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1 Introduction

We are interested in finding macroscopic (global) properties of two-phase flow through
highly heterogeneous porous media. Namely, starting from a porous media contain-
ing, at the Darcy scale (local scale) many heterogeneities concerning respectively
intrinsic one-phase rock parameters and two-phase flow capillary pressure or relative
permeability curves, we want to characterize the whole domain petrographic and flow
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Université de Lyon, Université Lyon1, CNRS UMR 5208 Institut Camille Jordan, F - 69200 Villeurbanne
Cedex, France
E-mail: bourgeat@mcs.univ-lyon1.fr

Mladen Jurak
Department of mathematics, University of Zagreb, Croatia, Tel.: +385 14605738, Fax: +385 14680335,
E-mail: jurak@math.hr



2

properties by defining global one-phase rock parameters, and global two-phase flow
petrographic characteristics. The simultaneous flow of immiscible fluids in porous
media occurs in a wide variety of applications from Geohydrology, Petroleum Engi-
neering and Environment.

The most concentrated research in this field over the past four decades has focused
on underground petroleum reservoirs where two-phase flow models for enhanced oil
recovery are concerned with oil and water phases. Most recently, multiphase flows
have generated serious interest among engineers concerned with deep geological
repository for radioactive waste (see [23]); where anaerobic corrosion of the steel en-
gineered barriers (carbon steel overpack and stainless steel envelope) of radioactive
waste packages, can produce migration of hydrogen gas in the water saturated repos-
itory isolating rock, inducing groundwater flow and transport of radionuclides. In this
process the two phases are water and gas (see for instance [23], [18], [10]). Nuclear
waste performance assessment requires to estimate nuclides transport migration over
a million of years period, through several kilometers rock formation. Ability to under-
stand and predict underground gas migration is crucial to the design and management
of reliable waste storages. This is a fairly new frontier in multiphase porous-media
flows, and inherent complexity of the physics and of the petrophysic leads to govern-
ing equations for which the only practical way to produce solutions may be numerical
simulation. Additional complexity is also coming from the fact that, at a fine scale
(the scale of near field models), the producing gas radioactive waste packages, are
surrounded by highly different porous media like concrete buffers or plugs, bentonite
tunnel backfill, damaged and fractured zone, granite or argilite host rock. As a result,
of this complexity and of these huge time and spatial scales, at a fine scale, any accu-
rate and well-resolved computation requires excessive amount of computer memory
and CPU time. Moreover, preliminary to opening a nuclear waste repository, perfor-
mance assessment and safety analysis have to be done and submitted to the authority.

Performance assessment consists in investigating different possible configura-
tions or scenarios with different shapes, materials and localization for the design of
packages, insulating barriers, tunnel backfilling, host rock, etc. Safety analysis con-
sists in estimating risk probability to each scenario by statistical simulations mainly
based on Monte Carlo method. In the one hand, all the computational tasks required
by performance assessment and risk analysis exceeds the limit of today’s computer
resources, if done on a fine scale model; in the other hand, the computational cost
of each numerical simulation will be greatly reduced by predicting the large scale
solutions to certain accuracy. The only practical way to produce accurate large scale
numerical simulation is then to use mathematical model consistent with the whole
waste repository scale. Upscaling the host rock formation and other porous media
petrographic properties at the whole waste repository scale, and deriving effective
equations describing the transport migration at this same scale will be a preliminary
task before starting numerical simulations for performance assessment or safety anal-
ysis.

The rest of this paper is organized as follows. In Section 2 we precise the upscal-
ing problem and its dependence on dimensionless parameters: the Péclet number and
the Bond number. In Section 3 we present our upscaling procedure and its numeri-
cal implementation is described in Section 4. In Section 5 we recall other upscaling
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methods used in petroleum engineering and in Section 6 we make numerical exper-
iments showing strength and limitations of each of these methods compared to our
upscaling procedure. Conclusion is given in Section 7.

2 Upscaling problem, definitions

We consider two-phase fluid flow in a porous domain Ω , possibly part of a bigger
geological domain G, which at fine scale has strong heterogeneities, each individual
region of heterogeneity having different intrinsic permeability and nonlinear consti-
tutive relationship for two-phase flow. The two fluid phases are corresponding respec-
tively to the wetting phase, (”water” in in Nuclear waste disposal performance assess-
ment and in Oil reservoir simulation) and to the non-wetting phase (”gas” in Nuclear
waste disposal performance assessment and ”oil” in Oil reservoir simulation); these
two phases will be denoted herein respectively by indices w and nw. For simplicity
and in order to compare to existing literature, we assume flow incompressibility and
immiscibility of the two phases, each phase reduced to a single component.

At each point in the domain Ω , at the Darcy scale, the one-phase porous medium
parameters are the porosity φ , and the absolute permeability tensor K; the two-phase
rock characteristics are the relative permeability curves krnw, krw and the capillary
pressure curve pc. Saying that the porous domain Ω is heterogeneous, at the Darcy
scale, means first that the rock one-phase parameters are rapidly varying, splitting Ω

in a high number of relatively small rock blocks with different intrinsic properties,
and second that there is also several different rock-type, called subdomains, such
that any rock-type subdomain is characterized by one set of two-phase petrographic
curves. More precisely, the domain Ω is composed of n different rock-type subdo-
mains Ωi; Ω = ∪n

i=1Ω i. Any rock-type subdomain Ωi may contain several fine rock
blocks with different intrinsic one-phase rock properties but all these fine rock blocks
are characterized by the same couple of relative permeability curves kri

nw, kri
w and

the same capillary pressure curve pi
c. Governing equations are given, at local scale,

by mass conservation and generalized Darcy’s laws for each phase, complemented
by capillary pressure law:

φ
∂S
∂ t

+divqw = Fw in QT , (1)

−φ
∂S
∂ t

+divqnw = Fnw in QT , (2)

qw =−K(x)λw(x,S)(∇pw−ρwg) , (3)
qnw =−K(x)λnw(x,S)(∇pnw−ρnwg) , (4)

pc(x,S) = pnw− pw. (5)

In (1)-(5), QT = Ω× (0,T ), φ is fine scale porosity, S is the wetting phase saturation,
qw, qnw are wetting and non-wetting phases Darcy-Muskat’s velocities, K(x) is the
intrinsic fine scale permeability tensor, pw and pnw are the phase pressures, ρw and
ρnw are phase densities and g is the gravitational acceleration vector. Fw and Fnw
are the sources terms for each phase; in nuclear waste simulation, we are interested
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essentially by the generation of the gas phase although in petroleum engineering we
will consider both oil production and water injection. Capillary pressure as defined
by (5) is a monotonous decreasing function of wetting phase saturation.

Due to the fact that, at fine scale, the domain Ω is composed of different rock-type
subdomains, Ω = ∪n

i=1Ω i, phase mobilities λξ , ξ ∈ {w,nw}, in (3), (4) and capillary
pressure pc in (5) have the following form:

λξ (x,S) =
n

∑
i=1

1
µξ

kri
ξ
(S)χΩi(x), pc(x,S) =

n

∑
i=1

pi
c(S)χΩi(x); (6)

where µw and µnw are the phase viscosities and χΩi is the subdomain Ωi characteristic
function. In any i−th rock-type subdomain, the capillary pressure curve and the two
relative permeability curves are defined on an interval [Si,m,Si,M], 0 ≤ Si,m < Si,M ≤
1, corresponding to Si,m, the irreducible wetting phase saturation, and 1− Si,M , the
irreducible non-wetting phase saturation. From these, we may then define, in all Ω ,
two piecewise constant irreducible saturation functions:

Sm(x) =
n

∑
i=1

Si,mχΩi(x), SM(x) =
n

∑
i=1

Si,MχΩi(x). (7)

In the local model, described by equations (1)–(5), there are two different spatial
scales: a local scale associated to l, the small rock blocks size, i.e. the heterogeneity
characteristic length, and a global scale, associated to L, the domain Ω characteris-
tic length. The upscaling problem consists of finding the fluid flow equations at the
global scale, called global or effective equations, corresponding to a homogeneous
porous domain, with constant one-phase rock properties and only one rock-type. De-
spite its simplicity these effective equations should capture all effects due to fine
scale domain heterogeneity in a macroscopic scale representation. This global, or
macroscopic, model should keep from the local scale phenomenology only what is
appearing at this global scale while neglecting what was characteristic of only the
fine scale.

The scaling-up method presented herein is based on the assumption that there is
a separation of scale, i.e. ε = l/L is a small parameter. It is well known that effective
equations depend on the fluid flow regime; and, in order to characterize the flow
regime globally, we note that there are three characteristic times at the global scale:
the diffusion time τd , the convection time τc and the gravity leaded convection time
τg;

τd =
L2µ0

k0 pc0 , τc =
L
q0 , τg =

Lµ0

k0∆ρg0 . (8)

Where µ0, k0, pc
0, q0, g0, denote the characteristic values of: viscosity, absolute per-

meability, capillary pressure, flow velocity and gravity. ∆ρ is the two phases differ-
ence of mass densities. From those three characteristic times (8) two dimensionless
numbers will characterize the macroscopic flow regime: the global Péclet number Peg
and the global Bond number Bog;

Peg = τd/τc, Bog = τd/τg. (9)
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At the local scale we have similarly three characteristic times (L being replaced by l
in their definitions (8)) and two local dimensionless numbers: the local Péclet Pel and
Bond Bol numbers. It is clear that due to the separation of scales the global and local
dimensionless numbers are related by Peg = Pel/ε and Bog = Bol/ε .

There are several different situations, depending on the ratio between the dimen-
sionless numbers and ε . Here, we will consider the case Peg = O(1) ' Bog = O(1);
i.e., when, at the global scale, capillary diffusion and convection are of the same order.
In that last situation, effective equations were derived, assuming moreover periodicity
of the heterogeneities; first by formal asymptotic expansion of equations (1)–(5), in
[21]; and with rigorous justification by mathematical homogenization in [8], using a
”global pressure formulation” (see: [14]) of equations (1)–(5). We note that since, in
that case, the global scale equations have the same form as the local scale equations,
with effective coefficients, upscaling reduces to only computing effective parameters
and curves.

The main goal of this paper is to present an efficient and accurate numerical im-
plementation of an upscaling method for actual situations with high oscillations in
the flow field corresponding to high permeability contrasts in different regions. This
is done by first generalizing the periodic theory to non periodic cases by following
[9], [5], [12], and then by introducing, in the upscaling procedure, a preliminary step
for clustering the flow regimes and decoupling the total flow upscaling from the up-
scaling of capillary effects.

In case of dominant convection we cannot expect that the upscaling problem will
be reduced to only computing effective parameters or curves. The analysis of the
linear one-phase flow problem, with a high global Péclet number, of order 1/ε like
in [3] and [11], suggests that the form of the governing equations will also change,
making upscaling more complicated than only seeking effective parameters. One pos-
sible cause for the instability of the so called dynamic upscaling methods [7], used in
petroleum engineering, as we will see in Section 5, is certainly related to the incon-
sistency of seeking effective parameters and curves, in a situation where convection
(also called viscous forces, in petroleum engineering) is dominant .

3 Effective equations

3.1 Equations

From [8] where mathematically rigorous upscaling was derived by means of homog-
enization theory using ”global pressure” concept, or from [21] and [20], [17] or [4],
where upscaling was done by formal asymptotic expansion and volume averaging, we
know that when the global Péclet and Bond numbers are of order 1 the upscaled equa-
tions have the same structure as the equations at the local scale, with effective cap-
illary pressure curve and effective absolute and relative permeabilities (in petroleum
engineering these ”effective” or ”upscaled” curves are called ”Pseudo” curves). Up-
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scaled equations have then the form:

〈φ〉∂S∗

∂ t
+divQ∗w = 〈Fw〉, (10)

−〈φ〉∂S∗

∂ t
+divQ∗nw = 〈Fnw〉, (11)

Q∗w =−λ
∗
w(S∗)(∇p∗w−ρwg), (12)

Q∗nw =−λ
∗
nw(S∗)(∇p∗nw−ρnwg), (13)

pc
∗(S∗) = p∗nw− p∗w. (14)

In these equations, 〈·〉= 1
|Ω |
∫

Ω
·dx and the effective mobilities λ ∗

ξ
(S∗), ξ ∈ {w,nw},

and the effective capillary pressure p∗c(S
∗), are computed by a procedure which will

be described below.

Remark 1 In [8], the two-phase flow equations are first transformed using global
pressure concept and then homogenization theory is applied, leading to upscaled
equations in transformed form (see equations (4.10)–(4.15) in [8]). But, after standard
separation of fast and slow variables and after transforming the effective equations
back from the global pressure form to the phases-pressure form we obtain equations
(10)–(14).

3.2 General Upscaling algorithm

In order to avoid technical complications here and subsequently we will assume that
the domain Ω is a parallelepiped with edges parallel to the coordinate axes. From
the experimental capillary pressure data pi

c(.) and irreducible saturations, Si,M,Si,m,
given in each rock-type subdomain Ωi , we define two constants pc,min and pc,max;
pc,min < pc,max, by:

max
1≤i≤n

pi
c(Si,m) = pc,max, min

1≤i≤n
pi

c(Si,M) = pc,min. (15)

Then we proceed in four steps.

Step 1 The effective capillary pressure p∗c in (10)–(14) is defined in the following way:
First, for each value of capillary pressure, u ∈ (pc,min, pc,max), we obtain a piece-
wise constant distribution of the saturation S0 = ∑

n
i=1 SiχΩi , from the constant

values Si, solutions of

u =
n

∑
i=1

pi
c(Si)χΩi(x), ∀x ∈Ω . (16)

Then, we set

pc
∗(S∗) = u, S∗ =

〈φS0〉
〈φ〉

. (17)
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Remark 2 Solvability of equation (16) is given by condition (15); and a unique
effective capillary pressure curve is then defined. Moreover, it is easy to see that
S∗ is a smooth, decreasing function of u, and then pc

∗ still is a smooth decreasing
function of S∗, S∗ ∈ [S∗m,S∗M], with

S∗m =
〈φSm〉
〈φ〉

, S∗M =
〈φSM〉
〈φ〉

, (18)

and
p∗c(S

∗
m) = pc,max, p∗c(S

∗
M) = pc,min. (19)

Step 2 Effective mobility tensors are defined by formula

λ
∗
α(S∗)ek = 〈Kλα(·,S0)∇wk

α〉, k = 1,2,3, (20)

for α ∈ {w,nw}; where according to the mathematical theory in [12] we may
define function wk

α from the usual closure problem in averaging method, as used
in petroleum engineering [1], [13], [17].
Function wk

α in (20) is a solution of the following auxiliary problem:

div
(

λα(x,S0)K(x)∇wk
α

)
= 0 in Ω ,

wk
α − xk is periodic.

(21)

Saturation distribution S0 in (20) and (21) is obtained from capillary pressure
u = p∗c(S

∗) by solving equation (16), as in Step 1.

Remark 3 For any value S∗m < S∗< S∗M , functions λα(x,S0(x)) are strictly positive
and since permeability tensor K is positive definite it follows that auxiliary prob-
lems (21) are well posed and solutions wk

α are unique up to an additive constant.
Obviously this unknown additive constant does not influence the calculation of
effective mobilities (20). Moreover, effective mobilities λ ∗α(S∗) as defined in (20)
are symmetric positive definite tensors, monotone with respect to S∗; that is, for
any S∗ and S∗, such that S∗ ≤ S∗ we have

λ
∗
w(S∗)η ·η ≤ λ

∗
w(S∗)η ·η , λ

∗
nw(S∗)η ·η ≥ λ

∗
nw(S∗)η ·η ∀η ∈ R3.

This property can be easily established from an interpretation of the problem (21)
as the Euler equation for minimisation of corresponding energy functional. Note
finally that effective mobilities λ ∗α(S∗), having generally saturation dependent
eigenvalues and eigenvectors, introduce saturation-dependent anisotropy into up-
scaled model.

Step 3 We introduce an effective absolute permeability K∗:

K∗ek = 〈K∇ϖ
k〉 (22)

where ϖk is a solution of the following auxiliary problem:

div
(
K∇ϖ

k
)

= 0 in Ω

ϖ
k− xk is periodic.

(23)
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Remark 4 This effective absolute permeability K∗ was defined in order to stay
close to the classical two-phase flow model, and give to the effective equations
(10)–(14) a form closer to the original equations (1)–(5)

Step 4 Effective relative permeability tensors kr∗w(S∗) and kr∗nw(S∗) are now defined from
(20), (21) and (22), (23) as

kr∗w(S∗) = µw(K∗)−1
λ
∗
w(S∗), kr∗nw(S∗) = µnw(K∗)−1

λ
∗
nw(S∗). (24)

Remark 5 In general effective relative permeability tensors defined by (24) are full
tensor and non symmetric, which could cause difficulties when using them in numer-
ical simulations. But, it has been proved in [12], by using the theoretical framework
of stochastic homogenization, that instead of imposing periodicity in auxiliary prob-
lems (21), and (23), corresponding to assumption of periodicity in homogenization,
we may choose other boundary conditions in the auxiliary problems, some of them
leading to effective mobility tensors with strongly dominant diagonal terms (see Sub-
section 4.1), more suitable for numerical simulations.

4 Numerical implementation

Local scale data are obtained geostatistically on a 3D ”geological” grid which de-
scribes the porous domain geometry and its geological structure; however this fine
scale description will be considered to be deterministic from the point of view of the
numerical simulator, i.e. the grid block permeabilities and other parameters have no
uncertainty associated with them. The block size l in that model is determined by the
length of the geological heterogeneities, i.e. the ”geological grid” size. We refer to
the geological grid as fine grid and our aim is to build a coarse grid by aggregating
fine grid blocks into larger, coarse blocks. The size of the coarse grid blocks is usually
determined by the ability of multi-phase flow simulator.

Fine grid represents the local scale in our problem while the size of the coarse
grid block represents global scale. Our upscaling method will be applied from fine
grid to coarse grid blocks in order to associate to each coarse grid block effective val-
ues of porosity and permeability, effective relative permeability curves and effective
capillary pressure curve. According to Remark 5 in upscaling algorithm steps 4, Sub-
section 3.2, we will prefer to use auxiliary problems leading to small extradiagonal
terms in effective mobility tensors and in effective relative permeability curves.

4.1 Two Level Upscaling algorithm

From original upscaling algorithm of Subsection 3.2 we define now a two level up-
scaling procedure, one level is for upscaling total flow (one-phase rock parameters)
and the second level is for upscaling capillary effects (relative permeability and cap-
illary curves). Since the upscaling procedure will be run from the fine ”geological”
grid to either one or several coarse grid block (according the parameters or functions
which are upscaled), for now on, Ω , will denote indistinctly any subdomain part of
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all the geological domain, made at least of one coarse grid block and at most of the
entire geological domain.

Step 1: Chose a priori a number of values of the capillary pressure u between pc,min and
pc,max and for each u solve equation (16) which gives the distribution of satura-
tion S0 in Ω , corresponding to this u. For any value u and its corresponding S0

compute the mean value S∗. The pair (S∗,u), represents then one point on the
effective capillary pressure curve u = p∗c(S

∗).

We proceed in that same way for each chosen value of the effective capillary pressure
u in each Ω , and obtain discrete finite number of points of the effective capillary
pressure curve.

Step 2: Diagonal effective mobility tensors are defined by formula:

λ̂
∗
α(S∗)k,k = 〈λα(·,S0)K∇wk

α · ek〉, k ∈ {1,2,3}, (25)

for α ∈ {w,nw}, where tensor λ̂ ∗α(S∗) replaces λ ∗α(S∗) from (12) and (13), and
are computed not from (21) but by solving:

div
(

λα(x,S0)K(x)∇wk
α

)
= 0 in Ω

wk
α = xk on Sk (26)

K(x)∇wk
α ·ν = 0 on ∂Ω\Sk;

with S0 computed as in Step 1 from u = p∗c(S
∗), where Sk = ∂Ω ∩{xk = const};

k = 1,2,3; α ∈ {w,nw} and ν denotes outer unit normal field.
Step 3: We proceed in a similar way with effective absolute permeability tensor; instead

of (23), we solve:

div
(
K∇ϖ

k
)

= 0 in Ω

ϖ
k = xk on Sk (27)

K∇ϖ
k ·ν = 0 on ∂Ω\Sk,

for k = 1,2,3.
Then we define a diagonal effective permeability tensor by formula:

K̂∗k,k = 〈K∇ϖ
k · ek〉, k ∈ {1,2,3}. (28)

Step 4: Directional effective relative permeability function, for kth direction, is then

k̂r
∗
α,k(S

∗) = µα

λ̂ ∗α(S∗)k,k

K̂∗k,k
, α ∈ {w,nw}. (29)

Remark 6 Intrinsic permeability and porosity, which characterize the (total) flow
regime, will be upscaled on geological zones associated to (total) flow regime zones
defined at fine scale, using only step 3. Upscaling capillary effects (relative perme-
ability and capillary curves) will be done independently, on larger porous domain
according the level of the capillary forces, following steps 1, 2 and 4. Decoupling the
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computation of effective one-phase flow parameters from the computation of effec-
tive two-phase saturation functions, is essential in this two level upscaling method, as
illustrated in Subsection 6.3.

Remark 7 Assuming that φ(x), K(x), krα(x,S) and pc(x,S) are realizations of some
statistically homogeneous random fields, it was shown in [9] that, in case of a unique
rock-type, if the fields K and φ are ergodic then there exists a purely deterministic
flow at global scale, associated to constant averaged porosity φ hom and to constant
homogenized tensor Khom, which can be approximated either by means of (27), (28)
or by means of (22), (23). Although, in both cases, averaged tensors K∗ and K̂∗ in
(22) or (28) are depending on realization Ω and its relative size L/l, it was shown in
[12] that formula (22), with auxiliary problem (23), gives an approximation of real
homogenized permeability tensor as well as formula (28), with auxiliary problem
(27) in the sense that taking linear boundary conditions like the ones in (23) or in
(27) does not influence the limits, K∗ = K∗(Ω)→ Khom and K̂∗ = K̂∗(Ω)→ Khom,
when the ratio l/L tends to 0. The same properties apply to the approximations λ ∗α
and λ̂ ∗α , given by (20) and (25), of the homogenized relative permeability curves.

Moreover, taking no-flux boundary conditions on ∂Ω\Sk in (26) (respectively in
(27)) leads to gradients ∇wk

α (respectively ∇ϖk) which are oriented in the k-direction
with negligible other directions components. As a major consequence, if Ω is suffi-
ciently big, averaged tensors λ̂ ∗α in (25) (respectively K̂∗ in (28)) are then diagonal, or
at least close to, with negligible, if not zero, extra-diagonal terms. Considering only
the diagonal of the effective tensors could be then considered as a good approxima-
tion (similar to lumping).

Remark 8 Problems (26) and (27) are solved by mixed finite element method in order
to make better approximation of the fluxes K∇wi

α and K∇ϖ i, which are averaged in
formulas (25) and (28) .

Remark 9 The upscaling procedures described in Subsection 3.2 and in Section 4
computing respectively (K∗,λ ∗α) and (K̂∗, λ̂ ∗α) have been implemented in the code
HomCode and JHomogenizer, see [15] and [2]. Computational efficiency of the up-
scaling procedure is high regardless of the large number of local problems to be
solved. This is due to the fact that the local problems are first linear and stationary,
and thus easy to solve; and also are mutually independent then can be solved in par-
allel, in a preprocessing phase before the two-phase flow simulation itself.

5 Other upscaling methods

There is a number of others upscaling methods that can be found in engineering lit-
erature. Among them, the so called dynamic methods are supposed to do upscaling
when the flow regime is characterized by a high Péclet number, Pel = O(1) or even
Pel = O(1/ε). Dynamic methods are based on conservation of the fluid flow through
Ω boundaries. To that aim, first a fine grid simulation is run; from which, at cer-
tain time intervals, the fluxes, pressures and saturations are written out for every fine
grid block. Then the mean values of these quantities are computed in each Ω ; and
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the Pseudo-functions are finally computed by relating the flow rates to the pressure
gradient, between neighboring Ω .

There are different dynamic methods which differ essentially by the way they
average out different quantities. Dynamic methods and practical difficulties of their
use are described in [7]. Here we have chosen the pore volume weighted [19] method
(PVW in short), which is a version of the Kyte and Berry [16], and is already imple-
mented in PSEUDO, [19]. It differs from the original Kyte and Berry algorithm only
in the way of computing pressures.

An other method often used in engineering practice, and maybe the simplest
method used for upscaling relative permeabilities, is the dominant facies method.
It starts from an already upscaled absolute permeability tensor, computed according
to procedure (27)-(28); and the effective relative permeability curve, in each coarse
block Ω , is then taken equal to the relative permeability curve associated to the rock-
type occupying the most of pore volume in Ω . Numerical experiment comparison
of the two level upscaling method versus the PVW and the dominant facies (FD in
short) methods will be presented in Subsection 6.6.1.

6 Numerical experiment results

In this section we want to compare different two-phase flow upscaling methods, used
in engineering applications, to the two level upscaling method presented herein. Our
goal is to compare their accuracy in a situation (geological and fluid data, numerical
simulator and upscaling packages) synthesizing real upscaling problems encountered
by engineers.

First, it was important to choose an upscaling package including some of the
most popular two-phase flow upscaling methods in engineering; and do the numerical
simulations with a widely used two-phase flow numerical simulator coupled with
this upscaling package output. Our choice was then to use the upscaling package
PSEUDO ([19]), and as numerical simulator ECLIPSE ([22]). Mainly because both
PSEUDO and ECLIPSE are petroleum engineering oriented, we prefer to consider in
our numerical comparison experiments an immiscible two-phase flow with water and
oil phases.

Secondly, in order to make the comparison on a situation similar to the ones engi-
neers are faced to, we are using a stochastic realization of a 3-D geostatistic simulator
(TRIMOD) for generating a “synthetic” geological domain, G, of 103 square meters
area by 40 meters high. This “synthetic” geological domain and the associated data
generated on a fine ”geological” grid are defining now a heterogeneous local scale
model. All the considered upscaling methods will be applied to this same heteroge-
neous local scale model and give an upscaled model with data defined on coarser
grids, i.e. at a global scale. Finally, we will compare numerical simulations, on all
the entire geological domain G, using the same indicators (water cuts obtained at
two locations P1 and P2, and oil production at location P1), given by all the obtained
“upscaled models” versus the simulations given by the original local scale model.
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6.1 Fine grid data (local model)

The simulated geological domain, G, is a parallelepiped of 1000×1250×40 meters
discretized by a fine grid composed of 20 grid blocks in x-direction, 25 in y-direction
and 20 in z-direction; all fine grid blocks have dimension 50×50×2 meters and the
total number of fine grid blocks is then 10000. Rock permeability and porosity were
obtained from geostatistical simulations using TRIMOD:

1. Horizontal permeability kh is a stationary random field realisation whose cumu-
lative probability density F is given by the following table:

k (mD) 0 0.1 1 30 50 150 300 400 600
F 0 0.05 0.3 0.4 0.5 0.6 0.8 0.9 1

2. Vertical permeability kv is obtained from the formula{
kv/kh = 0.1 for kh > 10 mD,
kv/kh = 0.01 for kh ≤ 10 mD,

3. Porosity φ is given by

φ =
{

0.05+0.02345log(kh) for φ > 10−2,
10−2 otherwise.

The fluid characteristics corresponding to the two phases are: µw = 0.32 cP, µnw =
0.64 cP; ρw = 1150 kg/m3, ρnw = 884 kg/m3; and the initial pressure is 284 bar
at –1000 m (water-oil contact). For simplicity we assume that there are two differ-
ent rock-types (two sets of relative permeability and capillary pressure curves), dis-
tributed in the entire geological domain according to horizontal absolute permeability
kh distribution: Denoting kmoy the mean value of kh, then the rock-type of a given fine
grid block has been set according to the rule

rock-type 1 if kh < kmoy ,
rock-type 2 if kh ≥ kmoy .

With this rock-type distribution finally we have 60 % of the rock-type 1, and 40%
of the second rock-type in the entire geological domain, G,. Relative permeabilities
and capillary pressure curves corresponding to each rock-type are given according to
Figure 1. There are 4 injection wells, I1, I2, I3 and I4, working as water injectors, at
constant rate of 100 m3/day, in the four lowest layers of G: well I1 in block (5,14);
well I2 in block (2,2); well I3 in block (19,13) and well I4 in block (8,23). There are
two production wells, in the four upper layers of G: P1 and P2, working at constant
rate of 200 m3/day; well P1 in block (11,8) and well P2 in block (13,19).

6.2 Flow regime

As explained in Section 2 our upscaling method is theoretically founded for flow
regime corresponding to global Péclet and Bond numbers of order 1. From the above
data we have as characteristic numbers: Lh = 1000 m; Lv = 40 m; lh = 50 m; lv = 2
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Fig. 1 The two sets of relative permeability functions and capillary pressures curves corresponding to the
two rock-types on the fine grid blocks.

m; k0
h = 100 mD; k0

v = 10 mD; µ0 = 0.5 cP; Pc0 = 0.2 bar; ρ0 = ∆ρ = 250 kg/m3;
g = 10 m/s2. The characteristic mean velocity q0 is estimated by dividing distance
between two neighbouring wells (production well P1 and injection well I1) by the
breakthrough time at the production well, giving in horizontal and vertical direction
q0

h < 0.28 m/day, q0
v < 2.4 · 10−2 m/day. From these numbers by formulas (8), (9)

we see that ε ≈ 0.05, with horizontal local Péclet’s number Pel < 41, vertical lo-
cal Péclet’s number Pel < 1.4 and local Bond’s number Bol ≈ 0.25. In some parts
of the porous domain we could not exactly be under the assumption of dominating
capillarity like in the horizontal direction where viscous forces are important since
the maximum of Pel in the direction of the wells is Pel ≈ 41� 1. In vertical direc-
tion the capillary forces are more important than in horizontal direction due to lower
permeability in that direction to and small thickness of the domain.

6.3 Coarse grid upscaled data and aggregation rates

At global scale the geological domain data are given on coarse grid blocks whose
dimensions are given by aggregating the fine grid blocks along coordinate axes. At
local scale the geological domain data characteristics were given on a fine grid, as
described in Section 6.1, with 20 fine grid blocks in x-direction, 25 in y-direction
and 20 in z-direction. We start by aggregating fine grid blocks uniformly by 4 in x-
direction, by 5 in y-direction and by 4 in z-direction; this uniform aggregation rate
is denoted U (4,5,4); each coarse grid block Ω consists then of 4×5×4 = 80 fine
grid blocks, and there are 5× 5× 5 = 125 coarse grid blocks. In presence of two
largely different time scales for diffusion and convection, in order to calculate correct
mean values in steps 1, 2 and 3 of the Two Level Upscaling Algorithm, Section 4,
we should introduce different levels of upscaling one for the total flow and another
one for the capillary effects. It could happen then that the aggregation rate, used to
capture the global effects of capillary pressure, is too big to take in account the total
flow regime variations in different regions. Coarse grid blocks, Ω , used in upscaling
total flow (calculation of effective absolute permeability in step 3) should be then
smaller than the coarse grid blocks, Ω , necessary for upscaling capillary pressure and
relative permeabilities. It is then necessary to use different coarse grid block sizes (or
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aggregation rates), one size associated to global convective effects and an other size
associated to global capillary pressure and relative permeabilities effects. Therefore,
in the Two Level Upscaling Algorithm, Section 4, we will use different aggregation
rates for upscaling capillary pressure and relative permeability curves (steps 1 to 4)
and to upscale absolute permeability (step 3) and porosity.

In order to emphasize this difference in aggregation rates we use subscripts K to
denote aggregation rate applied to one-phase flow characteristics (porosity or absolute
permeability) and subscript Pc, to denote aggregation rate for two-phase flow charac-
teristics (relative permeabilities and capillary pressure). For example, the aggregation
rate {UK(4,5,4)+UPc(20,25,5)} means that we have used in one hand a uniform
U (4,5,4) aggregation rate to compute effective absolute permeability and porosity,
and in the other hand a uniform U (20,25,5) aggregation rate to compute effective
relative permeabilities and effective capillary pressure. This last aggregation rate in
particular means that in the geological domain, G, there are four effective functions
sets associated to four ”big” coarse grid blocks Ω (four horizontal layers). More pre-
cisely, for computing effective one-phase flow characteristics, fine grid blocks have
been aggregated into coarse grid blocks according to the flow dynamics, after identi-
fying spatial zones of similar total flow regime. Such a procedure, either performed
manually or by specialized software tool, may then lead to non uniform aggregation
rate for defining the one-phase flow global characteristics. To describe such coarse
grid dimensions, we cannot use the same notations as above, and we rather give the
way of aggregating the fine grid blocks along coordinate axes. For instance, in the
numerical tests described in Subsection 6.6.1, we used 6× 5× 6 = 180 coarse grid
blocks for upscaling one phase flow data: aggregation being done in the x-direction,
with successively 6 different ratio (3, 3, 2, 2, 5, 5); in the y-direction with 5 equal
ratio (5, 5, 5, 5, 5); in the z-direction with successively 6 different ratio (2, 2, 2, 4, 5,
5). This non uniform aggregation rate is then denoted, in short, N (6×5×6).

In other tests from the same Subsection 6.6.1 we also mix uniform and non uni-
form aggregation rates such as {NK(6×5×6)+UPc(20,25,5)}.

6.4 Numerical experiments

In the following we will use the name heterogeneous simulation for numerical flow
simulation done at local scale with original local heterogeneous data on fine grid
blocks. Flow simulation using upscaled data defined on coarse grid blocks, at global
scale, will be termed homogeneous simulation, although the upscaled data could be
different in each coarse grid block Ω , and then be globally heterogeneous.

In order to have the same amount of numerical dispersion both in homogeneous
and heterogeneous simulations all numerical flow simulations are performed over the
same numerical grid i.e. the initial fine scale grid. In this way when we compare ho-
mogeneous (coarse grid data) versus heterogeneous (fine grid data) simulations, we
are really testing efficiency of the upscaling method without mixing it with any addi-
tional numerical effects. In other words, in homogeneous simulation we redistribute
the upscaled values and curves on the fine initial grid blocks and we run numeri-
cal simulation on this fine grid. Furthermore, in order not to interfere with the well
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Fig. 2 Effective relative permeabilities, in the 3 directions, associated to the 1st layer. Effective capillary
pressure curve , associated to each of the 4 layers. Effective curves are obtained by ”two level upscaling”
with uniform aggregation rate U (20,25,5).

model, we treat the boundary layer around each well by simply keeping the initial het-
erogeneities on the fine grid blocks all around the the perforated part of the well. All
numerical tests presented herein were performed by ECLIPSE 100 simulator, [22].

6.5 Upscaled curves

According to the two level upscaling procedure, as described in Section 4, in each
coarse grid block (global scale), starting from the heterogeneous data given on the
fine grid blocks, we obtain three directional effective relative permeability curves
for each phase, according to formula (29). As explained before in Subsection 6.3,
since the capillary forces are weak, characteristic diffusion time τd is very big in the
horizontal direction and we need to use large volumes in order to allow diffusive
effects to take place; this is why we prefer to use a high uniform aggregation rate
U (20,25,5) for saturation functions upscaling.

An example of effective functions obtained by two level upscaling on the coarse
grid defined by this last aggregation rate is given in Figure 2. All the upscaled curves
are built by interpolation from 12 computed saturation points, as described in Sec-
tion 4, knowing that for each point we need to solve one auxiliary problem, (26). We
notice, as can be seen from Figure 2, and according to the theory ([8], [21]), that the
upscaled curves obtained by ”two level upscaling” preserve monotonicity properties
of rock-type curves.

Then for comparison purposes we have used the PVM method, in the package
PSEUDO ([19]) for upscaling the saturation functions. Using the same fine grid
block data (described in Subsection 6.1) and a uniform and moderate aggregation
rate U (4,5,4), corresponding to {UK(4,5,4)+UPc(20,25,5)}, by this method we
generate 215 different pseudo-curves (of which we have kept only 89)! Rejection
of pseudo curves was based on either insufficient number of points, or points being
concentrated on a small part of the curve, or fairly high oscillations in the curve.
They were simply replaced by curves corresponding to the dominating rock-type. We
should also say that most of the accepted curves have been additionally ”corrected” in
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Fig. 3 Effective relative permeability and capillary curves obtained by the Pore Volume Weighted Method
plus monotonicity correction, with a uniform aggregation rate U (4,5,4).

order to keep at least monotonicity. In Figure 3 we present just one set of the upscaled
curves obtained by the PVW method plus monotonicity correction.

6.6 Comparison of different upscaling method results

6.6.1 Two level upscaling results

In the first test presented in Figure 4 we compare heterogeneous simulations com-
puted from fine grid data (local scale parameters and curves) to homogeneous sim-
ulation computed from upscaled data (global scale parameters and curves) given by
the two level upscaling method, on coarse grid blocks obtained by {UK(4,5,4) +
UPc(4,5,4)} aggregation rate. In all forthcoming tests, like in Figure 4:

– As main indicators for the upscaling procedure quality, we take the well water
cuts (WWCT) on both production wells P1 and P2, and the well oil production
total (WOPT), for the production well P1 only.

– On the left, black and red curves correspond to water-cut on production well P1,
computed respectively by homogeneous and heterogeneous simulations. Green
and yellow curves correspond to water-cut on production well P2, computed re-
spectively by homogeneous and heterogeneous simulations.

– On the right, the black curve corresponds to WOPT computed by homogeneous
simulation and the red one to WOPT computed by heterogeneous simulation.

We see that the results presented in Figure 4 are not really satisfactory; particularly
the difference in water-cut is important on both production wells. Reason for such
difference is an inadequate upscaling of capillary effects due to the size of the coarse
grid blocks which are too small compared to the characteristic capillary diffusion
time in this example. In order to increase the volume in which the upscaling of the
capillary effects is done, we should take bigger aggregation rates than the ones used
for upscaling the total flow.

In Figure 5, we present the results obtained with a coarse grid made of only
four horizontal layers, corresponding to a decoupled aggregation rate {UK(4,5,4)+
UPc(20,25,5)}. We see then in Figure 5 significant improvement after introducing
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this two different levels of upscaling. But we note that there is still a difference in
the production well P1 water-cuts. This is the result of upscaling the absolute perme-
ability without taking in account possible changes in the total flow regime. Actually
these results shown in Figure 5 used, for upscaling the absolute permeability, an a pri-
ory uniform aggregation rate, UK(4,5,4), without taking into account the diversity
of the total flow regime. Observation of flow dynamics in the initial heterogeneous
simulation, computed from the fine grid data, shows that there is a highly permeable
channel between the injection well I1 and the production well P1. In order to improve
the results considering the production well P1 we use a non uniform aggregation rate,
NK(6×5×6) (as described in Subsection 6.3), adapted to the localization of this per-
meable channel. In Figure 6, we compare results of heterogeneous simulations to re-
sults of homogeneous simulations computed with upscaled parameters and curves ob-
tained by two level upscaling using two different (non-uniform for the total flow and
uniform the capillary effects) aggregation rates {NK(6× 5× 6) + UPc(20,25,5)}.
And, as expected, we see a real improvement (from Figure 5) in the upscaled behav-
ior, specially for the production well P1 behavior .

6.6.2 Other upscaling methods results

In Figure 7 we test results of homogeneous simulations using upscaled parameters
and curves given by the FD method (see Section 5 for definition). In this example,
the upscaling of absolute permeability was done using the same method (step 3 in
Section 4) and the same (uniform) aggregation rate (UK(4,5,4)) as the ones used in
the previous subsection, 6.6.1. Same (uniform) aggregation rate (UK(4,5,4)) is also
used for determining the dominant facies (dominating rock-type). These results could
be certainly improved by using a non uniform aggregation rate for upscaling the ab-
solute permeability, according to the total flow regime, like it was done for the two
level upscaling method, in Section 6.6. But, in contrast to the two level upscaling,
increasing too much the aggregation rate for determining dominant saturation func-
tions (i.e. the upscaled functions) in the FD method, leads to incorrect estimations
of the global capillary effects on these coarse grid blocks. As a consequence, the FD
method will always end up with a large number of dominating functions (upscaled

Fig. 4 Heterogeneous and homogeneous simulations based on the two level upscaling method, using the
same uniform aggregation rate for upscaling total flow and capillary effects, U (4,5,4) = {UK(4,5,4)+
UPc(4,5,4)}.
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Fig. 5 Comparison of heterogeneous and homogeneous simulations based on two level upscaling method
using two different uniform aggregation rates, for upscaling total flow and upscaling capillary effects:
{UK(4,5,4)+UPc(20,25,5)}.

functions), while the two level upscaling method gives a small number of different
upscaled curves (only 4 in the example in Figure 6).

Finally we show in Figure 8 a numerical test using the pore volume weighting
(PVW) method; the coarse grid is again obtained by the uniform aggregation rate
U (4,5,4) for upscaling both total flow and relative permeabilities. The results are not
really satisfactory, as expected from the upscaled curves obtained from this method
and presented in Figure 3.

7 Conclusion

Numerical simulations, using the results of the two level upscaled method, show that
if the local flow dynamics is taken into account in the choice of the coarse grid blocks
on which the upscaling is done, and if the two-phase flow characteristics are upscaled
on coarse grid blocks with dimensions consistent with the global diffusion time scale,
then the so defined global flow is keeping the general physical flow characteristics and
the main tendencies of the geology.

Fig. 6 Comparison of heterogeneous and homogeneous simulations based on two level upscaling method
using a non uniform aggregation rate for upscaling the total flow and a uniform aggregation rate for up-
scaling the capillary effects: {NK(6×5×6)+UPc(20,25,5)}.
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Fig. 7 Comparison of heterogeneous and homogeneous simulation based on upscaled data given by the
dominant facies (FD) method, using one level of uniform aggregation rate, U (4,5,4).

Thanks to the decoupling of the upscaling level for one-phase rock parameters
(porosity and rock permeability) from the upscaling level for two-phase rock func-
tions, the two level upscaling method gives good results even in case of a relatively
large Péclet number, i.e. outside the bounds imposed by the theoretical analysis in [8].
As explained in Section 6.3 this is due to the fact that: in the one hand we adapted
the volume of averaging (the coarse grid block size) used for saturation functions to
the diffusion time scale (defined in (8)), and in the other hand we adapted the choice
of the coarse grid blocks, for upscaling the total flow, to the convection time scale
(defined in (8)). The geological domain and the fluid characteristics used in the nu-
merical experiments, presented herein, lead to a strong convection in the horizontal
direction, but with the capillary forces staying relatively important in the vertical di-
rection (smaller vertical Péclet’s number). This is due to the fact that the thickness
of the porous domain is small compared to the other dimensions. This is why we
upscaled the capillary curves only in four horizontal layers, extending horizontally
on all the domain; while we used smaller coarse blocks for upscaling the absolute
permeability.

Moreover, we see on this example that our strategy leads to defining homoge-
nized curves (pc and krξ ), which are physically meaningful and defined on rather
large volumes (capillary pressure being rarely dominant). Finally, for summarizing,

Fig. 8 Comparison of heterogeneous and homogeneous simulation based on upscaled data given by the
Pore Volume Weighted (PVW) method, using one level of uniform aggregation rate, U (4,5,4) .
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the two-level upscaling method extends considerably the range of application of the
upscaling method described in [4], [8], [17], [21] and compared to popular engineer-
ing methods (see [7], [16], [19]):

– leads to ”pseudo functions” always consistent with the physical principles;
– gives only few different ”pseudo functions”; preventing the use of any postpro-

cessing technique for curve grouping, as for example clustering, which are not
based on any physical ground.
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