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Summary – The model structure for dynamic system 
parameters monitoring, designed to increase the 
redundancy of sensor information and improvement of 
marine control system availability, is presented. The 
model consists of two subsystems, the first one for on-
line monitoring and the second for off-line monitoring. 
The off-line monitoring subsystem is based on 
combinatorial identification of interrelationship 
between any two disjunctive subsets of analysed 
parameters primary set. The approximative regression 
neural networks were used for that purpose and 
probabilistic neural network was applied for efficiency 
evaluation of each simulation model. The procedure 
could be performed for all possible parameter 
combination within the steady process modes, defined 
previously. Afterwards, it is possible to choose the 
optimal model according to the obtained efficiency 
rank-list of all simulation models. The main on-line 
subsystem function is a faultlessness control of system 
sensors. If failure of one or more sensors occurs, the 
optimal simulation model for estimation of lost sensor 
information is activated. Moreover, residual 
monitoring between measured real-time sensor data 
and simulated data for each steady process mode of 
trained off-line subsystem can be used for diagnosing 
faults and/or significant deviations of conventional 
sensor control. 

 
 

I. INTRODUCTION 
 
Precision and reliability of various control systems 

depend upon quality and accuracy of the sensor 
information. That is particularly important for the marine 
control systems that are specific for their redundancy being 
often, for objective reasons, at insufficiently high level.  

Utilization of modern non-conventional solutions, 
realized by linking computer intelligence algorithms with 
knowledge databases, is recommended. 

A specific multifunctional structure for sensor 
information analysis and processing has been proposed in 
this article. The concept is based on correspondence 
between the on-line and the off-line control and monitoring 
subsystems. 

The primary function of the off-line subsystem is to 
permanently identify interrelationships of the parameters 
analyzed. Operating system identification problems consist 
in most of the cases in developing certain mathematical 
models that serve to determine analytical expressions of 
dependence function of output parameters on the input 
parameters of the system. 

The most complicated identification problems arise 
when analytical expressions of such functions are to 
complex or even impossible to determine. Just for that very 
reason the combinatorial approach, using neural networks 
as one of the possible solutions of the problem, has been 
used. The proposed combinatorial model, based on 
generalized regression neural networks (GRNN), enables 
identification and simulation of certain number of working 
system parameters using any other class of the remaining 
parameters, thus representing an adequate generalization of 
the model, presented previously [1]. 

Additionally, after the simulations have been computed, 
an iteration procedure model for estimating the efficiency 
of the obtained results by means of probabilistic neural 
network (PNN), has been proposed. It finally allows the 
possibility of choosing the optimal simulation model for 
determine the interrelationship of the working parameters 
inside the corresponding operating mode of the system.  

On the other side, the primary function of the on-line 
subsystem is to control correct sensor work, to diagnose 
their failures and/or faults and to take measures if problems 
occur. 

The purpose of the presented model is a significant 
increase of the sensor information redundancy in cases 
when total interruption of the sensor work occurs but also 
when the information obtained significantly differs from 
the routine and expected ones. 

   
 

II. COMBINATORIAL IDENTIFICATION AND 
SIMULATION MODEL 

 
Generalized regression neural network is one of the 

most used networks for the function approximation [2]. 
Extremely short time required for its creation and further 
use for identification and simulation make this method 
particularly convenient. 

GRNN consists of four layers. The input layer has R 
neurons, where R is the number of arguments of the 
multivariable function which is approximated using the 
GRNN network. The first hidden radial basis layer and the 
second hidden linear layer have Q neurons, where Q is a 
number of samples sets for learning. The output layer has 
only one neuron. The learning set consists of ×Q R  data 
that can be written in a matrix form 
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and of Q target data that can be written in a matrix form 
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Detailed review and description of the GRNN are given 
elsewhere [1], [2] and are omitted in this work. 

On the other hand, the use of probabilistic neural 
network mainly concerns the classification problems.  

The network classifies the presented sample in one of 
the predetermined classes, according to the criteria that the 
samples from the learning set are associated with these 
classes. 

The PNN network, as well as the GRNN network, also 
consists of four layers, however since its architecture has 
been described in detail elsewhere [1], [2], these items are 
omitted in this study.  

 
 

A. The identification and simulation model structure 
 
In the following section we propose the combinatorial 

identification and simulation model of the system by 
means of the GRNN networks. 

Let 1 2{ ,  ,  ...,  }RX x x x=  be the set of R parameters of a 
system and let Q states of that system be known, where 
each state is described by an appropriate sample. The space 
of these states may be written in the matrix form 
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Problems of the system theory often require the 
determination of relationship among the system 
parameters. 

 Theoretically, in the system with R parameters, l among 
them may be expressed by the ≤ −m R l  parameters in 
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ways. Considering that 1,..., 1,l R= − the total number of 
these ways is equal 
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Technical problems usually refer to determination of one 
parameter ( 1)l =  dependence on a number of remaining 
parameters. For that purpose let ix  be arbitrarily selected 
parameter from the set X. It can be considered as the 
function of more variables whose arguments are the 
elements of any r − member subset 
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where 1,2,..., 1,r R= −  i.e.                     
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These functions are in total 12 1.RN −= −  

However, the most remarkable advantage of this 
combinatorial model is the fact that one doesn't have to 
keep searching dependence of only one parameter upon the 
number of others remaining, but merely to search 
dependence of any of l R<  parameters on any other 
<m R  parameters, under condition that + ≤ .m l R  
Let lX  and mX  be the sets of l and m parameters 

respectively.  
In the set of Q  known samples, that are in total 

( ),Q card= Q  the parameters values from the lX  set have 
the same values for the arguments values of this sample, 
regardless the number of arguments .m R<  

Let the samples of the arbitrarily selected set 1 ⊂Q Q  
be the learning samples and the samples of the set 

2 1\⊆Q Q Q  be the testing samples. 
Now the identification of the system can be done with 

samples of the set 1Q  using the GRNN networks obtaining 
for each sample totN  approximated values of particular 
parameters from the set ,lX  i.e. 1 totQ N⋅  for all 

1 1( )Q card= Q  samples.    
As the approximation of the totN  functions is 

performed, we shall create one GRNN network for each of 
them. For that purpose, to each of them the input 1P  matrix 
is presented, being the corresponding submatrix of the SM  
matrix and 1Q m×  format. Besides, to each GRNN 
network, we present always the same target matrix 1T , that 
is the corresponding submatrix of the SM  and ×1Q l  
format. 

After the totN  matrices of the weight coefficients 
1,1

1=IW P  have been formed and totN  related matrices of 

the aim 2,1
1,=LW T  the system was identified totN  times. 

On each of totN  obtained identification models we shall 
test the samples from the 2Q  set and they in total are 

2 2( ).Q card= Q  Now the approximated parameter values 
from the lX  set will not be equal for the same sample, but 
they will change with regard to the number of m arguments 
through which the approximation has been performed. 
Exactly in this part the differences among the totN  
identification models will be created and the efficiency of 
each of them will depend exactly on approximation 
possibilities of the GRNN networks, but also on the 
information "quality" which the parameters, used for 
approximation, provide. 

We shall present to each single model, i.e. to each 
GRNN network, the input matrix 2P , being the 
corresponding submatrix of the matrix SM  and 2Q m×  
format. The elements of this matrix are from the testing set 

2 ,Q  and its format depends exclusively on the number of 
parameters through which the approximation has been 
performed. After the simulations carried out, we shall 
obtain 2 totQ N⋅  approximated values of parameters from 
the set ,lX  where for each of the totN  approximations of 
parameters from the set lX  the corresponding 
approximated values are written in the form of matrix  
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j l ij totX j N= =S  (8) 

 

with format 2 .Q l×  
 
 
B. Efficiency evaluation of the simulation models  
 
In the following section we shall propose the model for 

the efficiency evaluation of the simulation results by 
means of the PNN network.    

From obtained simulation results =,  1, 2, ..., ,j totj NS  we 
can form the following matrix (9) 
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of the format 2( ) totQ l N⋅ ×  and it will be presented to the 
PNN network as the input matrix, where 1, 2,..., .=i l   

Every vector column 
2 21, 2, , ( ) 1[ ]Ti i i

j j j Q j Q ls s s ⋅ ×=S  

will be uniformly associated to the j − class. All the totN  
classes may be written as vector row 
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of the 1 totN×  format and by means of it the matrix of aims 
1T  and tot totN N×  format is formed. After the input 

matrix 1S and the target matrix 1T  have been presented to 
the PNN network, the weight coefficient matrices 

1,1 1
1 =IW S  and the target matrix 

2,1 1
1 =LW T  are formed. 

Trained PNN network can now perform the 
classification. The sample that will be classified is a vector 
column lS , obtained as the corresponding submatrix of the 
matrix SM  and of format 2( ) 1.Q l⋅ × The elements of the 
vector column lS  represent real values of the parameters 
from the parameter set lX  for each sample of the matrix 

2P .  
The classification is performed by iteration process 

within 1totN −  steps using 1totN −  PNN networks with 
results that we can interpret as follows. 

In the first step, by means of the first PNN network, we 
classify the vector column lS  in one of the previously totN  
defined classes. Without loosing the general concept, let's 
suppose that the PNN network has classified the sample 

lS  in the thj −  class. Thus, it is shown that the affiliation 
of the sample lS  in the thj −  class is the most probable. 
In other words, the thj −  simulation model is the best 
one. 

In the second step we reduce the number of samples and 
the number of classes for one, omitting thj −  sample and 

thj −  class. 
We present to the second PNN network the following 

input matrix 
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of the 2( ) ( 1)totQ l N⋅ × −  format and the target matrix 2T of 
the − × −( 1) ( 1)tot totN N  format, obtained from the row 
vector class 
 

 2 [1 2 1 1 ]totj j N= − +Tc  (12) 
 

of dimension × −1 ( 1).totN  After the weight coefficient 

matrices 
1,1 2
2 =IW S  and the target matrix 

2,1 2
2 ,=LW T  

have been formed, the second PNN network performs 
classification of the sample lS  in one of the remaining 

1totN −  classes, to which most probably belongs.   
By iteration repeating of this procedure for another 

3totN −  times, the hierarchical sequence of totN  
simulation models is produced 
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according to their efficiency. 

Simulation model  1 ,hS  eliminated in the first step, is the 
most efficient and it is the first in that sequence. The 
second simulation model 2

hS  was obtained in the second 
step of the iteration procedure. The last one and the only 
left, is the simulation model ,

tot

h
NS  obtained after the 

1totN −  classifications were performed. 
As already mentioned before, the procedure is iteratively 

repeated for 1totN −  times with the final result of 
generating the rank-list of all totN  simulations that were 
performed.  

In general, the question is put forward why to seek for 
the optimal simulation model at all, if at the first step of the 
above mentioned iteration procedure the best one is 
already selected. There are few reasons for it and here we 
are going to explain the two of them being the most 
important.  

The first reason is undoubtedly the complexity of 
numerical operations that proceed during the identification 
and simulation procedures. Despite the present-day 
relatively low costs of the RAM memory and processor 
speed, by processing extremely large sets of data and a 
great number of parameters, there is a real risk of rupture 
of numerical calculations and algorithms before they are 
finished. High level of reliability that is demanded in 
marine control systems is more than sufficient reason why 
the extraordinary attention is needed when we deal with 
these issues.  

The second reason is general and it is characteristic not 
only for the identification of the marine dynamic processes 
but for any other identification as well. The problem has 
been evaluated before [1]. It can be simply deduced from 
the presented simulation results that very often some 
parameters not only do not offer information of sufficient 



quality for satisfying identification, but their "inexpert" 
impact may contaminate and disturb the efficiency of 
multivariable identification and simulation models. 

Graphical presentation of simulation results is 
particularly convenient for optimal model determining and 
for illustration purpose few main results achieved in [1] are 
presented in the following text. 

For instance, among other things, relationship between 
output power and remaining analysed parameters of ABB 
210 MW steam turbine in all possible input parameter 
combinations was identified by means of GRNN model in 
[1].  

Turbine bearing temperatures measured on four 
characteristic positions, axial shifts and relative vibrations 
were elements of input parameter set. 

Simulations were performed on a sample of parameters 
that have been measured during a little less than three 
hours. During the measurement, the revolution of turbine 
was constant (3000 rpm), but the output power was 
considerably variable because of various consumer 
demands. 

Graphical illustration of simulation results for the best, 
"optimal" and the worst simulation model is presented on 
figures 1a, 1b and 1c respectively. 

It is quite clearly even without analytical calculations 
what can we expect from the best (Fig. 1a) and what from 
the worst (Fig. 1c) simulation model. 
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Fig 1. Response of GRNN network for simulated steam turbine 
output power in relationship of all analysed parameters (a),  

in relationship of bearing temperatures (b)  
and in relationship of turbine axial shifts (c) 

Source: [1]  
 
 

As already mentioned before, extremely weak results of 
some simulation models can clearly indicate parameters 
that not only do not offer information of sufficient quality, 
but their existence may contaminate input parameter set. 

 On the other side, not only that we can evaluate what 
subset of input parameter set gives the best simulation 
model, but we may also determine some eventually new 
significant interrelationship between analysed parameters. 

 These results and conclusions could be of a great 
importance even in classical approaches of mathematical 
modelling of certain problems. This is especially important 
for exceptionally complex models because of possibility of 
leaving out particular parameters with previously evaluated 
relatively minor effect on output parameter set. 

 
 
III. THE MODEL STRUCTURE FOR INCREASING 

REDUNDANCY OF SENSOR INFORMATIONS  
 

In the final section we propose the model structure 
whose primary function is to increase redundancy of 
sensor information in marine control systems. Block 
diagram of the redundancy increasing structure based on 
the model presented in II. is illustrated in Fig. 2.  

The model comprises two basic subsystems. The 
function of the off-line subsystem is the continuous sensor 
information processing. It may operate in a real time, 
although it is not necessary. It is in correlation with the on-
line subsystem which provides continuously sensor 
information in the form of time matrix.  

On the other hand, the on-line subsystem has several 
functions. The primary function is the continuous checking 
of sensor accuracy and detection of possible failures or 
faults. Its secondary function is the data transfer into the 
off-line subsystem as long as the conventional sensor 
control points the proper functioning with absolute 
reliability [5], [6]. 

 



 
Fig. 2. Proposed model structure for increasing redundancy of sensor information in marine control systems 

Source: Authors 
 
 
For the various operating modes the off-line subsystem 

classifies the collected sensor information of all the 
parameters observed and categorize them into learning and 
testing samples. The learning samples pass through the 
previously described combinatorial GRNN model, thus 
identifying the system for the various operating modes. 
Depending on changes of the parameter values within the 
same operating mode of the system, it is possible to setup 
the identification to satisfying accuracy.   

On the other hand, testing samples serve to show the 
efficiency of the identification itself, but also to evaluate 
and determine the best simulation model that will be used 
should one or more sensors stop functioning. The 
efficiency evaluation of the simulation models is carried 
out according to the previously described PNN model. 

As far as the conventional sensor control points the 
failure [5], [6], the related operating mode is detected and 
by control system the alarm is sent to the operator. The 
time matrix of the non-lost sensor information is generated 
and the estimation of the lost parameters begins, using the 
optimal simulation GRNN model. Simpler and very 
efficient parameter estimations of one sensor have been 
shown before [1], [3], [7], using various artificial neural 
networks.  

However, the lost information estimation of major 
number of failed sensors, as well as the sensors that show 
certain operating problems, can also be performed in a 
simple and efficient way, as described in section II. 

Namely, even when the conventional control displays 
accurate sensor function, their functionality can be 
additionally controlled and the minimal divergence of 

usual values can be perceived. For that purpose, the 
previously trained off-line subsystem will predict the 
sensor information values in the routine operating mode 
and will compare them with the collected sensor 
information in the real time. To provide the maximum 
reliability of this diagnostic sub-system, the off-line 
subsystem should be trained using the data collected in the 
period in which 100% reliability of the sensor accuracy 
could be guaranteed. Determining of residuals between the 
simulated and measured values defines divergences which, 
in the case they pass over the allowed limits, indicate alert 
to the operator via the control system. 

By this combined approach in on-line and off-line 
operating mode significant advantages in sensor 
information analysis and processing can be achieved. The 
main advantage of the off-line data analysis consists in 
possibility of using the less demanding statical neural 
networks, but also in the opportunity to provide processing 
with non real-time data. It relates primarily to the 
possibilities of fine tuning of the networks in order to 
achieve optimal simulation results and also in the 
possibility to prepare the model up front for the largest 
number of different scenarios in solving the diagnostic 
problems. 

In the study following this one, the most important parts 
of the programming code of the whole model described 
here will be presented, as will the results of simulation 
examinations for the chosen parameter group of the ship 
engine room with a two-stroke slow speed diesel engine 
control system. Particular attention will be given to the 
criteria of choice of the optimal simulation model.  



IV. CONCLUSION 
 

The need for increasing the sensor information 
redundancy is especially pronounced in marine control 
systems. The reliability required by classification societies 
grows larger on a daily basis due to the level of automation 
demands. 

The combinatorial model, based on artificial neural 
networks with the possibility of controlling the accuracy of 
a single or multiple sensors functionality is presented. In 
that manner, the model may present an alternative and/or 
expansion for conventional automatic control systems in 
cases when input and output parameters are in any 
relationship.  

More over, the possibility of diagnostics of both failures 
and faults in sensor functionality, as well as the adequate 
mechanism for estimation of the lost sensor information 
has been shown.  

The primary advantage of proposed model is particularly 
expressed when the analytical expression of relationship 
between input and output parameters couldn’t be 
determined. 
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