and software.
 Execution timing is prone to various side effects that may deteriorate the accuracy
and utility of performed measurements. Therefore, as in all other measurements, some
common sense measures are always recommended: perform multiple measurements to
obtain results repeatability and to justify its accuracy.
 In general, dual core processors provide more stable timing. Such behaviour could
be mainly attributed to a better management of the processes running concurrently.
 After the code compilation and initial testing it is reasonable to collect the
provided timing routines into the self-contained object library, say StopWatch.lib, to
make them easily accessible and callable whenever required.

Acknowledgements
Portions of the source code presented herein are based on code segments written and
published by Chad Austin and the staff of Intel Corporation. The author acknowledges
their invaluable contribution.

Table 3. Mean execution times during 100,000 evaluations in
a loop, μs
Timing routine CPU_TIMEa StopWatch
Direct evaluation 11.56 11.54
GCA approximation 0.99 0.98
TANA-3 approximation 3.20 3.19
aCompaq Visual Fortran Professional Version 6.6C

 In addition, special thanks to Professor Klaus Schittkowski for his valuable
comments.

References:
[1] Crowder, H., Dembo, R.S., Mulvey, J.M. (1979). On reporting computational experiments

with mathematical software, ACM Transactions on Mathematical Software 2, pp. 193-203.
[2] Miele, A., Gonzales, S. (1981). Methods for evaluating nonlinear programming software,

in: Mangasarian, O.L., et al. (Eds.), Nonlinear programming 3, Academic Press, New
York.

[3] Bryant, R.E., O'Hallaron, D.R. (2003). Computer systems: A programmer's perspective,
Prentice Hall, Englewood Cliffs.

[4] Mitchell, W.F. (1997). StopWatch User's Guide Version 1.0, NISTIR 5971, available
from: http://math.nist.gov/mcsd/Software.html (accessed 10 February 2008).

[5] Intel (1998). Using the RDTSC instruction for performance monitoring, Pentium II
application notes, Intel Corporation, Santa Clara.

[6] Intel (2006). Intel 64 and IA-32 architectures software developer's manual, Vol. 3A:
System programming guide, Part 1, Intel Corporation, Santa Clara.

[7] Austin, C. (2007). CPUInfo open source library, Ver. 1.0.0. Available online at:
 www.aegisknight.org/cpuinfo (accessed 17 May 2008)
[8] Schittkowski, K. (1987). More test examples for nonlinear programming codes, Lecture

notes in economics and mathematical systems, No. 282, Springer, Berlin.
[9] Chickermane, H., Gea, H.C. (1996). Structural optimization using a new local

approximation method, International Journal for Numerical Methods in Engineering 39,
pp. 829-846.

[10] Xu, S., Grandhi, R.V. (1998). Effective two-point function approximation for design
optimization, AIAA Journal 36, pp. 2269-2275.

[11] Magazinović, G. (2005). Two-point mid-range approximation enhanced recursive
quadratic programming method, Structural and Multidisciplinary Optimization 29, pp.
398-405.

[12] Compaq (1999). Compaq Fortran: Language reference manual, Compaq Computer
Corporation, Houston.

Author: Magazinović, Gojko, Associate Professor, Faculty of Electrical Engineering,
Mechanical Engineering and Naval Architecture, University of Split, Split, Croatia,
www.cadam.riteh.hr/whoiswho/CVs/Magazinovic_Gojko.htm

