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ABSTRACT 

This paper presents the results of application of artificial neural 
networks in determination of mechanical properties of ductile 
cast iron. All data were collected in a Croatian foundry for 147 
melts. Error back-propagation training algorithm was applied to 
train the multilayer networks. The optimal size of the hidden 
neuron layer was determined through the analysis of error 
parameters. The optimal slope of the tangent sigmoid activation 
function was investigated. Neural networks were modeled to 
predict each mechanical property, namely: tensile strength, yield 
strength, elongation, and hardness. Input parameters were 13 
weight contents of chemical elements in the melt. A 
comprehensive analysis of errors in predicting mechanical 
properties of ductile cast iron was made. 

1. INTRODUCTION 

The world production of ductile cast iron is constantly growing, 
and is expected to continue to have the fastest growing rate of all 
ferrous materials [1]. The advantages of ductile cast iron over 
other types of cast iron are many, which assured the ductile iron 
very wide and successful fields of application. This type of cast 
iron has very good mechanical properties, such as high ductility, 
toughness, elongation and strength, and low production costs. 
Other iron castings may have better individual properties, but 
nodular cast iron has the best all-around combination of 
properties, which makes it very often the material of choice in 
many applications. Yet, the most important reason for the 
increasing production of ductile cast iron is a very favorable cost 
per unit of strength, compared to other materials [2]. 

The microstructure of nodular cast iron is developed from the 
melt. Graphite nodules are formed when magnesium or cerium or 
other elements are added to the iron melt. Nodularity is the ratio 
between volume content of spherical graphite spots and the total 
number of graphite spots, and in nodular cast iron it is usually 
above 90%. The higher the nodularity, the better mechanical 
properties [3]. Graphite nodules are embedded into pearlitic, 
ferritic or martensitic matrices, depending on the chemical 
composition and/ or subsequent heat treatment process of the 
casting. 

Properties of ductile cast iron, which are most important are 
usually tensile strength and elongation, although the 
determination of other properties, such as yield strength, 
toughness or hardness, is sometimes required. Prediction of these 
properties during the melting process, and before pouring is very 
important in a foundry, because it allows the adequate correction 
of the chemical composition and/ or process parameters. 

Since mechanical properties of ductile cast iron work piece 
depend on the chemical composition of the melt, an issue in this 
approach was to apply an artificial neural network for 
determination of these properties. 

Artificial neural networks are composed of processing 
elements and connections [4]. Since they can be used to 
approximate almost any nonlinear function, neural networks have 
been widely used in different material science applications. 
Models and software products have been developed for modeling, 
simulation and prediction of different correlations in materials 
science, such as prediction of properties of existing materials, 
new alloys design, materials selection, and optimization of 
processing parameters [5]. In recent years, neural networks were 
used for improving the production of ductile cast iron, as well [7], 
[8].  

2. METHODS 

2.1. Experimental data 

Different nodular cast iron melts were prepared and recorded at 
the foundry ”Metalska industrija Varazdin” in Varazdin, Croatia. 
A total of 147 different melts was prepared. For each melt 
chemical composition was analyzed by spectral analysis using 
spectrometer GDS 400A, produced by Leco. Melt specimens 
were poured into a copper mould, and the weight contents of the 
following chemical elements were determined: C, Si, Mn, S, P, 
Mg, Ni, Cr, Cu, Sn, Mo, Ti and Al. 

From each melt a separately cast test sample was produced. 
The so-called Y-blocks were cast. Shape, dimensions, mould 
type, methods of pouring and cooling were according to EN 
1563. From the solidified Y-block, test pieces were cut out, as to 
EN 1563. The tensile test pieces were made as B 14 x 70, 
according to DIN 50125. Following mechanical properties were 
determined: tensile strength, Rm, N/mm2, yield strength, Rp0.2, 
N/mm2, and elongation, A5. After the tensile test, the head of each 
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test piece was cut off, and the Brinell hardness, HB, was 
measured on it. 

2.2. Neural network model 

Artificial neural networks were developed using Matlab 7’s 
“Neural network toolbox”. All networks were multilayered, with 
nonlinear perceptrons. Input parameters for the neural network 
were data on chemical composition of melts (13 chemical 
elements, wt.%). Output parameter for each network was one 
mechanical property: tensile strength, yield strength, elongation, 
and Brinell hardness. The hidden layer was made up by neurons 
with bipolar sigmoid activation functions, eq. (1): 
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where yj is the output of the jth hidden neuron, σ is the slope of 
the sigmoid function, and net is the weighted sum of inputs to the 
hidden neuron. The output layer was made up by neurons with 
linear activation functions. Initial weight and bias values were 
generated according to the Nguyen-Widrow method, since it 
requires less iteration steps in the learning process than training 
with purely random initial values [9]. All input and output data 
were preprocessed so that minimum was –1, and maximum was 
1, eq. (2): 
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where pn are normalized values of a mechanical property or 
chemical content, p is its actual value, pmin minimum value, and 
pmax maximum value.  

Input and output data were divided into three data sets: one 
for learning, one for validation, and one for testing the network. 
One half of all data were a part of the learning data set, one 
quarter was for the validation, and the other quarter of all data 
was retained for the network testing. Learning data set is used 
during the learning process for adapting weight parameters of the 
selected model of neural network. The validation data set is used 
also during learning, but for estimating the error on data that have 
not been used for training. The learning process is continued until 
the error in the validation data set starts to increase. Finally, the 
testing data set is used to test the performance of the neural 
network after learning has been completed. The error in the 
testing data set is the most important parameter, which 
demonstrates how well the network is able to predict a certain 
output value, i.e. a certain mechanical property.  

In order to improve generalization, and to prevent over-
fitting, the early stopping method was used. This method requires 
all data to be divided into three data subsets: training, validation, 
and testing data set. The training data set was used for calculating 
network’s weights and biases, i.e. for the network learning. The 
validation subset is used to stop the training early if further 
training would hurt generalization in the validation subset. While 
the network was learning, the error on the validation data set was 
registered. When the validation error increased for five number of 
iteration steps, the learning process was stopped. Finally, the 
performance on the test subset was used to estimate how well the 
network generalizes beyond training and validation data sets. 

For each data subset the correlation coefficient, R, coefficient 
of determination, R2, and normalized root mean square error, 
NRMSE, eq. (3) were registered: 
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where dn, and On are measured values of a certain mechanical 
property, and values predicted by neural network, respectively. N 
is the total number of observations, i.e. melts, and 

ndσ  is the 

standard deviation of measured values. Also, a short statistical 
analysis of relative errors was made. 

The network was trained with the error back-propagation 
training algorithm. Also, the Levenberg-Marquardt algorithm was 
applied to neural network training, as this algorithm appears to be 
the fastest method for training moderate-sized feed forward 
neural networks [10]. Figure 1 presents the model of the neural 
network that was used to train the network for predicting tensile 
strength, with 11 hidden neurons. 

 
Figure 1. Model of the applied neural network for 

predicting tensile strength. 

The number of neurons in the hidden layer was varied in 
order to find the network that is most adequate for minimizing the 
prediction errors, while keeping the number of iteration steps in 
reasonable boundaries. 

3. RESULTS 

Figure 2 shows how the slope of the tangent sigmoid activation 
function in the hidden neuron layer, σ, has influenced the ability 
of the neural network to predict tensile strength, Rm, in the testing 
data set. It can be seen that values of σ=2 and lower produced a 
network with best generalizing properties. For this reason, a value 
of σ=2 was also set when other three networks were trained to 
predict the other mechanical properties: Rp0.2, A5, and HB. 

 ICMSA0’09-2



Proceedings of the Third International Conference on Modeling, Simulation and Applied Optimization 
Sharjah,U.A.E January 20-22  2009 

0.6

0.7

0.8

0.9

1.0

0 2 4 6 8 10 12 14 16 18 20
Slope of the activation function, σ

C
oe

f. 
of

 d
et

er
m

in
at

io
n,

 R
2

Testing Rm Poly. (Testing Rm)

 
Figure 2. Coefficient of determination in the tensile 

strength testing data set for different slopes of activation 
function. 

Figure 3 presents the influence of the number of hidden 
neurons onto the coefficient of determination, R2, and onto the 
number of iteration steps, which were required for the network 
learning process, for each mechanical property. The final number 
of hidden neurons for each network was set to be the one that 
generated R2>0.95. For predicting tensile strength, the number of 
hidden neurons was 11. The number of hidden neurons for 
predicting yield strength was 13. For predicting elongation, there 
were also 13 hidden neurons. And, finally, the number of hidden 
neurons for predicting hardness was 17. 
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Figure 3. Coefficient of determination in the testing data 

set for different number of hidden neurons. 

After each neural network was modeled with the most 
adequate number of neurons, the networks were retrained. Figure 
4 presents distributions of relative errors for tensile strength 
predicted by ANN, for all three data sets (learning, validation, 
and testing). Acceptable relative errors in the testing data set were 
values under 2%. Higher relative errors occurred very seldom. 
Figure 5 shows the same error distribution, but for predicting 
yield strength. Figure 6 clearly notes that the highest errors were 
generated when the problem of predicting elongation was studied. 
Figure 7 also presents satisfactory predicting errors in the testing 

data set, for the case of predicting Brinell hardness of the nodular 
cast iron. 
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Figure 4. Relative error distributions for tensile strength 

predicted by ANN. 
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Figure 5. Relative error distributions for yield strength 

predicted by ANN. 
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Figure 6. Relative error distributions for elongation 

predicted by ANN. 

 ICMSA0’09-3



Proceedings of the Third International Conference on Modeling, Simulation and Applied Optimization 
Sharjah,U.A.E January 20-22  2009 

0

5

10

15

20
0.

4%

0.
8%

1.
2%

1.
6%

2.
0%

2.
4%

2.
8%

3.
2%

3.
6%

4.
0%

Relative error, %

Fr
eq

ue
nc

y,
 f

HB Train HB Valid. HB Test

 
Figure 7. Relative error distributions for Brinell hardness 

predicted by ANN. 

Table 1 presents the values of different error parameters in 
predicting tensile strength by neural network with a short 
statistical analysis of relative error. Also, error estimation 
parameter, NRMSE, and correlation coefficient, R, are given. 
Table 2 shows the same error parameters for predicting yield 
strength; Table 3 for predicting elongation; Table 4, finally, 
presents the errors in predicting hardness of ductile iron. All error 
parameters are given for each data set, i.e. learning, validation, 
and testing. 

Table 1. Different error parameters in predicting tensile 
strength. 

Rm, N/mm2 Training 
data set 

Validation 
data set 

Testing 
data set

Min. 0.0% 0.0% 0.1% 
Max. 3.5% 2.6% 4.5% 

Average 1.0% 1.0% 1.1% 

R
el

at
iv

e 
er

ro
r, 

%
 

St. dev. 0.8% 0.7% 1.0% 
NRMSE 0.144 0.093 0.092 

Correl. coef. 0.988 0.983 0.991 
 

Table 2. Different error parameters in predicting yield 
strength. 

Rp0.2 N/mm2 Training 
data set 

Validation 
data set 

Testing 
data set

Min. 0.0% 0.0% 0.0% 
Max. 3.3% 2.6% 3.8% 

Average 1.0% 0.9% 1.0% 

R
el

at
iv

e 
er

ro
r, 

%
 

St. dev. 0.8% 0.7% 1.0% 
NRMSE 0.183 0.215 0.138 

Correl. coef. 0.982 0.980 0.986 

 

Table 3. Different error parameters in predicting 
elongation. 

A5, % Training 
data set 

Validation 
data set 

Testing 
data set

Min. 0.0% 0.4% 0.0% 
Max. 13.9% 26.7% 16.6% 

Average 3.1% 3.4% 2.9% 

R
el

at
iv

e 
er

ro
r, 

%
 

St. dev. 2.8% 3.0% 3.1% 
NRMSE 1.391 1.294 1.869 

Correl. coef. 0.994 0.995 0.997 

Table 4. Different error parameters in predicting 
hardness. 

HB Training 
data set 

Validation 
data set 

Testing 
data set

Min. 0.00% 0.00% 0.00% 
Max. 4.20% 3.50% 3.40% 

Average 1.30% 1.10% 1.20% 

R
el

at
iv

e 
er

ro
r, 

%
 

St. dev. 1.00% 1.00% 1.00% 
NRMSE 0.312 0.427 0.287 

Correl. coef. 0.968 0.983 0.985 
Figure 8 shows the correlation between predicted and measured 
values of tensile strength for the testing data set; Figure 9 the 
same correlation, but for predicting yield strength; Figure 10 for 
elongation, and finally Figure 11 for predicting hardness. It can 
be seen that all four neural networks are successful in predicting 
corresponding mechanical properties of ductile iron, since they 
exhibit very high correlations in each testing data set. 

 
Figure 8. Correlation of predicted and measured values of 

tensile strength in the testing data set. 
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Figure 9. Correlation of predicted and measured values of 
yield strength in the testing data set. 

 
Figure 10. Correlation of predicted and measured values 

of elongation in the testing data set. 

 
Figure 11. Correlation of predicted and measured values 

of hardness in the testing data set. 

4. CONCLUSIONS 

Correlation coefficients in the testing data set between measured 
and predicted data vs. number of neurons in the hidden layer has 
determined the most adequate number of hidden neurons for each 
of the four presented problems of predicting nodular cast iron 
mechanical properties. 

Also, the most adequate slope of the tangent sigmoid 
activation function of hidden neurons was determined. 

Statistical analysis of relative errors in predicting each of the 
specified mechanical properties, namely, tensile strength, yield 
strength, elongation and hardness, has showed that it is possible 
to successfully predict these properties by using the described 
models of artificial neural network, and by using chemical 
elements content data as input parameters. Predicted results in the 
testing data sets were mainly less than 2%, which is the 
acceptable experimental error when measuring the above-
mentioned mechanical properties of ductile cast iron. 
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