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ABSTRACT 

The paper presents the testing of the possibility of determining the heights of GPS 
points in the homogeneous field in the new Croatian Height Reference System (HVRS71) 
by using the method of height transformation. The testing was made in the area of Zagreb. 
As part of the field works, normal orthometric heights of 27 GPS points were determined 
according to the new height system, by transferring the benchmark heights using the 
geometric levelling method, thus obtaining GPS/levelling points of known ellipsoidal and 
normal orthometric heights. The GPS/levelling points served as the basis for determining 
the transformation models that enabled the computation of normal orthometric heights 
from ellipsoidal heights of any GPS point in the observed area. The empirical data used 
for modelling were reduced undulation dN values of GPS/levelling points. As part of the 
dN modelling with parametric functions, the approximation surfaces were obtained on the 
basis of three polynomials: FN310, FN312 and FN318. The transformation models were 
also tested using non-parametric Watson and Loess algorithms. The FN318 and Loess 
models yielded the best results. 

 
Ke y wo rd s :  GPS/levelling points, transformation, Croatian Height Reference 

System 1971 (HVRS71), normal orthometric height, ellipsoidal height, undulation 
 

1. INTRODUCTION 

The use of heights, such as orthometric or normal orthometric heights, that are 
connected to the Earth’s gravity field, is important in many fields ranging from geodesy, 
civil engineering, geophysics, oceanography, etc. Traditionally, these heights are 
determined by combining geometric levelling and gravity acceleration measurements. 
However, in the last twenty years, the wide and propagating use of GPS in height 
determination has incited the need to define a more accurate geoid or quasigeoid model in 
order to make the determination of orthometric, normal or normal orthometric heights 
possible with sufficient accuracy in a simple and cost-effective way (Heiskanen and 
Moritz, 1996; Torge, 1989, 2001). 



M. Gucek and T. Bašić 

18 Stud. Geophys. Geod., 53 (2009) 

Namely, the GPS ellipsoidal heights referring to a reference ellipsoid have a more 
theoretical than practical significance. They can be easily transformed into altitudes using 
a simple formula Eq.(1), in order to be compatible with the local height datum. The 
problem arises when transforming these heights into one of the currently used height 
reference systems, because it is necessary to know the reference surface (geoid, 
quasigeoid, etc.) whose accuracy is in accordance with the accuracy of GPS ellipsoidal 
heights and altitudes, i.e. should not be bigger than a few centimetres. 

The basic formula for transforming ellipsoidal heights (h) into a height reference 
system (HRS) reads (Dinter et al., 1997) 

 H h N= − . (1) 

Fig. 1 presents the relation between the ellipsoidal height h and the orthometric 
(normal, normal orthometric) height H. Depending on the reference surface of the selected 
height system (HRS) the previous expression reads as follows: 

 geoidH h N= − , (2) 

 N
quasigeoidH h N= − , (3) 

 H h Nγ
γ= − , (4) 

where in the fist case Ngeoid (geoid undulation) refers to geoid as a reference surface, and 
the resulting height is defined as orthometric height. In the second case Nquasigeoid (height 

anomaly) refers to quasigeoid, and the HN height is called normal height. In the third case 

H γ  is calculated using only the normal value of the gravity field acceleration of the 
reference γ ellipsoid along the levelling path, and it is called normal orthometric height. 

 

Fig. 1. Relation between ellipsoidal height h, height H and height anomaly N. 
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Accordingly, Nγ is called normal orthometric height anomaly. All three types of N’s can 
be commonly called “height anomaly” and, as shown in Fig. 1, the difference between 
ellipsoidal height h and the plumb line can be neglected. Namely, the differences in their 
real values are always smaller than 1 mm (Dinter et al., 1997). 

This problem of transformation can be solved if the following criteria are met (Dinter 
et al., 1997): 

• the height anomaly N, referring to the height reference system (HRS) where the 
height H is to be found, is known; 

• the geoid model of the quasigeoid is compatible with the H height or measured 
height differences ΔH (N’s refer to the same type of heights); 

• the height anomalies refer to the same ellipsoid and datum as well as ellipsoidal 
heights h; 

• there is no systematic influence of height anomalies N. 

Hence, in order to determine orthometric, normal or normal orthometric heights by 
using GPS, it is necessary to determine the height anomalies with sufficient accuracy. 
However, height anomalies N do not exist for some local areas or their density is 
insufficient. If there is a gravimetric geoid model for a local area, the geoid accuracy can 
be increased by including GPS/levelling points whose ellipsoidal height h and orthometric 
(normal, normal orthometric) height H are known. In smaller local areas, (a few dozens 
kilometres) it is possible to determine the mathematical model by means of a certain 
number of GPS/levelling points that can be used for the interpolation of GPS points 
whereby only the ellipsoidal height is known. An adequate model will enable the 
determination of the orthometric (normal, normal orthometric) height of GPS points with 
a certain level of accuracy. The size that is modelled, i.e. the one that is included in the 
model, is a reduced value of the dN undulation. The dN is obtained by subtracting the 
undulation mean value from undulation of individual GPS/levelling points. 

 averageH h N dN⎡ ⎤= − +⎣ ⎦ . (5) 

There are a few modelling methods for height anomalies (undulation, geoid heights) 
that can be used for the transformation of ellipsoidal heights into orthometric (Zhong, 
1997), but one of the simplest methods of determining the surface is based on the 
approximation (interpolation) using a polynomial. Here, two types of models based upon 
the polynomial approximation will briefly be presented, although in essentially different 
concepts. One of them is the model of transformation using the parameter function. It will 
explain the polynomial interpolation model. The other transformation model is based on 
modelling the surface by means of special algorithms containing the lower order 
polynomials. It should be pointed out that the accuracy of every single model depends 
greatly on the accuracy of the input data but also on the adequately selected mathematical 
function used for modelling the height anomalies dN. Since both models have been tested 
for the City of Zagreb, the text below presents the comparison and analysis of normal 
orthometric heights of GPS/levelling points belonging to this test area (Bašić et al., 1999; 
Bašić, 2001; Čolić, 1998; Čolić et al., unpublished results; Švehla, 1997). 
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2. THE RESULT ANALYSIS OF INDIVIDUAL TRANSFORMATION MODELS 

The basic input data used for calculating and analyzing the individual transformation 
model are given in Table 1 (Gucek, 2005). The basic information about each 
GPS/levelling point is given in the same table. i.e. the name of the area, GPS point 
number, positional coordinates of GPS points given in the Gauss Krüger projection, and 
the height component which is the reduced undulation value as related to the new datum 
definition in HVRS71 (Official Gazette, 2001, 2004; Feil et al., 2003). 

The calculations and analysis of every individual model of transforming the ellipsoidal 
heights of GPS points into normal orthometric heights in the new HVRS71 height system 
were made on the basis of the reduced undulation values for 27 discrete GPS/levelling 
points of the network of the City of Zagreb shown in Fig. 2. 

Altogether five models have been used for determining the reduced undulation values 
dN tested: three parameter models numbered with Taylor’s polynomials FN310, FN312 
and FN318, and two non-parametric models called Watson and Loess approximations. 

Table 1. Basic data about GPS/levelling points. 

No. Area GPS yGK [m] xGK [m] dNHVRS71 [m] 

1 Sesvetski Kraljevec 1018 5592337 5074305 −0.2747 
2 Horvati 1037 5564401 5063714 −0.0131 
3 Kašina 1237 5587433 5085433 0.1965 
4 Sljeme 1331 5574396 5084270 0.5092 
5 Belovar 1476 5591441 5082794 −0.0448 
6 Miroševec 1781 5580983 5080498 0.0895 
7 Štefanovec 1840 5579836 5080065 0.2582 
8 Markovo polje 1982 5586727 5079256 −0.1197 
9 Sesvete 2573 5586722 5076477 −0.0997 
10 Podsused 2795 5565166 5075689 0.1499 
11 Podsused 3010 5565903 5074928 0.1269 
12 Centar 3040 5575731 5074804 0.0540 
13 Vrapče 3080 5570775 5074723 0.0702 
14 Borongaj 3215 5579705 5074281 −0.0247 
15 Ivanja Reka 3453 5586672 5073397 −0.1282 
16 Ježdovec 3961 5565503 5070830 0.0580 
17 Petruševac 4026 5581858 5070325 −0.1264 
18 Otok 4204 5577440 5069073 −0.1201 
19 Hrašće 4497 5579049 5066108 −0.1380 
20 M. Mlaka-Vodovod 4501 5576109 5066090 −0.2257 
21 Brezovica 4578 5571386 5065116 −0.0483 
22 Beduri 4750 5560552 5062923 0.0458 
23 Lipnica 4862 5573975 5060836 −0.0560 
24 Vidalin 4870 5561024 5060710 0.0017 
25 Kupinečki Kraljevec 4978 5568344 5058421 −0.0226 
26 Donji Dragonožec 4992 5573791 5058053 −0.0566 
27 Šestine 5081 5574152 5079201 0.2631 



Height Transformation Models from Ellipsoidal into the Normal Orthometric Height System 

Stud. Geophys. Geod., 53 (2009) 21 

Each model made it possible to calculate a reduced undulation (dN) value on the basis of 
positional coordinates of GPS points in the Gauss Krüger projection (yGK, xGK) , as well 
as to determine the normal orthometric height (H) is defined in the new height system of 
the Republic of Croatia, HVRS71 shown in Eq.(6) by adding the valued dN to the mean 
value of undulation (N) and by subtracting from ellipsoidal height in average the GRS80 
system (h). 

 HVRS71 GRS80
i i i

averageH h N dN⎡ ⎤= − +⎣ ⎦ ,     1,i n= … . (6) 

The selection of the best model describing the empirical data is generally not defined 
by a unique statistical procedure that can answer this question exactly. One can thereby 
select a few model accuracy estimation criteria that can be used. These are standard 

deviation σ, coefficient of determination R2, adjusted coefficient of determination 2
adjR , 

etc. The above-mentioned accuracy estimation measures and statistical projections make it 
possible to select the most adequate data model, but it is our knowledge and professional 

 

Fig. 2. GPS/levelling points in the City of Zagreb. 
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competence regarding the problems, as well as the analytical approach that should at the 
end be decisive in selecting the model that can best describe the empirical data. 

The following are a few important factors that influence the selection of the model as 
well as the accuracy of the model itself (Draper and Smith, 1998): 

• distribution and number of discrete GPS/levelling points that have to be selected in 
such a way as to cover the entire modelled area, equally positioned in order to 
define, in particular, the irregularity of the terrain, i.e. the topology; 

• accuracy of ellipsoidal and normal orthometric heights of the GPS/levelling points; 
• topology of the modelled area; 
• selection of the modelling method (different areas require different methods). 

All calculations have been made by the TableCurve3D version 4.0 application 
package, a specialized scientific software used in various fields of the engineering, 
medical, natural and other sciences (Analytical graphics package TableCurve3D, 
http://www.systat.com/products/TableCurve3D). 

2 . 1 .  d N  M o d e l l i n g  w i t h  P a r a m e t r i c  F u n c t i o n s  

One of the most frequent and most efficient mathematical model applied in modelling 
a geoid surface in a smaller area is the surface approximation using polynomial, i.e. 
polynomial interpolation. This method is also very often used to define long-wave geoid 
surface trends. The degree of the bivariant polynomial should be determined depending on 
the size and topography of the area. The basic principle of dN modelling with parameter 
functions is the selection of parameters that are directly connected with the features of the 
data modelled. The models of parameter functions are sensitive to the number of 
parameters and to the connection, i.e. correlation of parameters. 

Provided that there are n well distributed GPS/levelling points in a selected area, with 
known GPS ellipsoidal height h and the orthometric (normal, normal orthometric) height 
H determined by levelling, it is recommended to know a geoid model as well. Eq.(7) 
represents a general form of the function N(x, y) that makes it possible to determine the 
height anomaly (geoid height, undulation) of a GPS point, having the known ellipsoidal 
height h in this area and known positional coordinates y and x (Zhong, 1997) 

 ( ) ( ) ( )0, , ,MODELN y x N y x dN y x= + , (7) 

where 

 ( )
0 0

,
m m i

i j
MODEL ij

i j

dN y x a y x
−

= =
= ∑ ∑ ,     , 0, ,i j m= … . 

N(y, x) represents height anomaly (geoid height, undulation) of the point with known 
coordinates (y, x) and ellipsoidal height h, N0(y, x) is the height determined for some other 
geoid model, and dNMODEL(y, x) presents a reduced value of the height anomaly 
mathematically defined by a polynomial. The parameters of the model aij, i.e. the 

coefficients of m-degree polynomial (i, j = 0, …, m) are not known and should be 
determined by means of adjustment. 
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In order to apply the method of least squares in this system of n equations with m 
unknown coefficients, nonlinear functions should be developed into linear by using the 
second-order Taylor series. Hence, for a redundant number of GPS/levelling points it is 
possible to determine the following system of equations: 

 = −Av x l , (8) 

where 

 

0
1 1 1

0 nn n

h H N l

lh H N

⎛ ⎞− − ⎛ ⎞⎜ ⎟ ⎜ ⎟= =⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠− −⎝ ⎠

l # # . (9) 

Vector v represents the residuals (corrections), i.e. deviations from the model, A is an 
n × m coefficient matrix of the equation system, and vector x contains unknown 
parameters of the model. Matrix A contains the coefficients obtained through the 
derivation of the dNMODEL(x, y) function with unknown aij coefficients. Vector l is 
calculated by means of the known GPS ellipsoidal heights of discrete GPS/levelling points 
hi, orthometric (normal, normal orthometric) heights of GPS points Hi and the known 

approximate (mean) value of height anomalies (geoid height, undulations) N0. The least 

squares adjustment is made by minimizing the T min→Pv v  objective function. In case of 
equal accuracy of the input GPS points data, P presents a unit matrix P = I. By using 
normal equations, one obtains the solution of unknown parameter sizes contained in 
vector x  

 ( ) 1T T−
= A PA A Px l . (10) 

The variance and covariance matrix of the unknown polynomial parameters reads as 
follows 

 ( ) 12 2 T
xx xx

−
= =V σ Q σ A PA , (11) 

where the variance σ2 is expressed by 

 2
T

n u
=

−
Pσ v v

. (12) 

The positive value of the variance square root presents the standard σ deviation, as one 
of the criteria of the approximation accuracy estimation, i.e. one of the indicators of how 
the model is adjusted to the data. Hence, depending on the equation system solution, the 
obtained mathematical function defines exactly and unanimously the change pattern of dN 
in the observed area. Since the approximation function is continuous and limitless 
function, it enables the analytical determination of a dependent and unknown dN on the 
basis of independent and known x and y coordinates. 
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In modelling the geoid surface by means of the polynomial approximation method, 
one should take into consideration the accuracy of the input data by adding a certain 
weight to each of them. Thus, the points of smaller weight will, at the same time, have 
less influence on the model. In the process of adjustment, the negative influence of less 
accurate data (low measurement accuracy, gravity acceleration anomalies in the local 
area, etc.) will be reduced to the possible abnormal model behaviour (Zhong, 1997). 
Furthermore, one of the ways to preserve approximation accuracy is the number and 
selection of polynomial parameters that influence directly the form and composition of the 
A matrix coefficient. In order to achieve better accuracies of unknown parameters of the 
polynomial and a more accurate and less “biased” approximation, i.e. smaller systematic 
influence, it is recommendable to remove insignificant parameters from the model. This 
all leads to the conclusion that a good model should contain a small number of significant 
parameters (Draper and Smith, 1998). Namely, it is recommended to remove insignificant 
parameters in a model where only one function for the modelling of the whole surface and 
where all discrete points are used in modelling, in order to make approximation function 
as simple as possible (Soycan and Soycan, 2003). However, it should be taken into 
consideration that the removal of insignificant parameters from the model will not always 
yield satisfactory solutions. A good selection of function parameters, i.e. the removal of 
insignificant parameters, and the acceptance of the significant ones require certain 
predefined criteria, i.e. the testing of all parameters of the selected model. In practice, the 
F-test (Fisher test) is used to compare and judge the significance of parameters. 

T r a n s f o r m a t i o n  M o d e l s  U s i n g  P a r a m e t r i c  F u n c t i o n s  

In the TableCurve3D software package, the criteria are set for the selection of the best 
approximation curves based on the standard σ deviation (Fit standard error - Fit Std) 

 

( )2

1

n
i i

i model observation
i

p dN dN

f
σ =

−

=
∑

, (13) 

where f is the degree of freedom, and pi are the weight coefficients. 
Taking into consideration all 27 GPS/levelling points and based on the Surface-Fit 

custom Equations set function, the three polynomials (FN310, FN312 and FN318) 
selected will be further considered and analyzed in Eq.(14) 

 FN310: 2 2 3 3 2 2z a bx cy dx ey fxy gx hy ixy jx y= + + + + + + + + + ,  

 FN312: 
2

2 3
2 3 2

b d fy g iy jy
z a cy ey hy

x x xx x x
= + + + + + + + + + , (14) 

 FN318: 
2 2 3 3 2 2

b c d e f g h i j
z a

x y xyx y x y xy x y
= + + + + + + + + + .  

Each equation is the function of the known positional x and y coordinates, on the basis 
of which the unknown z component is calculated, presenting in this problem the reduced 
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undulation value of GPS point dNi. The unknown parameters, i.e. coefficients of each 
function, are calculated with the adjustment on the basis of 27 GPS/levelling points using 
the Gauss method of least squares (see Section 2.1.). 

For each model, Fit Std (Fit standard deviation) indicates only the internal model 
accuracy. However, to compute external accuracy it is necessary to calculate the value of 
the height of the additional set of the control GPS points on the basis of the model, and to 
compare them with the data obtained by field measurements. Thus, the deviations 
obtained represent true model errors provided that the input data are values without errors. 
Since no additional field measurements have been made, the same points used for 
modelling are used as control points. Such a procedure of using the data that have been 
applied in the processing and in the checking procedure is known as “cross validation 
method” (Judging Model Quality by Residuals, http://www-2.cs.cmu.edu/ 
~schneide/tut5/node42.html). The calculated parameters are slightly changed, thus 
obtaining surface approximations that can be considered as identical. The control point 
that has not been used in the surface approximation has served in calculating the deviation 
as the “true error” of the model. The deviations of control points have also been compared 
with the standard deviation, i.e. with internal accuracy of the model itself. The final 
estimation of an individual model has been made on the basis of the percentage of points 
that have met the 3σ criteria. 

Further in the text the basic data will be presented, making it is possible to analyze in 
more details only the FN310 and FN312 models, as well as FN318. Model FN318 has 
been taken into consideration in spite of the fact that its application without point 1018 is 
not possible. 

A c c u r a c y  E s t i m a t i o n  o f  I n d i v i d u a l  P a r a m e t r i c  
T r a n s f o r m a t i o n  M o d e l s  

In order to characterize each height transformation model as good as possible, it is 
necessary to first explain which external model accuracy is realistic to expect. The 
expected model accuracy can not be better than the accuracy of GPS/levelling points, i.e. 
the input data used in transformation models. The model accuracy will surely depend on 
the benchmark accuracy, as well as on the accuracy of points from which the height has 
been transformed as well as the accuracy of the GPS point’s heights themselves. 

If we take into consideration the fact that benchmarks are fixed quantities without 
errors and if we neglect the correlation, the accuracy of normal orthometric heights of 
GPS points is expressed by the standard deviation of unknowns in the adjustment of every 
single levelling side or levelling figure (Gucek, 2005). Standard deviation of normal 
orthometric heights of GPS points, as determined by only one benchmark, has the value 
smaller than 1 mm, and standard deviations of normal orthometric height of GPS points, 
as determined by two benchmarks in the levelling figure, are larger and are between 
0.5 mm and 7.7 mm. 

Table 2 presents the accuracies of node bench marks and GPS points contained in the 
previous calculations, with only their extreme and mean values because one wants to have 
simple concise overview of the input data accuracy. However, one should point out once 
again, that these numerical values do not present standard deviations of the height of 
individual benchmarks or individual GPS points. By applying the law of error propagation 
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one could calculate standard deviations of the input data combined with the minimum, 
maximum, average minimum and average maximum standard deviations of node 
benchmarks of all orders in the levelling networks and with standard deviations of the 
ellipsoidal height of GPS points in the homogeneous field being from 2 to 3 cm 
(Niemeier, 2002; Feil, 1989). 

The accuracy of normal orthometric height of GPS points is between 2.00 and 
6.07 cm. In this respect, Table 3 shows the results that give the number and percentage of 
the total number of points in certain accuracy categories (< 1 cm, < 2 cm, < 3 cm, < 4 cm, 
< 5 cm, < 6 cm). For each model about 40% of control GPS points have the absolute value 
of deviation smaller than 3 cm, and 45% to 60% the absolute value of deviation smaller 
than 5 cm. In the FN312 model, almost 75% of points have the absolute value of residual 
smaller than 6 cm. 

The text below will present the estimation of the internal and external model 
transformation accuracy using the FN310, FN312 and FN318 polynomials. In the FN318 
model, the GPS point 1018-Sesvetski Kraljevec has been excluded from the accuracy 
estimation calculation due to before-mentioned reasons. 

Every residual consists of two kinds of influences: random and gross errors (Kavouras, 
1982). The accuracy of the input data is represented by the random component while the 
remaining part is the systematic influence of the mathematical model itself. 

Table 4 presents the minimum and maximum absolute value of residuals, square 
deviation sum, variances and the standard deviation in centimetres, for each individual 
model. 

Table 2. Input data accuracy estimation. 

Node Benchmark Accuracy 

H
Benchmark

γ
σ  [cm] 

GPS Height Accuracy 2 2H
GPS Benchmark GPS

γ
σ σ σ= +  [cm] 

 2 cm 3 cm 

Min 0.04 Min 2.00 3.00 
Max 5.27 Max 5.64 6.07 

Min Avg 0.34 Min Avg 2.03 3.02 
Max Avg 1.41 Max Avg 2.44 3.31 

Table 3. Percentage of the number of points having the accuracy of between 0 and 6 cm. 

σ 
FN310 FN312 FN318 

Number of 
Points 

% 
Number of 

Points 
% 

Number of 
Points 

% 

< 1 cm 4 14.5 3 11.1 5 19.2 
< 2 cm 7 25.9 10 37.0 7 26.9 
< 3 cm 10 37.0 11 40.7 10 38.5 
< 4 cm 12 44.4 13 48.1 11 42.3 
< 5 cm 12 44.4 16 59.3 16 61.5 
< 6 cm 16 59.3 20 74.1 17 65.4 
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From the above stated one can conclude that all models have approximately the same 
accuracy, although the accuracy of the FN318 model is a few millimetres better. 

The detail processing, i.e. the presentation of the external model accuracy, can lead to 
clearer conclusions. As it has been said previously, the estimation of the external model 
accuracy has been made on the basis of true errors of control GPS points, i.e. for each of 
the 27 points. Thereby, the FN310, FN312 and FN318 models have been clearly observed, 
but in 27 (and the FN318 model in 26) different combinations (function coefficients have 
been slightly changed in each combination). Since there are different functions involved 
here (with various coefficients), although from the same group of polynomials, the total 
variance and standard deviation have not been computed, but the sum of the Σσ 2  
variance in order to calculate the average value of σ 2 . Table 5 presents all the data, and 
there are also the data expressed for the minimum and maximum absolute values of 
residuals. 

It is very important to point out that the residuals of control GPS points, calculated 
from models, present true errors, i.e. deviations of the individual reduced undulation 
values for control GPS points (computed from the remaining 26 points) from the 
measured value, and that they are the true accuracy indicators. Table 5 shows the largest 
differences between minimum and maximum values of almost 27 cm for the FN310 
model, and the smallest for the FN318 model of 12.70 cm whereby GPS point 1018 has 
not been taken into account. It also points out the large extreme values of residuals 

Table 4. Internal model accuracy estimation. 

 FN310 [cm] FN312 [cm] FN318 [cm] 

MinAbs(r) 
(Number of GPS Point) 

0.30 
(3040) 

0.05 
(4497) 

0.11 
(1331) 

MaxAbs(r) 
(Number of GPS Point) 

9.28 
(4501) 

11.58 
(4501) 

10.51 
(4501) 

Σr2 4.42 4.44 4.23 

σ 2  26.01 26.11 24.90 

σ 5.10 5.11 4.99 

Table 5. External model accuracy estimation. 

 FN310 [cm] FN312 [cm] FN318 [cm] 

MinAbs(r) 
(Number of GPS Point) 

0.03 
(3040) 

0.28 
(1037) 

0.00 
(1037) 

MaxAbs(r) 
(Number of GPS Point) 

26.99 
(1081) 

13.77 
(4501) 

12.70 
(4501) 

Σσ 2  7.76 8.69 6.64 

Average σ 2  5.36 5.67 5.05 
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obtained by extrapolating all the points located at the edges of the areas or for those points 
located in the areas of sudden elevation or slope of the terrain. Therefore, the GPS point’s 
1018-Sesvetski Kraljevec in the FN310 model and 4501-Vodovod_M.Mlaka in the FN312 
and FN318 models obtain maximum residual values. Table 5 shows that the points that 
crop out for the FN310 and FN318 models have minimum and maximum residual values 
(GPS points 1037-Horvati and 4501-Vodovod_M.Mlaka), which is a logical phenomenon 
because the approximation functions are the same up to the third polynomial degree. It 
should still be mentioned that in the FN318 model, the GPS point 1018-Sesvetski 
Kraljevec has maximum residual value and runs up to r1018 = ± ∞. Namely, after 
removing this point from the calculation it is not possible to calculate the FN318 
approximation function, and hence the residual itself. 

Table 6 shows the external accuracy estimation for the model computed on the basis of 
26 (25) GPS/levelling points. Each single point has later on served as the control point for 
these models. 

It can be seen from the table that almost 75% of the residuals of control GPS points 
obtain the absolute values smaller than 2σ, hence, smaller than the average 10 cm. It 
should also be pointed out that in the FN312 and FN318 models about 60% of points have 
the residual values smaller than 1σ, i.e. smaller than 5 cm. One speaks about external 
accuracy, hence, each of these points has not been included in the surface modelling, but 
its deviation from the model has been calculated and presented with the absolute value of 
the true error of less than 5 cm. 

All that leads to the conclusion that very optimistic results have been obtained with 
regards to the facts known in advance. Hence, providing that the average accuracy of GPS 
points in the homogeneous field is smaller or equal to 3 cm and that the average accuracy 
of node benchmarks amounts up to 1.41 cm, and that it can have maximum amounts of 
even 5.27 cm in lower accuracy orders, the obtained average internal model accuracy of 
5 cm is a good indicator of the accuracy of selected models. One also has to take into 
consideration the fact that 16 (59.3%) points have been connected to benchmarks, and the 
rest of 11 (40.8%) points have been connected to only one benchmark, including also two 
fundamental points taken over (1037-Horvati and 1018-Sesvetski Kraljevec). The 
presented models transformed by means of Taylor's polynomial are very good 
approximation functions that can be used to define the model surface trend and also to 
complete the surface model, i.e. it is recommendable to use it for the first adjustments. 

Table 6. External accuracy estimation for model 2. 

 
FN310 FN312 FN318 

Number of 
GPS Points 

% 
Number of 
GPS Points 

% 
Number of 
GPS Points 

% 

< 1σ 12 44.4 16 59.3 16 61.5 
(1σ, 2σ) 10 37.0 8 29.6 6 23.1 
(2σ, 3σ) 5 18.5 3 11.1 4 15.4 

> 3σ 0 0.0 0 0.0 0 0.0 
Sum 27 100.0 27 100.0 26 100.0 
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2 . 2 .  d N  M o d e l l i n g  w i t h  N o n - P a r a m e t r i c  A l g o r i t h m s  

In the previous chapter, the modelling of the surface with polynomials has been 
presented. The simplicity and general acceptability of the method, as well as the accuracy 
estimation measures developed for the models are some of the advantages as opposed to 
the surface modelling with non-parametric algorithms (Analytical graphics package 
TableCurve3D, http://www.systat.com/products/TableCurve3D). Still, any algorithm 
developed for the purpose of modelling the surface is based on the interpolation with a 
parametric function, mostly the polynomial of the lower order. The specific characteristic 
of these non-parametric algorithms is that they use various functions on various parts of 
the surface, adjusted to the set of data of a surface part in the best possible way. Such 
surface function is not continuous and it is not differentiable, but it has got interruptions in 
the points presenting the initial data. However, the modelling of the surface by means of 
applying such special algorithms describes the real model much better, especially the 
small local irregularities (Sambridge et al., 1995). 

Such especially developed models can be used for the interpolation of the topographic 
data connected with the gravity field acceleration, magnetic field, etc. The application of a 
single model depends on the data, i.e. on the reference or nodal points. Hence, on the basis 
of the known coordinate values (X, Y, Z) of discrete points regularly or irregularly 
distributed in an area, the values of the Z coordinate of all other points can be calculated 
by means of interpolation (Akima, 1996). The distribution of nodal points in an area can 
be in the form of a network, regularly or irregularly distributed data. The nodal points can 
be more dense in some area, but in some other area they can be distributed with lower 
density, which depends on the collected data that one has at disposal. Depending on the 
nodal point schedule, adequate models will be applied, describing the given area 
geometrically with certain advantages and disadvantages (Akima, 1978). 

In order to model the data in an area as good as possible, the so called “local” methods 
of interpolation are used that describe the physical reality much better on the basis of 
empirical data (Sambridge et al., 1995). Such local methods are most often based on the 
separation of the observed area of discrete values into smaller parts, the so called cells, i.e. 
on the procedure of developing a unique group of geometric figures, e.g. triangles, 
rectangles, irregular polygons. 

The nodal points can be contained within the geometric figures or can be part of them, 
as is the case with vertices or line segments. Over such a smaller area, the method of 
interpolation is applied then with a function whose parameters are usually determined on 
the basis of the nodal point’s values of the geometric figure area (Sambridge et al., 1995). 
The problem of the local interpolation is getting more complicated when the distribution 
of nodal points is of irregular pattern and density (scattered data). One should pay the 
greatest attention to two problems: in which way to develop the system of geometric 
figures, i.e. which of the developed groups of geometric figures is the most convenient, 
and how to find the fastest way to a geometric figure containing the requested point of 
interpolation. The part of the mathematics dealing with developing and analyzing 
algorithms for the purpose of solving these problems (space geometry) is called 
Computational Geometry. It is also present in the field of natural sciences, physics, as 
well as technical and information sciences and it is to be found in all problems connected 
with geometry (Computational Geometry Pages, http://compgeom.cs.uiuc.edu/ 
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~jeffe/compgeom). It is also applied in a very wide area of geosciences, and applied in 
surface parameterization used for presenting the Earth’s surface with a developed group of 
geometric figures. The basic geometric figures that are most often used are known by the 
name Vernoi diagrams and Delaunay triangulation (Renka, 1996). 

The simplest case of interpolation is the linear function. However, the greatest 
disadvantage of the linear interpolation is the discontinuity phenomenon, seen already in 
the first derivation of the function in the points along the triangle’s sides, and in vertices, 
i.e. nodal points. All other derivations within every triangle are also equal to zero. If the 
function with which some values are interpolated is derivable and if, at the same time, 
there are also second and third derivations, we speak about continuous surface defined 
with these functions (Erol and Celik, unpublished results). 

M e t h o d  o f  N a t u r a l  N e i g h b o u r s  I n t e r p o l a t i o n  

The described method of local interpolation is based on the idea of the “influence” of 
the closest nodal points encircling the point that needs to be interpolated in a certain local 
area to the value of interpolation (Sambridge et al., 1995). It is known as Natural 
Neighbours Interpolation method. The concept of this method is very simple and is based 
on looking for those data that will have the most similar characteristics and known 
behaviour. The datum having the most similar characteristics of the points that is to be 
interpolated is the closest “neighbor” and it is presumed that it will behave similarly. The 
questions as how to define which nodal points are the closest neighbours and how to find 
them quickly have been solved with various algorithms (Sambridge et al., 1995). 

The natural neighbours of any nodal point are contained in Veroni’s cells or 
equivalently, those nodal points that are connected with the sides of Delaney’s triangles 
(Triangulation, http://www.math.utah.edu/~alfeld/MDS/triangulation.html). The most 
important characteristic of the definition of natural neighbours is that they present a group 
of the closest nodal points around some points. The number and the position, i.e. local 
distribution of nodal points will affect the definition of some point. Thus, the points in 
some areas will be surrounded by more, and in some by less natural neighbours. In the 
same way, the distance between natural neighbours and a point will be larger or smaller 
(Sambridge et al., 1995). One can imagine that the natural neighbours of any point in 
a defined area are contained in a unique group of nodal points defining the neighbourhood 
of a point in a plane. If the distance among nodal points is great in some parts, or the 
distribution of points is highly anisotropic (isotropic - a characteristic of some data to 
indicate equal physical characteristics in various directions), then a set of natural 
neighbours will describe the characteristics of this area, and still present the best group of 
the closest surrounding nodal points. Such approach presents the best basis for the 
application of the local interpolation that can be expressed as (Sambridge et al., 1995) 

 ( ) ( )
1

, ,
n

i i
i

f y x y x fϕ
=

= ∑ , (15) 

where f(y, x) is the value of the function in the point of interpolation, fi (i = 1, …, n) are 
the values of data in n natural neighbouring nodal points (y, x), and ϕi (i = 1, …, n) are the 
weights associated to some nodal point defined as a natural neighbour. The harmony of 
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interpolation depends as well on the function of defining the weight ϕi. However, since 
the sum in the previous formula is only the sum of natural neighbouring nodal points, then 
the interpolation will be local regardless of how ϕi is defined. Apart from that, the size 
and form of the defined area will be adjusted to the nodal point’s density. Some methods 
of determining the weights are based on the amount of the surface of Vernoi’s cells. Such 
methods of looking for natural neighbours and of local interpolation in this area result in 
a continuous first derivation of the interpolation function in all points except for nodal 
points, and it is recommendable to use it with very irregular distribution of points 
(Sambridge et al., 1995). The most important characteristics of these algorithms are the 
following: 

• The function value in the nodal point is equal to the measured value, i.e. to the 
input data in nodal points; 

• Interpolation is local (the point is influenced only by its neighbouring nodal 
points); 

• Derivations of interpolation functions are continuous in the entire area, apart from 
the nodal points. 

M o d e l s  o f  T r a n s f o r m a t i o n  w i t h  N o n - P a r a m e t r i c  
A l g o r i t h m s  

The models of transforming ellipsoidal height of GPS points into the normal 
orthometic height by means of the interpolation with Watson and Loess algorithms have 
been tested. Generally speaking, the modelling of surfaces with non-parametric algorithms 
is recommended in the case when it is necessary to make good approximation of the local 
irregularities and when the trend of the input data behaviour is not clearly expressed. 

The author of the Watson algorithm is David Watson. The algorithm has one of the 
most sophisticated methods of selecting the neighbouring points, i.e. nodal points, but also 
the worst interpolation procedure. The Watson algorithm uses the method of the closest 
natural neighbour that is based on looking for the neighbouring nodal points by means of 
circles. In order to interpolate heights, the Watson algorithm uses the weight arithmetic 
mean of the values of the z argument (the height in case of dN) of the neighbouring nodal 
points. The procedure of interpolation and extrapolation is linear which is not good if it is 
necessary to model area trends among the nodal points with the higher order of 
interpolation function. The method of extrapolation is primitive and of low accuracy. 

The Loess algorithm is the only algorithm that uses the method of data smoothing 
before the method of interpolating irregularly distributed nodal points, and all other 
methods have only the possibility of exact interpolation. The author of this algorithm that 
has never been published is Ron Brown, but the basic information about the Loess 
algorithm can be found in Cleveland (1993). The 3D Loess algorithm actually consists of 
two algorithms that include the procedure of data smoothing and the procedure of 
interpolation: It has been developed especially for the TableCurve3D program package. 
Hence, the Loess algorithm applies first the technique of interpolation with the method of 
Dealunay’s triangulation on smoothed data. For that reason, the same reduced values of 
undulation (dN) that were there before the modelling, have not been saved for empirical 
input data, i.e. nodal points. The Loess procedures consist of fitting three parametric 
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linear, six parametric square or ten parametric cubic functions using the method of the 
closest natural neighbour. Hence, three models of fitting are used. The first order model is 
the plane (y = a + bx + cy), the second order model is the second degree Taylor’s 
polynomial (y = a + bx + cy + dx2 + ey2 + fxy)and the third order is the third degree 
Taylor’s polynomial (y = a + bx + cy + dx2 + ey2 + fxy + gx3 + hy3 + ix2y + jxy2). 
Referring to the degree and the number of polynomial parameters, the number of the 
neighbouring nodal points used in local fitting is determined. The smoothed data are used 
as nodal points in the interpolation of Renka I (Renka, 1996) that is based on the method 
of Dealunay’s triangulation interpolation. This algorithm enables continuous first and 
second partial derivations in the procedure of interpolation and of extrapolation. The good 
side of this algorithm is that it has got one of the best developed data smoothing methods. 
The speed of algorithm is improved because the interpolation is developed on smoothed 
data, although the method of Dealyunay’s triangulation is used. 

A c c u r a c y  E s t i m a t i o n  o f  I n d i v i d u a l  N o n - P a r a m e t r i c  
T r a n s f o r m a t i o n  

The external accuracy of the transformation model with non-parametric algorithms has 
been tested in the same way as in the previous chapter.  

Table 7 shows the percentage values of the number of GPS points given, along with 
the size of their true value belonging to a certain interval. It can be noticed that almost 
50% of the GPS control points have absolute residual values smaller than 4 cm. The 
number of points having the deviation from the Loess model smaller than 6 cm reaches as 
much as 70%. 

The next two tables (Table 8 and 9) present the estimation of internal and external 
accuracy of individual non-parametric model. 

The minimum and maximum absolute residual values, residual square sum, and of 
variances and standard deviation for the models Watson and Loess are calculated in 
Tables 8 and 9. One can see immediately that the given values for the Watson model are 
equal to 0.00 cm. The reason lies in the definition of the algorithm that fixes all input data, 
i.e. it does not change the dN value, unlike the Loess algorithm where the input data are 
first smoothed. The minimum absolute value of residuals with Loess model is 0.06 cm, 
and the maximum value reaches the amount of 8.66 cm for the GPS point 1840-
Štefanovec. GPS point 1840-Štefanovec is located at a higher altitude in the area of 

Table 7. The percentage of the number of points having the accuracy in the interval of 0 to 6 cm. 

σ 
Watson Loess 

Number of Points % Number of Points % 

< 1 cm 5 18.5 4 14.8 
< 2 cm 6 22.2 9 33.3 
< 3 cm 9 33.3 14 51.9 
< 4 cm 13 48.1 15 55.6 
< 5 cm 15 55.6 18 66.7 
< 6 cm 18 66.7 19 70.4 
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Medvednica and connected to only one benchmark 887 of the levelling figure 630, II. 
Polygon of II. NVT built into the sewers of the vertically stabilized bridge. 

Provided that the combinations of 27 various models slightly differ from each other, 
one can compare the deviations of 27 control points (Table 9). The diversity of algorithms 
can be noticed in the analysis of the deviation as well where different points appear with 
both algorithms acquiring maximum and minimum values. The point 1331-Sljeme has the 
largest absolute residual value in the Watson model, and in the Loess model it is the case 
with the point 1018-Sesvetski Kraljevec. Both points are extrapolated, i.e. they appear in 
edge areas, with the GPS point 1331-Sljeme being the one with the highest altitude. 

Table 10 presents external accuracy estimates of the Watson and Loess models. The 
comparisons are presented as related to the σ1 and σ2 standard deviations. Standard 
deviation σ1 has been computed on the basis of the deviations of the measured values 
from the dNmodel values using the model determined at all 27 points. Since the Watson 
model fixes input data, the deviations are equal to zero, and therefore, this accuracy 
estimate is very convenient, because the deviations of all points are smaller than 1σ. 
However, in order to define the accuracy of this model more realistically, the analysis has 
been made in relation to the standard deviation σ2, that is calculated from 27 residual 
values of GPS control points calculated with the Watson and Loess model (Gucek, 2005). 

The residuals of GPS points have been calculated in the already described way, 
through the difference of the measured value and the one obtained from the model. Then 

Table 8. Estimation of internal accuracy. 

 Watson [cm] Loess [cm] 

MinAbs(r) 
(Number of GPS Point) 

0.00 
0.06 

(1237) 

MaxAbs(r) 
(Number of GPS Point) 

0.00 
8.66 

(1840) 

Σr 2  0.00 2.55 

σ 2  0.00 0.09 

σ 0.00 3.07 

Table 9. Estimation of external accuracy. 

 Watson [cm] Loess [cm] 

MinAbs(r) 
(Number of GPS Point) 

0.09 
(4026) 

0.04 
(2795) 

MaxAbs(r) 
(Number of GPS Point) 

26.60 
(1331) 

18.70 
(1018) 

Σσ 2  0.00 2.42 

Σσ 2 /27 0.00 3.05 
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the σ2 standard deviation has been computed on the basis of the residual values for the 
GPS control points obtained from 27 models that differ by about 7% of input data. 

Thus obtained results are presented in Table 10 in columns with the marks Watson-σ2 
and Loess-σ2. It is obvious that 78%, i.e. 21 GPS points deviate from the Watson model 
for less than 8.23 cm (1σ2), and that more than 70% of GPS control points deviate from 
the Loess model for less than 6.90 cm (1σ2). A very important fact is also that the residual 
of only one GPS control point (1331-Sljeme) amounting in the interval [2σ2, 3σ2] for the 
model Watson, and with the Loess model it happens with two GPS points (1018-Sesvetski 
Kraljevec and 1840-Štefanovec). The above mentioned points have larger residual 
amounts recorded. 

There are a few conclusions to be made on the basis of the whole analysis connected 
with the modelling of the surface using Watson and Loess algorithms, taking into account 
also previous theoretical explanations. The data from Table 10 speak in favour of the 
Watson algorithm. Namely, in the Watson algorithm almost 78% of GPS control points 
have the residual amounts smaller than 1σ2 (8.23 cm), and in the Loess algorithm this 
information is equal to 70.4%. The difference of 8% in favour of the Watson algorithm is 
only 2 points. However, one should take into consideration the comparison of the standard 
deviation amount that is bigger in the Watson algorithm where 1σ2 = 8.23 cm while in the 
Loess algorithm, this amount is smaller and reads 1σ2 = 6.90 cm. The best comparison of 
residuals is presented in Table 7 where it is to be seen that although 18% of GPS control 
points in the Watson algorithm have absolute deviation values smaller than 1 cm, finally 
55.6% or 18 GPS control points have got the amount of absolute residual values smaller 
than 5 cm in the Loess algorithm, as related to the 15 GPS control points or 48.1% in the 
Watson algorithm. One should also take into consideration the size of the interval between 
the minimum and maximum values that runs up to 25.51 cm in modelling with the Watson 
algorithm, and 18.66 cm in the Loess algorithm. 

Table 10. Comparison of external accuracy of the models Watson and Loess. 

σ 

Watson 
σ1 = 0.00 cm 

Watson  
σ2 = 8.23 cm 

Loess  
σ1 = 3.07 cm 

Loess  
σ1 = 6.90 cm 

Number 
of GPS 
Points 

% 
Number 
of GPS 
Points 

% 
Number 
of GPS 
Points 

% 
Number 
of GPS 
Points 

% 

< 1σ 27 100.0 21 77.8 14 51.9 19 70.4 
(1σ, 2σ) 0 0.0 5 18.5 5 18.5 6 22.2 
(2σ, 3σ) 0 0.0 1 3.7 7 25.9 2 7.4 

> 3σ 0 0.0 0 0.0 1 3.7 0 0.0 
Sum 27 100.0 27 100.0 27 100.0 27 100.0 
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3. CONCLUSIONS AND RECOMMENDATIONS 

The empirical data used for modelling were reduced undulation values dN of 
GPS/levelling points, which are considered as quantities without errors. Within the frame 
of dN modelling with parametric functions the approximation surfaces were obtained on 
the basis of three polynomials: FN310, FN312 and FN318. The modelling with non-
parametric Watson and Loess algorithms was also done. The FN318 and Loess models 
yielded the best results of reduced undulation values of dN, and therefore Table 11 gives 
an overview of the normal orthometric heights of GPS/levelling points determined in 
measurements (HHVRS71) and defined by the transformation using the FN318 and Loess 
models (HFN318, HLoess), as well as the differences (ΔHFN318 = HFN318 − HHVRS71, 
ΔHLoess = HLoess − HHVRS71). 

Table 11. Overview and comparison of GPS points heights. 

GPS HHVRS71 [m] HFN318 [m] ΔHFN318 [cm] HLoess [m] ΔHLoess [cm] 

1018 195.1145 195.1519 3.74 195.1282 1.37 
1037 240.6171 240.6197 0.26 240.6324 1.53 
1237 282.9077 282.9279 2.02 282.9083 0.06 
1331 1004.9174 1004.9163 −0.11 1004.9210 0.34 
1476 223.3784 223.3405 −3.79 223.3656 −1.29 
1781 266.8707 266.9468 7.61 266.9382 6.75 
1840 271.3994 271.3157 −8.37 271.3127 −8.66 
1982 221.1006 221.1649 6.43 221.1491 4.86 
2573 216.7555 216.7201 −3.54 216.7275 −2.80 
2795 229.6351 229.6302 −0.49 229.6372 0.21 
3010 216.4851 216.4895 0.44 216.4843 −0.08 
3040 213.1432 213.1361 −0.71 213.1380 −0.52 
3080 217.8644 217.9057 4.13 217.8785 1.41 
3215 203.2095 203.1908 −1.87 203.2184 0.89 
3453 197.1920 197.1388 −5.31 197.1823 −0.97 
3961 214.7853 214.7746 −1.06 214.7754 −0.98 
4026 201.7758 201.7527 −2.31 201.7895 1.37 
4204 204.6601 204.6692 0.91 204.6523 −0.78 
4497 202.0982 202.0957 −0.25 202.0722 −2.61 
4501 203.8965 204.0016 10.51 203.9715 7.50 
4578 212.5879 212.5574 −3.04 212.5582 −2.97 
4750 288.4420 288.4186 −2.34 288.4270 −1.51 
4862 214.0122 213.9776 −3.46 213.9774 −3.48 
4870 236.6880 236.7170 2.90 236.6961 0.82 
4978 272.8196 272.8068 −1.28 272.8228 0.32 
4992 233.5037 233.5114 0.78 233.5156 1.20 
5081 382.3513 382.3335 −1.78 382.3621 1.08 
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The analysis and estimation of accuracy for each single model were determined on the 
basis of deviations of measured values of GPS/levelling points from the computed values 
obtained from the models. Very good and high-quality results were obtained referring to 
the analysis and the presented facts. First of all, assuming that the average accuracy of the 
height component of GPS points in homogeneous field is 3 cm and that the average 
accuracy of nodal benchmarks is between 1.41 cm and 5.27 cm, the obtained internal 
accuracy of individual models is obtained and recorded in the standard deviation of 
3.07 cm to 5.11 cm. The highest internal accuracy of parametric transformation models is 
achieved with the FN318 polynomial, having the standard deviation of 4.99 cm, and the 
surface modelling with the Loess algorithm yielded the best results of the accuracy 
estimation running up to 3.07 cm. At the same time, the external accuracy of the models 
was given by cross validation method. In almost all models, about 70% of GPS/levelling 
control points have the absolute deviation value from the models smaller than 6 cm. The 
largest percentage of 74.1% (20 points) in the case of parametric functions is found in the 
FN312 model, and not the non-parametric Loess algorithm having 70.4% (19 points). 

Polynomials are very good functions of approximation that can be used for defining 
the trends of various surface models, i.e. it is recommendable to use them for the first 
approximations. However, taking into consideration all parameters, the modelling of the 
surface that would be used for transforming the ellipsoidal height into normal orthometric 
height speaks in favour of the Loess algorithm. Theoretically, the positive sides of this 
algorithm can already be seen because it is obviously that this algorithm is good for 
modelling the type of data that are irregularly distributed over the whole area of 
modelling. Still, its disadvantage should also be pointed out. Namely, the input data do not 
have fixed original values, but have changed in the interval of as much as 8 cm. The fact 
that the normal orthometric height of GPS points determined with measurements will not 
be determined again from the model indicates that this disadvantage does not present 
a problem in practice. 

On the basis of the tested models applied only within the frame of the test area, a few 
essential facts should be taken into consideration in future studies and projects. The 
accuracy of any selected model will largely depend on the accuracy of the input data, the 
terrain configuration and the distribution of GPS/levelling points. The selection of points 
should not always concentrate on the raster and equally cover the area, but should also, as 
much as possible, encompass the characteristic topology, i.e. all recesses and elevations. 
In hilly and irregular areas, the density of the points must be larger than in the planes. The 
density of GPS/levelling points is also important, and the accuracy of the models certainly 
depends on it. It is therefore recommended to test the influence of a number of 
GPS/levelling points in future analyses on the accuracy of the selected transformation 
model, which will affect the cost-effectiveness of the transformation. Hence, the following 
question needs to be answered: what is the highest price with regard to the required 
transformation accuracy? It is evident that in the future projects, GPS points should be 
used for such testing having higher-quality stabilization as related to the GPS points in 
homogeneous field, and they should be, if possible, connected to the minimum of two 
benchmarks in the highest order levelling. In this case, all points of the basic GPS network 
of the city of Zagreb should be included in the testing and the accuracy of input data 
should be calculated taking into account the individual accuracy of ellipsoidal heights of 
GPS points, normal orthometric benchmark heights and measurement accuracy. In this 
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way the accuracy of individual GPS/levelling points in the model could be indicated 
through the weight associated to each input information. The determination of the normal 
orthometric height from the model by using the method of extrapolation should be 
avoided. Therefore, GPS/levelling points from the area outside the one being the object of 
modelling should be included for specific areas. 

Before selecting a transformation model itself, all input data should be tested in order 
to eliminate gross errors, but at the same time it is recommendable to test the model itself 
statistically, especially the parameters when dealing with exact mathematical parametric 
functions. The testing conducted for the purpose in this paper has shown that the model of 
the surface approximation in which the interpolation is applied on smoothed data, has 
yielded better accuracy results, which can be seen in the application of the Loess 
algorithm. It should be underlined that it is most convenient to check the external 
accuracy of the transformation model on an independent group of data. 

Finally, it is extremely important to point out that the selection of the model must 
depend on a few elements: first of all on the required accuracy, practicality of application, 
practical use and unavoidably, cost-effectiveness. 
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