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vdc@kth.se (V. Cvetković), rokoand@gradst.hr (R. And
a b s t r a c t

In this paper, we present a new Monte-Carlo methodology referred to as Adaptive Fup Monte-Carlo
Method (AFMCM) based on compactly supported Fup basis functions and a multi-resolution approach.
We consider for illustration 2-D steady, linear and unidirectional flow and advective transport defined
on a domain of size 64IY � 32IY with isotropic exponential correlation heterogeneity structure and r2

Y

up to 8. Accuracy and convergence issues are rigorously analyzed for each realization as well as for the
ensemble. Log-conductivity is presented by continuous function at high resolution level (nY = 4–32 points
per integral scale) reproducing very accurately prescribed statistics. The flow problem is the most
demanding Monte-Carlo step due to satisfying detailed log-conductivity properties. Presented methodol-
ogy inherently gives continuous and mesh-free velocity fields, which enables the construction of a new
efficient and accurate particle tracking algorithm. Results indicate that resolutions nY = 8 and nh = 32
enable very accurate flow solutions in each realization with mass balance error less than 3% and accurate
ensemble velocity statistics. Results show that the proposed AFMCM enables tracking of an unlimited
number of injected particles and calculates required transport variables as continuous functions with
desired relative accuracy (0.1%) in each realization. Furthermore, we show that the resolution nY = 8
yields a quite accurate pdf of the transverse displacement and travel time. All required flow and transport
variables require 500 Monte-Carlo realizations in order to stabilize fluctuations of the higher-order
moments and the probability density functions.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Preferential flow channels, nonlinear effects and importance of
the higher statistical moments characterize flow and transport in
highly heterogeneous porous media. Flow and advective transport
in heterogeneous porous media have been analyzed by analytical
methods using the small perturbation expansion and the Green’s
function method (e.g. [12,32,33,47,50]) or spectral techniques
(e.g. [3,23,24]). Numerical methods have also been based on single
realizations and ergodicity assumption [1,34,60] or on Monte-Carlo
(MC) simulations and ensemble averaging [4,10,17,29,30,58].

Perturbation and spectral analytical methods are mainly limited
primarily by small variance of the log-conductivity and evaluation
of first two statistical moments. Although the MC method is
appealing in its conceptual simplicity and generality, capable of
producing complete probability density functions (pdf) and all
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needed higher-order moments, its benefits should be weighted
against the large computational efforts typically required. How-
ever, the MC is prone to greater or lesser errors which may arise
at different stages of the implementation. In particular, when
numerically solving flow in highly heterogeneous media, the flow
solution with prescribed boundary conditions is a delicate step
requiring very fine spatial scales for head and velocity approxima-
tions in order to satisfy detailed properties of the highly heteroge-
neous conductivity field.

The generally accepted conclusion is that there is a good agree-
ment between analytical (perturbation) results and numerical ap-
proaches for lnK variance less than unity. Furthermore, studies
have shown an acceptable agreement between analytical and
numerical results for mild heterogeneity (r2

Y up to 2), however,
there is currently no strong evidence how accurately analytical
or MC simulations describe flow and transport in highly heteroge-
neous porous media ðr2

Y > 3Þ, especially with the commonly as-
sumed exponential correlation structure. Cvetković et al. [10] and
Salandin and Fiorotto [58] performed 2-D MC simulations in highly
heterogeneous media with the exponential correlation structure
for r2

Y up to 4. Recently, de Dreuzy et al. [17] presented powerful
parallel 2-D simulations with large domains and r2

Y up to 9,
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ig. 1. Simulation domain needed for global flow analysis and inner computational
omain needed for flow and transport ensemble statistics.

1 We shall refer to ‘‘hydraulic conductivity” in spite of the field being 2-D.
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however, without strict accuracy or convergence analysis. On the
other side, accuracy and convergence analyses were presented
only for low and mild heterogeneity (e.g. [52]).

In a three-part series of papers [14,21,34], a general concept for
multi-indicator heterogeneity structure [14] and fast semi-analytic
algorithm were presented [21], while Janković et al. [34] presented
extensive 2-D and 3-D numerical experiments based on one large
single realization and analytic element method (r2

Y up to 10 for
2-D and up to 8 for 3-D). Indeed, only Janković et al. [34] provided
accurate 3-D numerical simulations in highly heterogeneous por-
ous media to exactly satisfy the flow equation, using powerful
supercomputer infrastructure. However, their approach is limited
to a multi-indicator heterogeneity structure. The general aim of
the present paper is to develop an accurate and robust MC proce-
dure for flow and transport in highly heterogeneous porous media
applicable to an arbitrary correlation structure (with finite or infi-
nite lnK variance) and the possibility to control the error in each
step of MC simulations.

Conventional numerical procedures (finite elements, finite vol-
umes and finite differences) are potentially limited for accurately
solving problems of flow and transport in highly heterogeneous
porous media, and hence new adaptive (e.g. [6,19]), multi-scale fi-
nite element (e.g. [7,20,31]), spectral (e.g. [18,57,62]) and mesh-
free methods (e.g. [2,28,35]) have been proposed as alternatives.

In this paper we are focused on a mesh-free collocation method
which uses localized basis functions with compact support such as
wavelets and splines (e.g. [49,63–65,67]). Apart from wavelets and
splines, there is a relatively lesser known class of atomic or Rbf ba-
sis functions (Rvachev’s basis functions) [53,54]. Atomic functions
are classified between classic polynomials and spline functions.
However, in practice, their application as basis functions is closer
to splines or wavelets. In this study, we shall use Fup basis func-
tions which are one type of atomic basis functions (recent reviews
in [37,41]). Gotovac and Kozulić [25] systemized the existing
knowledge on atomic functions and presented the transformation
of basis functions into a numerically applicable form. The applica-
tion of Fup basis functions has been demonstrated in signal pro-
cessing [42,68], for solving the integral Fredholm equations [40],
in initial value problems [26], and in the non-adaptive collocation
method for boundary value problems [27,38]. Recently, the novel
Adaptive Fup Collocation Method (AFCM) was developed which
is well suited to deal with strong nonlinear groundwater flow
and transport problems with sharp fronts and narrow transition
zones [28]. Furthermore, this method enables the adaptive multi-
resolution evolution of a solution (resolving all spatial and tempo-
ral scales) with a desired level of accuracy using the entire family
of the Fup basis functions.

In this paper we present an accurate and efficient Adaptive Fup
Monte-Carlo Method (AFMCM) based on Fup basis functions, Fup
transformations and a novel form of the AFCM which is adjusted
for complex modeling of flow and transport in highly heteroge-
neous porous media. We exemplify the method using an exponen-
tial correlation structure and lnK variance up to 8, addressing
accuracy and convergence issues. The paper is organized as fol-
lows. In the next section, the problem is formulated and the solu-
tion methodology outlined. In Section 3, the basis functions,
transforms and Monte-Carlo methodology are presented. In Sec-
tions 4 and 5, continuous multi-resolution approximation of the
conductivity field and AFCM solution of the flow equation are pre-
sented, where strict accuracy and convergence analysis are given.
Section 6 describes a particle tracking algorithm for particle advec-
tion which calculates transport variables such as travel time, trans-
verse displacement and Lagrangian velocity with desired accuracy.
Section 7 summarizes discussions with emphasis on new proper-
ties of the presented methodology, whereas the last section sum-
marizes the main conclusions.
F
d

2. Problem formulation and methodology outline

In this paper we consider single-phase flow and advective
transport in heterogeneous porous media using the Eulerian–
Lagrangian formulation which separates or decouples flow and
transport analysis [12,51]. This physical formulation is common
for flow and transport of tracers or contaminants in cases where
flow velocity is not significantly influenced by the density differ-
ences. Since we are mainly interested to investigate the role of high
heterogeneity in flow and advective transport processes, a few
additional simplifications will be used. Our first simplification is
to consider a two-dimensional and unidirectional flow field with
a basic configuration illustrated in Fig. 1. This configuration has
been extensively studied in the past (among others [4,29,30,58])
and hence is sufficiently familiar for comparative purpose. The
hydraulic conductivity1 is assumed to be a random space function
with specified statistics (mean, variance and correlation length).
The second important simplification is that the statistical structure
of lnK will be assumed ‘‘classical”: multi-Gaussian with an exponen-
tial covariance. Note that for numerical simulations of flow with high
variances, this ‘‘classical” exponential covariance structure poses
perhaps the most difficult challenge due to very high spatial gradi-
ents in lnK which need to be captured by numerical algorithms;
hence this configuration provides a suitable benchmark for our
numerical solution. Finally, we shall limit our present discussion to
only one approach for quantifying advective transport: travel time
and transverse statistics as functions of the longitudinal distance
(i.e. ‘‘control plane”, parallel to the mean flow, Fig. 1) [9,13].

Fig. 2 shows the flow chart of the proposed Adaptive Fup
Monte-Carlo Method (AFMCM) which represents a general frame-
work for flow and advective transport in highly heterogeneous por-
ous media. The methodology is based on Fup basis functions with
compact support and a collocation algorithm. AFMCM consists of
the following common steps [51]: (1) generation of as high number
as possible of equally probable log-conductivity realizations with
predefined correlation structure, (2) numerical approximation of
the log-conductivity field, (3) numerical solution of the flow equa-
tion with prescribed boundary conditions in order to produce head
and velocity approximations, (4) evaluation of the displacement
position and travel time for a large number of particles, (5) repeti-
tion of steps 2–4 for all realizations and (6) statistical evaluation of
flow and transport variables such as head, velocity, travel time,
transverse displacement, solute flux or concentration (including
their cross-moments and pdf’s).

We use here the random field generator HYDRO_GEN [5] for
generating lnK fields, due to its accuracy and efficiency (step 1).



Fig. 2. Flow chart of the presented methodology – AFMCM.
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Six discrete values of log-conductivity variance will be considered:
0.25, 1, 2, 4, 6 and 8. In each realization, generated lnK field is
approximated by continuous function which is a linear combina-
tion of Fup basis functions (step 2).

Fig. 1 shows a 2-D computational domain (64IY � 32IY) for flow
simulations with the corresponding boundary conditions (step 3).
In each realization the flow problem is defined by Darcy’s Law

qðxÞ ¼ �KðxÞrhðxÞ ð1Þ

and the continuity equation

r � qðxÞ ¼ 0 ð2Þ

where q is the Darcy specific discharge (L/T), K is the conductivity
tensor (L/T) and h(L) is the hydraulic head. Combining (1), (2) and
assuming isotropic log-conductivity field (Y = lnK) obtained in step
2, a 2-D expanded continuity equation has the final form

@2h
@x2 þ

@2h
@y2 þ

@Y
@x

@h
@x
þ @Y
@y

@h
@y
¼ 0 ð3Þ
The flow is driven by a head difference (Dirichlet fixed boundary
conditions), for illustration assumed upstream as h = hL (left bound-
ary) and downstream as h = hR (right boundary); Neumann no-flow
boundary conditions are prescribed at the top and bottom bound-
aries (Fig. 1)

hð0; yÞ ¼ hL; hðLx; yÞ ¼ hR; qyðx;0Þ ¼ qyðx; LyÞ ¼ 0 ð4Þ

where Lx and Ly are dimensionless lengths of the domain in both
directions with respect to the integral scale IY. Note that total head
drop and hydraulic gradient can be defined by DH = hR � hL and
J = DH/Lx, respectively. In each realization, step 3 includes the solv-
ing of the differential flow equation (3) with corresponding bound-
ary conditions (4) for defined log-conductivity function Y(x,y). Final
result is the velocity field (Eq. (2); v = q/ne where ne is the constant
effective porosity).

Advective transport is analyzed as pure advection based on the
velocity field, following streamlines as particle trajectories (step 4).
Particle tracking algorithm implies numerical integration of the
following coupled system of ordinary differential equations for
each trajectory (e.g. [29]):

dX0

dt
¼ vxðx; yÞ;

dY 0

dt
¼ vyðx; yÞ ð5Þ

where XðtÞ ¼ ½X 0ðtÞ;Y 0ðtÞ� is a Lagrangian displacement vector. The
tracer advection trajectory can be described using the Lagrangian
position vector as a function of time XðtÞ ¼ ½X0ðtÞ;Y 0ðtÞ� which is
used in [11], or alternatively, using the travel (residence) time from
x = 0 to x, s(x), and transverse displacement at x, g(x) [13]. Formally,
s and g are related to X0 and Y0 as s(x) = X0 �1(x) and g(x) = Y0[s(x)];
this description is unique if the tracer moves in the direction of the
mean flow only, i.e., if X0(t) is a monotonously increasing function.
Therefore, we consider only the first time passages through the con-
trol plane. The s and g are Lagrangian (random) quantities describ-
ing advective transport along a streamline. The advective tracer flux
[M/TL] is proportional to the joint probability density function (pdf)
fsg(s,g;x) [10]. Marginal pdfs fs ¼

R
fsg dg and fg ¼

R
fsg ds separately

quantify advective transport in the longitudinal and transverse
directions, respectively. It may be noted that in this approach, all
Lagrangian quantities depend on space rather than time as in the
traditional Lagrangian approach (e.g. [12,59]).

Transport simulations will be performed in the inner domain in
order to avoid non-stationary influence of the flow boundary con-
ditions. Particular analysis shows that inner domain of 40IY � 16IY is
sufficient to obtain stationary velocity statistics in such a way that
inner boundaries are removed for 12IY and 8IY in horizontal and
vertical directions, respectively (Fig. 1). Source area (or line;
y0 = 12IY) is represented by the central segment in the left side of
the inner transport domain. For this analysis, we consider tracer
particles injected in the flux within the source line [15]. Tracer par-
ticles injected instantaneously along the source line are followed
downstream and the travel time and transverse displacement are
monitored at arbitrary control planes at x.

In the sequel we will present all MC methodology components:
(a) Fup basis functions and generally atomic basis functions, (b)
Fup Collocation Transform (FCT) for data or function approxima-
tion, (c) Fup Regularized Transform (FRT) for data or function
approximation in the same multi-resolution way as FCT, but com-
putationally more efficient, (d) novel form of the Adaptive Fup Col-
location method (AFCM) for approximation of the differential
equations and (e) MC statistics represented by Fup basis functions.

In summary, AFMCM uses a random field generator for step 1,
FCT or FRT for log-conductivity approximation (step 2), AFCM for
the differential flow equation (step 3), particle tracking algorithm
for transport approximations based on Runge–Kutta–Verner expli-
cit integration scheme [66] and FRT for step 4 and statistical prop-
erties of the Fup basis functions for step 6 (Fig. 2).
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3. Basis functions, transformations and Monte-Carlo
computations

3.1. Fup basis functions

Atomic basis functions are compactly supported and infinitely
differentiable functions [53,54]. Atomic functions, y(.), are defined
as solutions of differential–functional equations of the following
type:

LyðxÞ ¼ k
XM

k¼1

Ckyðax� bkÞ ð6Þ

where L is a linear differential operator with constant coefficients, k
is a scalar different than zero, Ck are coefficients of the linear com-
bination, a > 1 is a parameter defining the length of the compact
support and bk are coefficients which determine displacements of
basis functions. Rvachev and Rvachev [53] in their pioneer work
called these basis functions as ‘‘atomic” one because they span vec-
tor spaces of all three fundamental functions in mathematics: alge-
braic, exponential and trigonometric polynomials. Also, atomic
functions can be divided to the infinite number of small pieces
which maintain all their properties implying so called ‘‘atomic
structure”.

The simplest function, which is the most studied among atomic
basis functions, is the up(x) function. Function up(x) is a smooth
function with compact support [�1,1], which is obtained as a solu-
tion of a differential–functional equation:

_up0ðxÞ ¼ 2upð2xþ 1Þ � 2upð2x� 1Þ ð7Þ

with the normalized condition
R1
�1 upðxÞdx ¼

R 1
�1 upðxÞdx ¼ 1. Func-

tion upðxÞ can be expressed as an inverse Fourier transform:

upðxÞ ¼ 1
2p

Z 1

�1
eitx
Y1
j¼1

sinðt2�jÞ
t2�j

 !
dt ð8Þ

Since Eq. (8) represents the exact, but not mathematically tractable
expression, Rvachev [54] and Gotovac and Kozulic [25] provided
tractable means for calculating function upðxÞ:

upðxÞ ¼ 1�
X1
k¼1

ð�1Þ1þp1þ���þpk pk

Xk

j¼0

Cjkðx� 0; p1 � � � pkÞ
j ð9Þ

where coefficients Cjk are rational numbers determined according to
the following expression:

Cjk ¼
1
j!

2jðjþ1Þ=2upð�1þ 2�ðk�jÞÞ; j ¼ 0;1; . . . ; k; k ¼ 1;2; . . . ;1

ð10Þ

Calculation of the up(�1 + 2�r); r 2 [0,1] in binary-rational points
(Eq. (10)), as well as all details regarding the calculation of the func-
tion upðxÞ values, is provided in [25,26]. The argument (x �
0,p1 � � �pk) in Eq. (9) is the difference between the real value of coor-
dinate x and its binary form with k bits, where p1 � � �pk are digits, 0
or 1, of the binary development of the coordinate x value. Therefore,
the accuracy of the coordinate x computation and, thus, the accu-
racy of the upðxÞ function at an arbitrary point, depends on machine
accuracy.

From Eq. (7) it can be seen that the derivatives of the upðxÞ func-
tion can be calculated simply from the values of the function itself.
The general expression for the derivative of the mth degree is:

upðmÞðxÞ ¼ 2C2
mþ1
X2m

k¼1

dkupð2mxþ 2m þ 1� 2kÞ; m 2 N ð11Þ

where C2
mþ1 ¼ mðmþ 1Þ=2 is the binomial coefficient and dk are the

coefficients with ±1 value according to the recursive formulas
d2k�1 = dk, d2k = �dk, k 2 N, d1 = 1. It can be observed that the deriv-
atives consist of the upðxÞ function compressed to the interval of
2�m+1 length with ordinates ‘‘extended” with the 2C2

mþ1 factor.
The Fupn(x) function satisfies the following differential–func-

tional equation:

_Fup0nðxÞ ¼ 2
Xnþ2

k¼0

ðCk
nþ1 � Ck�1

nþ1Þ _FupnðxÞð2x� 2�n�1kþ 2�n�2ðnþ 2ÞÞ

ð12Þ

where n is the Fup order. For n = 0, Fup0(x) = up(x), since Fupn(x) and
its derivatives can be calculated using a linear combination of dis-
placed upðxÞ functions instead of using their Fourier transforms:

FupnðxÞ ¼
X1
k¼0

C�kðnÞup x� 1� k
2n þ

nþ 2
2nþ1

� �
ð13Þ

where C�0ðnÞ ¼ 2C2
nþ1 ¼ 2nðnþ1Þ=2 and C�kðnÞ ¼ C�0ðnÞ � C

0
kðnÞ, where a

recursive formula is used for calculating auxiliary coefficients C0kðnÞ:

C 00ðnÞ ¼ 1; when k ¼ 0; i:e: when k > 0

C 0kðnÞ ¼ ð�1ÞkCk
nþ1 �

Xminfk;2nþ1�1g

j¼1

C0k�jðnÞ � djþ1

ð14Þ

The Fupn(x) is defined on the compact support
[�(n + 2)2�n�1, (n + 2)2�n�1]. Fig. 3 shows the Fup2(x) function and
its first two derivatives which are used in this paper.

Index n also denotes the highest degree of the polynomial
which can be expressed exactly in the form of a linear combination
of n + 2 Fupn(x) basis functions displaced by a characteristic inter-
val 2�n. Thus, a quadratic polynomial on a characteristic interval
2�n can be exactly presented in the following way:

x2 ¼ 2�6
X2

k¼�1

ðk2 � 5=18ÞFup2ðx� k=4Þ ð15Þ

Fup basis functions, wavelets and splines are similar mainly due to
the compact support and possible numerical implementation. Gen-
erally, approximation properties of all these basis functions are re-
lated to the developing of algebraic polynomials. Fup and other
atomic basis functions can be regarded as generalized splines of
infinite smoothness (C1). It is a reason why Fourier transform of
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upðxÞ can be obtained by infinite number of convolution (Eq. (8)). In
the spirit of wavelet and multi-resolution analysis, atomic basis
functions can be regarded as scaling functions which enable a direct
relationship with wavelets [44]. Therefore, Kolodyazhny and Rva-
chev [36] and Kravchenko and Rvachev [39] constructed wavelet
systems using the atomic functions. It should be noted that the
importance of the atomic function up(x) in the functional–theoret-
ical sense follows from its ‘‘atomic role” in the space of C1 functions
that is similar to that played by wavelet functions in the space L2(R).
Also, the relation between the up(x) function and the theory of
wavelet functions is shown in [16].

The basic difference between Fup and atomic basis functions on
the one hand and wavelets and splines on the other hand is that,
generally, atomic basis functions presented exact solutions of dif-
ferential–functional equations, but splines and wavelets are ob-
tained from particular types of mathematical transforms. This is
the reason why Fup basis functions have infinite number of deriv-
atives and non-vanishing moments. Therefore, Fup and atomic ba-
sis functions are appropriate for a efficient solving of the
boundary-initial value problems as well as designing new promis-
ing mesh-free numerical approaches. A more detailed discussion
about Fup and atomic basis functions is given in Gotovac and Kozu-
lic [25] as well as in recent reviews of atomic basis functions and
its application [37,41].

3.2. Fup Collocation Transform (FCT)

The Fup Collocation Transform (FCT) is an efficient numerical
tool for describing various types of data, signals and functions
using a linear combination of the Fup basis functions. It is a dis-
crete type of transform, similar to the classic discrete Fourier trans-
form (DFT), where linear combination coefficients are called Fup
coefficients. However, the main disadvantage of DFT lies in the fact
that unresolved locations of important frequencies have not been
defined due to non-localized properties of classic trigonometric ba-
sis functions. Thus, the presented transform based on the Fup basis
functions with a compact support (Fig. 3) enables that specific fre-
quencies and corresponding Fup coefficients are associated with a
particular resolution level and spatial location which is not possi-
ble in the DFT. This procedure is also known as a multi-resolution
analysis commonly linked with wavelets [44]. The transform is ob-
tained through a collocation procedure and is therefore called the
Fup Collocation Transform [28]. For example, the 1-D multi-resolu-
tion expansion of the u(x) function can be expressed in the follow-
ing way:

uJðxÞ ¼
XJ

j¼0

Xð2jminþjþn=2Þ

k¼�n=2

dj
ku

j
kðxÞ; J 2 ½0;1Þ ð16Þ

where j is the resolution level, from zero to a maximum level J,
needed for the Fup presentation in Eq. (16) with desired accuracy
defined by the threshold e, n is the Fup order, jmin is the resolution
at the zero level, dj

k are Fup coefficients, uj
k are Fup basis functions

and k denotes the location index at the current level. If we define
the domain X = [X1,X2], then the characteristic interval at each level
is equal to the scale or distance between adjacent collocation
points: Dxj ¼ ðX2 � X1Þ=2jminþj. For demonstrating FCT, consider the
following 1-D test function:

f ðxÞ ¼ � tanh
x� 2=3

0:02

� �
ð17Þ

with a chosen high threshold of e = 0.07 for illustrative purposes.
Other parameters are jmin = 2, X1 = 0, X2 = 2 and n = 4. Fig. 4 presents
the adaptive multi-resolution Fup Collocation Transform for a cho-
sen function (Eq. (17)).
Basis functions are characterized by vertices (Fig. 4a). Basis
functions whose vertices are located inside the domain are called
internal basis functions. Other functions are external basis func-
tions and only their influence within the domain is considered.
The best choice for the location of the collocation points is vertices
of the internal basis functions as proven numerically for splines in
[49], wavelets in [63] and Fup basis functions in [25]. Moreover,
the main difficulty in transformations with localized basis func-
tions is the special treatment of the boundary. For all n/2 external
basis functions at the left and right boundaries, the collocation
points are located at the X1 and X2 boundaries if n is the Fup order.
The location of each basis function is actually determined by the
location of the vertex and defined by bj

k ¼ X1 þ kDxj. The calcula-
tion of basis function values and their derivatives at a general char-
acteristic interval Dxj should be done in the following form with
respect to a basic characteristic interval 2�n:

uj
k

ðmÞ
ðxÞ ¼ 1

ð2nDxjÞðmÞ
FupðmÞn

x� bj
k

2nDxj

 !
ð18Þ

where m is the order of the derivative. The compact support of the
basis function at every level has (n + 2)Dxj length.

Fig. 4a shows an adaptive grid for all levels and internal basis
functions for the zero and first levels. Each next level includes
two times more internal basis functions with two times less sup-
port and scale. Zero level is the starting (coarsest) level which is
always present in the grid. The FCT satisfies function values in all
collocation points and for the first two (n/2) derivatives at bound-
ary points (Fig. 4b). The key step of the FCT is the transfer from
the current level to the next level. The residual between the true
function and the previous level approximation is checked and the
points with a residual below the prescribed threshold are
dropped from the grid (Fig. 4c). This procedure presents an a pri-
ori adaptive criterion for defining the new collocation points at
the next level. Note that residuals are always zero for even collo-
cation points due to satisfying function values at the previous lev-
els. Each retained point must be surrounded by n + 2 additional
basis functions which enable a consistent approximation for the
transfer to the next level. In addition, external basis functions
should be added if points near the boundary are present in the
grid.

For the first and for each subsequent level the collocation algo-
rithm should only satisfy the residual between the true function
and its approximation from the previous levels. In other words,
all Fup coefficients from the previous levels are ‘‘frozen” and only
Fup coefficients at the current level should be solved. Higher lev-
els include only higher frequencies and show a more detailed
description of the chosen function. The collocation points are
added only around the front where the residual from the previous
level is greater than the prescribed threshold (Fig. 4a and c). Fi-
nally, the residual between true function and its Fup approxima-
tion up to five levels is less than the threshold within the entire
domain. In this way, we can decompose any function in a multi-
resolution fashion by employing only a few significant Fup basis
functions with appropriate scales (frequencies) and locations with
a desired level of accuracy and a near minimum computational
cost. Finally, the meaning of the threshold is twofold: (1) it pre-
sents a priori adaptive criterion and (2) it defines the accuracy
of the approximation because the final absolute difference be-
tween the Fup approximation and the real function must be less
than the threshold.

Extension of the FCT to higher dimensions is the straightfor-
ward task. Multi-dimensional basis functions are obtained by
Cartesian product of the 1-D basis functions (Fig. 3). The multi-res-
olution 2-D FCT of the function u(x,y) can be presented in the fol-
lowing way:
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Fig. 4. Multi-resolution approximation of the function (17), (a) adaptive grid development and internal basis functions, (b) function (17) and its FCT approximation and (c) a
priori adaptive criterion for new collocation points based on residual between function (17) and its FCT approximation.
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uJðx; yÞ ¼
XJ

j¼0

X
k;l2Zj

dj
k;lu

j
k;lðx; yÞ ð19Þ

where Zj is the irregular grid at each level which contains only the
significant collocation points and Fup basis functions needed for
the Fup presentation in Eq. (19) with desired accuracy defined by
the threshold e; dj

k;l are Fup coefficients, uj
k;l are Fup basis functions

while k and l presents the indexes of collocation points at the
current level for x- and y-direction, respectively. The zero level is
defined by a chosen resolution level jminx for the x-direction and
by jminy for the y-direction. Generally, a sparse linear system of
equations can be obtained at each level:X
k;l2Zj

dj
k;lu

j
k;lðx

j
p; y

j
qÞ ¼ Djðxj

p; y
j
qÞ; p; q 2 Zj : 0 6 p

6 2jmin xþj; 0 6 q 6 2jmin yþj ð20Þ

X
k;l2Zj
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k;lu

j
k;l

ðmx ;myÞðxj
p; y

j
qÞ ¼ Dðmx ;myÞ

j ðxj
p; y

j
qÞ; p; q 2 Zj : ðp

¼ 0 or p ¼ 2jmin xþj or q ¼ 0 or q

¼ 2jmin yþjÞ and ðmx > 0 or my > 0Þ ð21Þ

where mx and my are orders of the derivative in x and y directions,
respectively. System (20)–(21) presents conditions for satisfying
function values within the domain (Eq. (20)) and partial derivatives
at the boundary points (Eq. (21)). Boundary conditions satisfy the
smallest order of the derivatives if the function is known or neglect
the highest possible order of the derivatives (up to the Fup order) if
the function is unknown or defined as set of data (i.e. log-conductiv-
ity). The residual vector has the following form:

Djðxj
p; y

j
qÞ ¼

f ðxj
p; y

j
qÞ; p; q 2 Zj; j ¼ 0

f ðxj
p; y

j
qÞ � uj�1ðxj

p; y
j
qÞ; p; q 2 Zj; j > 0

(

Dðmx ;myÞ
j ðxj

p; y
j
qÞ

¼
f ðmx ;myÞðxj

p; y
j
qÞ; p; q 2 Zj; j ¼ 0

f ðmx ;myÞðxj
p; y

j
qÞ � uj�1ðmx ;myÞðxj

p; y
j
qÞ; p; q 2 Zj; j > 0

( ð22Þ

More detailed description of the FCT is given in Gotovac et al. [28].
Accuracy of the FCT is given by Theorems 1 and 2 which hold true
for each direction (Appendix A). Kravchenko and Basarab [40] pro-
posed iteration algorithm for solving the system (20)–(21) as mod-
ified type of the classic Jacobi iterative procedure:

dj
k;l;s ¼ 2�n

Xs

i¼0

1�
Xn=2

p¼0

ax;pD
2p
x

Xn=2

q¼0

ay;qD
2q
y

 !i

uðxj
k; y

j
lÞ ð23Þ

where s is the number of iterations, Dx and Dy are finite difference
operators of even order with respect to each direction and
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ax;n=2 ¼ uj
kðb

j
k�n=2Þ; ax;n=2�r ¼ uj

kðb
j
k�n=2þrÞ þ

Pr
i¼1ð�1Þiþ1Ci

2ðn=2�rþiÞ
ax;n=2�rþi, r ¼ 1; . . . ;n=2 for x-direction and consequently ay,q for y-
direction. By letting s ?1, we obtain the exact solution of the sys-
tem (20)–(21). However, for a prescribed threshold it is possible to
obtain sufficient number of iterations in order to get an approxi-
mate solution of the system (20)–(21).

3.3. Fup Regularized Transform (FRT)

The Fup Regularized Transform (FRT) is a numerical tool for
describing various types of data, signals and functions using a lin-
ear combination of the Fup basis functions as well as FCT, but in a
computationally more efficient way. The main drawback of the FCT
is solving of the sparse linear system of equations at each level
(20)–(21). Although there are a few efficient solvers including Eq.
(23), generally for higher Fup basis functions, adaptive grids and
especially 3-D problems, solving of the mentioned system can be
a very demanding. Here, we present for the first time the Fup Reg-
ularized Transform (FRT) which directly connects function or data
values with Fup coefficients without solving the system of equa-
tions. Generally, FRT has the same purpose and uses the complete
same adaptive strategy as FCT and therefore we will focus only on
obtaining the Fup coefficients.

Without loss of generality, we can demonstrate FRT on a very
simple 1-D function approximation with Fup2 basis functions. For
equidistant distribution of function values at some level j, we can
calculate few first derivatives in some point xj

k using the classic
Taylor expansion. For Fup2 basis functions (n = 2) only three points
(n + 1 = 3) are needed in order to obtain the well known central dif-
ference formulas:

uj
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k
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2
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3
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On the other side, Fup expansion of the function value and first two
derivatives at the same point are defined by (Eqs. (13) and (18),
Fig. 3):
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Equalizing (24) and (25) will give the Fup coefficient at point xj
k:

dj
k ¼

1
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½ �5 46 �5 �

uj
k�1

uj
k

uj
kþ1

2
664

3
775 ð26Þ

External and corresponding internal Fup coefficients should be ob-
tained from the closest neighboring points to the boundary colloca-
tion point using the backward or upward FD formulas. For example,
at left boundary (X1) the Fup coefficients are:
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dj
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" #
¼ 1
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� � uj
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uj
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uj
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2
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In other words, FCT exactly satisfies function values, while FRT lo-
cally at each collocation point describes a function using equiva-
lence between Fup and polynomial approximation. Therefore, FRT
exactly describes polynomials up to the Fup order. Note that evalu-
ation of the FRT to higher dimensions and Fup basis functions is a
straightforward task because it is only necessary to equalize corre-
sponding Fup expansion and finite difference formulas. If we calcu-
late all Fup coefficients (Eqs. (25) and (26)) at level j, then Eq. (16) at
point xj

k does not give exact function value as FCT and it can be pre-
sented with respect to the only function values:

ujðxj
kÞ ¼

1
1296

½ �25 100 1146 100 �25 �

uj
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uj
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666666664

3
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ð28Þ

Therefore, FRT approximation (28) can be interpreted as regulariza-
tion because it uses closest points with corresponding weighting
factors the total sum of which is unity [12]. Since FCT and FRT ex-
actly describe polynomials up to the Fup or n-order, Kravchenko
and Basarab [40] showed that Eq. (23) also presents n-order polyno-
mials if s = n/2. It means that the general expression for FRT is given
by

uJ
nðx; yÞ ¼

XJ

j¼0

X
k;l2Zj

dj
k;l;n=2u

j
k;lðx; yÞ ð29Þ

Difference between the FCT and FRT approximation is defined by
Theorem 3 in Appendix A. FCT requires slightly less number of col-
location points than FRT for a general function. However, FRT is
computationally more efficient due to the direct connection of the
Fup coefficients and function values while still maintaining good
approximation properties (Appendix A). In this paper we use FRT
for all 1-D and 2-D data or function approximations as well as for
ensemble statistics.
3.4. Adaptive Fup Collocation Method (AFCM)

In this paper, we present a novel form of the Adaptive Fup Col-
location Method (AFCM) which solves the flow differential equa-
tion with only Fup basis functions at each level using the
collocation framework. All previous existing algorithms with
wavelets and splines (e.g. [63–65,67]) as well as the recent form
of AFCM [28] used localized basis functions only to obtain an effi-
cient adaptive strategy, but the differential equation is solved by fi-
nite difference method on a non-uniform adaptive grid (including
all levels). Essentially, AFCM which solves the differential flow
equation and corresponding boundary conditions (3) and (4) uses
the same adaptive strategy as FCT and approximates a head solu-
tion by levels. Zero level satisfies boundary conditions and flow
equation in the corresponding collocation points. Each non-zero le-
vel solves only residual of the flow equation and corresponding
boundary conditions from all previous levels (‘‘frozen” Fup coeffi-
cients) and gives particular head correction (Fup coefficients at
the current level). Adaptive criterion adds new collocation points
in the next level only in the zones where head correction is greater
than the prescribed threshold. Additional and external basis func-
tions and collocation points are added in the same way as it is
shown in the FCT or FRT.

Many numerical experiments with known analytic solutions
[27,38] have shown that solution (head) correction on some level
is greater than the difference between the analytical solution and
overall solution up to that level. This implies that head correction
is a priori an adaptive criterion, which directly estimates accuracy
of the solution even if the analytical solution is not a priori known.
Numerical AFCM implementation of the flow problem (3) and (4)
can be represented by the following linear and sparse system of
equations at each level:
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with boundary conditions:X
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for a given FCT or FRT approximation of the log-conductivity field,
while nx and ny are absolute differences between indexes of the ver-
tices of the external basis functions and corresponding boundary
collocation points in x and y directions, respectively [28]. System
(30)–(32) satisfies the differential flow equation in the internal col-
location points (internal Fup coefficients) and boundary conditions
in the corresponding boundary collocation points (external Fup
coefficients). The residual vector has the following form:
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In this paper we use Fup2 basis functions. If we wish to use higher
Fup order, additional boundary equations should be employed in
order to neglect higher possible partial derivatives up to the Fup or-
der. System (30)–(32) can be efficiently solved for instance by the
GMRES solver, as will be shown in Section 4. Apart from head cor-
rection criterion, AFCM uses local grid flow Peclet and global mass
balance criteria. Velocity approximation (Eq. (2)) is continuous
due to properties of the localized Fup basis functions and continu-
ous FCT or FRT approximation of the log-conductivity. AFCM is gen-
erally a mesh-free method because it requires only adding of
collocation points and basis functions over the domain, not the clas-
sic domain discretization and the numerical integration [2]. In spir-
it, the Fup multi-resolution approach finds minimum finite number
of collocation points or basis functions to represent solution which
is theoretically defined by an infinite number of collocation points.
The only consequence of this approach is that the exact solution and
Fup approximation differ for some non-zero residual, but it is smal-
ler than the prescribed threshold.

3.5. Monte-Carlo statistics

Each variable is represented by a separate linear combination of
Fup basis functions in each realization (Eqs. (16), (19) or (29)). In
this subsection we show that ensemble MC averaging also pro-
duces a continuous approximation of all flow and transport mo-
ments, pdf’s or cdf’s. Without loss of generality, consider a 1-D
case. The mean solution at each point can be obtained in the fol-
lowing way:
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where �dj
k are mean Fup coefficients. Eq. (37) implies that the mean

solution is presented by mean values of the Fup coefficients. Fup
fluctuating coefficients in each realization are defined in the usual
way as the difference between actual and mean Fup coefficients
ðdj

k

0
¼ dj
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kÞ. Autocovariance is defined by:
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Autocovariance (38) is presented by the covariance of the Fup fluc-
tuating coefficients. We can conclude that each moment is a contin-
uous function which is represented by a linear combination of the
Fup basis functions. Linear coefficients are related to the ensemble
statistics of the Fup coefficients. Furthermore, in this way the same
statistics of the Fup coefficients define statistics of all derivatives of
the basic variables. For example, covariance between function u and
its first derivative is:
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Note that cross-covariance can be obtained similarly as in (38), but
linear coefficients are changed to the cross-covariance of the Fup
fluctuating coefficients. A computation of all higher moments and
pdf’s follows an analogous procedure.

4. Multi-resolution representation of hydraulic properties and
groundwater flow

To demonstrate the applicability of AFMCM and study advective
transport in highly heterogeneous media, we perform uncondi-
tional MC simulations in a two-dimensional heterogeneous field
(64IY � 32IY) with a log-normally distributed multi-Gaussian
hydraulic conductivity, exponential correlation structure and a
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lnK variance of hydraulic conductivity, r2
Y , up to 8. In the simula-

tions, 4–32 collocation points per integral scale (nY = 4–32) will
be considered.

4.1. Hydraulic properties

A single realization of the hydraulic conductivity obtained using
HYDRO_GEN [5] is illustrated in Fig. 5. A discrete set of generated
log-conductivity values are transformed to the continuous function
by the Fup Collocation Transform (FCT). FCT satisfies exactly gener-
ated grid values and elsewhere interpolation is closely related to
the polynomial approximation of the n order if n is a Fup order
(we use here Fup2 basis functions). Fig. 5 shows a multi-resolution
FCT approximation of the log-conductivity field in one chosen real-
ization for r2

Y ¼ 6. HYDRO_GEN generates 32 grid values per inte-
gral scale with conductivity differences over seven orders of
magnitude. Zero level satisfies minimum requirement of two collo-
cation points per integral scale (nY = 2). First level is two times den-
ser, 4 points per integral scale (nY = 4, Fig. 5a), while second, third
and fourth levels consist of nY = 8, 16 and 32 (Fig. 5b) collocation
points per integral scale, respectively. Final, fourth level exactly
reproduces all HYDRO_GEN values, but interestingly visual inspec-
tion does not reveal any difference between the first and fourth
levels. However, in cross-section A–A (Fig. 5c) we see that differ-
ences between different resolution levels exist only at higher level
points.

Accuracy of the HYDRO_GEN and FCT is shown on Fig. 6 for 500
MC realizations and r2

Y ¼ 6. Prescribed and reproduced correla-
tions (Fig. 6a) and distributions (Fig. 6b) are practically identical.
FCT has some important properties: (1) approximation does not
change HYDRO_GEN statistics (by comparison, Ababou et al. [1]
Fig. 5. Multi-resolution Fup approximation of the (log)-conductivity field (one chosen m
for different resolution levels (domain is 64IY � 32IY): (a) conductivity field for nY = 4; j =
and (c) log-conductivity field for section A–A, nY = 4 and nY = 32.
and Salandin and Fiorotto [58] reported that lnK variance is dis-
torted around 10%), (2) log-conductivity is a continuous function
with all n continuous derivatives if n is a Fup order which is con-
trary to the classical finite element (FE) algorithms where it is usu-
ally piecewise constant or a discontinuous function, (3) log-
conductivity can be presented at the generated HYDRO_GEN level
(Fig. 5b, nY = 32), but also at all coarser levels (i.e. nY = 4, 8 and 16
points, Fig. 5a and c) due to the multi-resolution nature of the FCT,
(4) MC statistics, for instance log-conductivity correlation and the
probability density function (pdf) (Fig. 6), are obtained as continu-
ous functions and (5) not limited to the type of the heterogeneity
structure.

On the other side, FRT slightly modifies HYDRO_GEN statistics
due to averaging and regularization of the generated values.
Fig. 6a shows that FRT actually does not significantly change the
correlation structure, but slightly decreases lnK variance and mod-
ifies the log-normal distribution close to the origin (Fig. 6b). There-
fore, lnK variance is 3–4% reduced for the high heterogeneity cases
ðr2

Y ¼ 6—8Þ, but for smaller r2
Y differences are negligible. Although

FCT exactly reproduces log-conductivity ensemble statistics, we
choose FRT in this paper due to its computational efficiency and
comparatively high accuracy. Note that FRT retains all aforemen-
tioned properties of the FCT and also shows significant advantage
due to more stabilized flow solver and particle tracking algorithm
as will be shown in the sequel.

4.2. Groundwater flow

AFCM yields multi-resolution solution of the flow equation
resolving different spatial heterogeneity scales (Section 3.5). This
method can estimate head and mass balance errors. Each variable
ulti-Gaussian realization) obtained by FCT with exponential covariance and r2
Y ¼ 6

1, (b) conductivity field for nY = 32; j = 4 which is also HYDRO_GEN resolution level
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has its own particular resolution which means that log-conductiv-
ity and head do not need the same grid as it is common with all
conventional numerical FE and FD methods. Each variable as well
as velocity is obtained as a continuous function in form of linear
combination of Fup basis functions which is essential for the parti-
cle tracking algorithm to be proposed in this work.

We consider steady groundwater flow (1) and (2) in two-
dimensions characterized by constant porosity and heterogeneity
represented by a spatially varying log-conductivity field through
the (3) and (4) or its AFCM formulation (30)–(32). Eq. (3) and its
AFCM counterpart (32) present an advection–dispersion equation
(ADE). Log-conductivity variability and heterogeneity is repre-
sented by its derivatives, which act as an advective term in sense
of the classic transport ADE. For small heterogeneity, the parabolic
problem (3) and (4) converges to an elliptic one or a simple Laplace
equation, but high heterogeneity transforms a parabolic problem
(3) and (4) to an ‘‘advection-dominated” or a quasi-hyperbolic
problem. Numerical implementation of (3) and (4) can be done
in many ways. AFCM uses a strong formulation and directly solves
the flow problem (3) and (4) by a collocation algorithm in such
way that head solution is represented by a linear combination of
Fup basis functions. Since AFCM uses collocation algorithm, math-
ematical model (3) and (4) is transformed to the non-symmetric
and sparse system of linear algebraic equations (30)–(32). It is
opposite to the conventional FE algorithms, for instance, where
flow formulation (1) and (2) is presented by, through weak integral
Galerkin formulation, elliptic problem and a symmetric, sparse sys-
tem of linear algebraic equations. Salandin and Fiorotto [57] com-
mented that spectral methods outperform FE solution mainly due
to the log-conductivity continuity, but weakness of the classic
spectral approach is neglecting the cutoff frequencies. AFCM pre-
sents also a spectral approach, but due to localized Fup basis func-
tions, all log-conductivity and head frequencies are resolved.
Consequence is solving of the non-symmetric linear system, in-
stead of a symmetric one. Non-symmetric part of (3) is the advec-
tive term or log-conductivity derivatives. Higher lnK variance
implies higher degree of heterogeneity and increasingly stronger
non-symmetric linear systems.

An efficient GMRES solver [55] based on Krylov subspaces
methods are implemented in this work using a multiplicative Sch-
warz preconditioner [56]. Briefly, the domain is divided into a
number of mutually overlapping longitudinal blocks or subdo-
mains. This preconditioner is essentially the same as the block
Gauss–Seidel preconditioner and every block (submatrix) is factor-
ized by a direct band solver; coefficients from other blocks (subma-
trices) are used from the last possible iteration and replaced to the
right side. This preconditioner is very powerful because all non-
zero matrix coefficients are included in the partial factorization.

Numerical experiments show that optimal results can be ob-
tained for block width greater or equal to two integral scales with
overlapping greater or equal to one integral scale, with the Krylov
subspace equal to 100. Fig. 7 shows the convergence setup for one
chosen realization (Fig. 5). Log-conductivity is approximated at le-
vel 2 or 8 points per integral scale (nY = 8), while head is solved at
level 3 which has 16 points per integral scale (nh = 16) or 528,905
unknowns and at level 4 which has 32 points per integral scale
(nh = 32) or 2,106,377 unknowns. Fig. 7 confirms that GMRES sol-
ver is very accurate due to small obtained residual norm and rela-
tively fast due to a reasonable number of iterations. CPU time for
this typical realization is around 10 min for level 3 (nh = 16) and
1.5 h for level 4 (nh = 32). Differences between realizations for
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the same variance are relatively small and fluctuate around 10% of
the average CPU time. MC simulations in this paper are done in
cluster Lenggren on KTH-NADA Parallel Computer Centre (PDC,
on dual-core Intel Xeon processors with 2.33 GHz and 8 GB
RAM). Note that multiplicative Schwarz preconditioner requires
at highest level 4 (nh = 32) around 7 GB RAM for partial factoriza-
tion. Further improvement should be the design of a parallel
GMRES solver in order to use the full capacity of a cluster.

The flow equation acts as a filter of the heterogeneous log-con-
ductivity field and head boundary conditions to the relatively
smooth head solution. Consequently, input (log-conductivity) and
output (head) have different statistical properties and generally
do not require the same resolution. Therefore, due to its simplicity
and generality, AFCM considers each variable as a separate func-
tion, enabling different resolutions for the input and output.

4.3. Hydraulic head and velocity solutions

Fig. 8 presents a multi-resolution head and streamline solution
at the highest level 4 (nh = 32) for different resolutions of the log-
conductivity field (nY = 4–32; one chosen realization from Fig. 5).
Although there are small differences between different log-con-
ductivity resolutions, they cause small head differences, but larger
streamline or velocity differences. Generally, flow or streamline
patterns are similar for all log-conductivity resolutions, character-
ized by preferential flow channels [45], but shape, position and
numbers of channels are slightly different. Different position of
preferential flow channels implies traveling of one portion of the
flow through different high-connected conductivity zones. Crucial
Fig. 8. Multi-resolution Fup approximation of the head and streamline field (one cho
resolution levels of the generated conductivity field (nh = 32 and domain is 64IY � 32IY):
question is how these log-conductivity differences influence flow
and travel time statistics, as well as which log-conductivity resolu-
tion ensures accurate MC statistics (see Sections 5 and 6). More-
over, flow in low and mildly heterogeneous formations is
relatively smooth and uniform and does not exhibit such compli-
cated streamline patterns. Due to channeling, nonlinear effects ap-
pear to be dominant.

Finally, Fig. 8 presents streamline fields that are obtained from
the AFCM continuous velocity approximation. This inherent AFCM
property is a significant advantage in comparison to the conven-
tional FE algorithms. Cordes and Kinzelbach [8] proposed a post-
processor which creates a continuous velocity approximation
from the ordinary FE head solution. Alternatively, a mixed FE for-
mulation is required [46]. Moreover, continuous velocity approxi-
mation is necessary for accurate and reliable particle tracking
that will be explored in the sequel. Relative accuracy of the velocity
is lower, around one order of magnitude compared to the head
accuracy, due to strong Fup correlation with the polynomial type
of approximation. Note that FCT or FRT can also be used as a post-
processor which yields a continuous velocity approximation from
the classic FE head solutions (being thus a possible alternative to
the Cordes and Kinzelbach approach).

Fig. 9 shows two head and streamline solutions at levels 3 and 4
(nh = 16–32) for log-conductivity field at level 2 (nY = 8) and the
realization from Fig. 5. Differences between two levels are rela-
tively small for head, but it causes larger differences for streamline
patterns. Head difference between third and fourth levels presents
head contribution of the fourth level and it is in the dimensionless
form Dh/DH < 0.029 over the entire domain. This would imply that
sen realization from Fig. 5) with exponential covariance and r2
Y ¼ 6 for different

(a) nY = 4; j = 1, (b) nY = 8; j = 2, (c) nY = 16; j = 3 and (d) nY = 32; j = 4.



Fig. 9. Multi-resolution Fup approximation of the head and streamline field (one chosen realization from Fig. 5) with exponential covariance and r2
Y ¼ 6 for different

resolution levels of the head field (nY = 8 and domain is 64IY * 32IY): (a) nh = 16; j = 3 and (b) nh = 32; j = 4.
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the computed head solution (nh = 32; Fig. 9b) and ‘‘exact” unknown
solution for this log-conductivity resolution should differ less than
Dh/DH = 0.029. Usually, this difference is overestimated which
means that level 3 (nh = 16) and especially level 4 (nh = 32) are al-
ready quite accurate.

5. Accuracy and convergence of the flow solver

5.1. Flow-related Peclet number and other adaptive criteria

Head solution requires very fine resolution in order to satisfy
detailed heterogeneity variations and accurately solve differential
flow equation (3). It is constrained by an anisotropic flow Peclet
number (in analogy to the transport Peclet number for advec-
tion–dispersion) defined by:

Pex ¼
@Y
@x

IY ; Pey ¼
@Y
@y

IY ð40Þ

On the other side, AFCM flow implementation (30)–(32) is con-
strained by an anisotropic grid flow Peclet number defined by:

Pegx ¼
@Y
@x

IY

nh
6 2; Pegy ¼

@Y
@y

IY

nh
6 2 ð41Þ

Grid flow Peclet number directly describes influence of the hetero-
geneity variations. AFCM must decrease this criterion in order to
obtain a head solution without a significant amount of numerical
dispersion and/or oscillations. It is analogous with the classic trans-
port Peclet number and numerical analysis of the advection-domi-
nated problem with very small longitudinal and transverse
dispersivities. In effect, we are considering the flow problem (3)
as an advection–dispersion process with a strongly variable advec-
tive term (log-conductivity derivatives) and constant unit
dispersion.

A minimum resolution requirement can be obtained from Eq.
(41) at each level as:

Dxj 6
2

@Y=@x
; Dyj 6

2
@Y=@y

ð42Þ

Furthermore, AFCM satisfies mass balance global criterion and head
local criterion, which ensures global mass conservation and direct
estimation of the solution accuracy, respectively. We consider max-
imum mass balance error (%) between any two vertical control
planes over the entire domain, which is a more rigorous criterion
than the common mass balance error between global inflow and
outflow. Numerical experiments show that every next level yields
head correction which is greater than contribution from all other
higher levels, implying that the head correction criterion is a direct
measure of the AFCM accuracy.

5.2. Accuracy

AFCM accuracy is defined by two local criteria, flow Peclet num-
ber and head correction, and mass balance global criterion. Fig. 10
shows mean values of flow Peclet number (Eq. (40)) for different
log-conductivity resolutions and variances over 500 MC realiza-
tions. Fig. 10a presents absolute average flow Peclet number over
the entire domain, while Fig. 10b presents maximum absolute flow
Peclet number as:

L2ðPeÞ ¼max
x;y2D
ðjPexðx; yÞj; jPeyðx; yÞjÞ ð43Þ

Since flow Peclet number depends only on log-conductivity deriva-
tives and heterogeneity, it increases for higher log-conductivity res-
olution and variance, which implies more involved heterogeneity
variations. Average Peclet number is the same in each realization,
while maximum Peclet number fluctuate around 10% of the mean
value for each r2

Y ; typically, maximum Peclet number is 5–10 times
higher than the average value.

We can directly calculate grid flow Peclet number from Fig. 10
and Eq. (41) dividing the flow Peclet number by nh. If the grid
flow Peclet number is less than 2 over the entire domain, numer-
ical experiments show that the obtained solution is quite accu-
rate. Moreover, if this criterion is greater than 2 only locally in
some subdomains, it is also possible to get acceptable accuracy.
Fig. 10b shows two dashed horizontal lines which represent flow
grid Peclet criterion (Eq. (41)) for nh = 16 and nh = 32, respectively.
For the highest resolution of heterogeneity (nY = 32), AFCM re-
quires head resolution more than our temporal computational
limit (nh = 32 or 2.1 � 106 unknowns) for acceptable solution in
cases r2

Y > 2 in order to satisfy criterion (42). For lower heteroge-
neity resolution (nY = 16), maximum head resolution (nh = 32) en-
ables acceptable results for r2

Y up to 4. For heterogeneity
resolution (nY = 8), maximum head resolution (nh = 32) enables
quite accurate results for all r2

Y , while lower head resolution
(nh = 16) yields acceptable results for r2

Y up to 4. For heterogene-
ity resolution (nY = 4), head resolution (nh = 16) enables quite
accurate results for almost all r2

Y . Note that Gaussian covariance
yields considerably smaller Peclet numbers as it is shown for het-
erogeneity resolution (nY = 8) and head resolution (nh = 16)
(Fig. 10, [61]).
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Similar considerations are applicable to Fig. 11 for maximum
relative mass balance error (%) between any two vertical control
planes divided by average flow rate over the entire domain with:
(a) lower head resolution (nh = 16) and (b) maximum head resolu-
tion (nh = 32). Fig. 11 presents mean values over 500 MC realiza-
tions and shows a dashed horizontal line for mass balance error
of 3% which appears as upper limit for accurate and reliable flow
and travel time statistics as will be shown in the sequel. Generally,
for a mild heterogeneity (r2

Y up to 2), head solution is quite accu-
rate with a mass balance error less than 3% for all presented head
and log-conductivity resolutions. However, for high heterogeneity
ðr2

Y > 3Þ mass balance error tends to increase considerably, espe-
cially for the highest log-conductivity resolution (nY = 32). Lower
head resolution (nh = 16) gives quite accurate results only for
nY = 4 and r2

Y up to 4 and for nY = 8 and r2
Y up to 2 (Fig. 11a). Max-

imum head resolution (nh = 32) enables acceptable results for het-
erogeneity resolution (nY = 16) and r2
Y up to 4, while it enables

accurate results for lower heterogeneity resolutions (nY = 4–8)
and all r2

Y with mass balance error less than 3% (Fig. 11b). Once
again, Gaussian covariance with nY = 8 and nh = 16 gives very accu-
rate flow results.

Fig. 12 shows mean values for head correction criterion over
500 MC realizations; this figure is closely related to Fig. 9. We used
two head resolution levels (nh = 16–32) and log-conductivity reso-
lutions (nY = 4–8). Therefore, head correction solution is obtained
at maximum head resolution (nh = 32) because AFCM on that reso-
lution finds only difference or residual between head solution at
nh = 16 and nh = 32. For nY = 8, head correction in the dimensionless
form is less than 0.06 or 6% of total head drop DH for all lnK vari-
ances, which is an acceptable head solution. Furthermore, for
nY = 4, head correction is less than 2% of total head drop for all
lnK variances, similar to the results for a Gaussian covariance with
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nY = 8 and nh = 16. Note that this criterion usually overestimates
real head errors that are proved with small mass balance errors
for respective resolutions.

5.3. Convergence

Convergence analysis focuses on the influence of the log-con-
ductivity resolution and number of MC realizations on ensemble
statistics. Velocity covariance requires larger resolution level only
for lags smaller than the grid size, i.e. for variance calculation
[58]. Fig. 13 presents influence of the log-conductivity resolution
on the longitudinal and transverse Eulerian velocity variance.
Exponential log-conductivity covariance theoretically requires
head resolution which tends to zero in order to capture all hetero-
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velocity variance and (b) transverse velocity variance.
geneity variations. Practically, results show that resolution nY = 8
ensures accurate velocity variances for all r2

Y due to reasonable dif-
ference between velocity variances for cases nY = 4 and nY = 8. Fur-
thermore, for r2

Y > 4, nY = 16 and nh = 32 values of velocity
variances decrease due to influence of the numerical dispersion
and mass balance error higher than 3%. Evidently, AFCM requires
head resolution more than our temporal computational limit
(nh = 32 or 2.1 � 106 unknowns) because in these cases numerical
errors smooth the velocity field whereby physically more logical
variances are obtained with lower heterogeneity resolution.

Fig. 14 presents transverse velocity covariance with r2
Y ¼

6; nh ¼ 32 and four considered cases: (a) nY = 4, nMC = 300, (b)
nY = 4, nMC = 500, (c) nY = 8, nMC = 300 and (d) nY = 8, nMC = 500.
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(500 Monte-Carlo realizations, nh = 32 and domain is 64IY * 32IY): (a) longitudinal
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Velocity variance as well as the covariance is bounded by first- and
second-order theory as lower and upper bound, respectively. Var-
iance is closer to the second-order results [32], while ensemble re-
sults of Salandin and Fiorotto [58] for r2

Y 6 4 are relatively accurate
despite some inaccuracies in each realization. We can conclude
that both analytic solutions poorly represent transverse velocity
covariance for r2

Y ¼ 6. Differences between cases c and d as well
as b and d are very small and practically negligible, except partly
at the origin. It confirms that 500 MC realizations are sufficient
in order to eliminate statistical error. In particular, relative differ-
ences between transverse (as well as longitudinal) velocity covari-
ance obtained from 300 and 500 MC realizations are less than 3%.
Since it is well known that MC statistical error decreases very
slowly and proportionally with n�0:5

MC , we conclude that 500 MC
realizations are sufficient in order to keep statistical error compa-
rable to the other errors which arise from the MC procedure.
Therefore, overall results of this subsection show that resolutions
nY = 8 and nh = 32 as well as 500 MC realizations ensure accurate
velocity ensemble statistics in highly heterogeneous porous media
with r2

Y 6 8.
6. Advective transport

Here, we focus on advective transport and compute transverse
displacement and travel time for an unlimited number of advecting
particles through the heterogeneous domain (Eq. (5)). Transport
analysis is based on the approach of Cvetković et al. [10] who con-
sidered Langrangian variables as spatial fields. For current illustra-
tion, we choose the in flux injection mode, contrary to Cvetković
et al. [9] who considered uniform (resident) injection mode [15].

6.1. Particle tracking algorithm

Application of the particle tracking technique requires only
knowledge of the velocity field (Eq. (5)). However, in highly heter-
ogeneous media, the spatial flow variation is large and character-
ized by preferential flow channels and barriers. Therefore,
traditional particle methods can fail due to following three sources
of errors: discontinuous and grid based velocity approximation,
inaccurate numerical integration and insufficient number of
particles.

As we explained above, AFCM naturally produces continuous
velocity fields, while conventional methods require special post-
processor [8] or formulation [46]. Moreover, as reported by LaBolle
et al. [43], velocity values are always given in the finite element
nodes or finite difference cells, while velocity interpolation (usu-
ally linear, bilinear or even constant) is done inside each element
or cell according to these velocity values. Velocity approximation
is thereby grid dependent on discrete calculated values and parti-
cle tracking algorithm is constrained by classic Courant criterion
that particles may not cross more than half of the cell or element
width in each direction. In comparison, AFCM provides continuous
velocity fields in analytic form of linear combination of the Fup ba-
sis functions. This implies that velocity approximation in each
point is defined with the same accuracy as the grid independent
field where the advective step is not constrained by the Courant
criterion.

Here, we use Runge–Kutta–Verner explicit temporal numerical
integration scheme of the fifth and sixth order with eight stages in
Eq. (5) [66]. Nodes, weights and linking coefficients are usually
presented in the Butcher tableau [66]. Adaptive time step is ac-
cepted if difference between solutions of the fifth and sixth order
is less than the prescribed threshold (local integration error). Run-
ge–Kutta–Verner scheme enable greater time steps than standard
lower schemes. We track each particle independently using as
small as possible time steps in order to cross an arbitrary CP. If
we require some intermediate values of the displacement or travel
time, sixth order polynomial interpolation from the calculated val-
ues should be performed. Importantly, the same sixth order of
interpolation and Runge–Kutta–Verner scheme guarantees that
calculated values at all locations are obtained within the same
accuracy.

Finally, we will examine how many particles are needed in or-
der to obtain accurate MC ensemble statistics. Using the ergodic
hypothesis, our objective is to use as larger number of particles
as possible and therefore decrease the number of realizations in or-
der to stabilize MC higher-order moments and pdf’s. Bellin et al. [4]
found that 1500 MC realizations are needed for displacement var-
iance and only one particle in the each realization for mild lnK var-
iance up to 1.6. However, Salandin and Fiorotto [58] found that
only 500 MC realizations are sufficient for Langrangian velocity
covariance, but they used up to 20,000 particles in the each reali-
zation for high lnK variance up to 4. We present here a new parti-
cle tracking strategy which yields a solution of travel time and
transverse displacement for all particles. If we consider a steady
and continuous velocity field, transverse displacement and travel
time defined on streamlines are continuous, and there is continuity
between any two close adjacent streamlines. If we know all
streamlines or infinite number of particles, it is possible to describe
transverse displacement or travel time field as continuous function
in each realization.

At the zeroth level, we choose a relatively small number of
equally ‘in flux’ distributed particles and find displacement and
travel time for each particle from the source area to the arbitrary
control plane. FRT gives zeroth level continuous approximation
for displacement and travel time based on calculated discrete
particle values. In the first level, two times more particles are
tracked and FRT first level continuous approximation is obtained.
Then, residual between the zero and first level is checked. In the
next level, FRT will add particles only in the zones where residual
is greater than the prescribed threshold. Up to the final level, FRT
will approximate displacement and travel time to the desired
accuracy and determine how many particles are needed to obtain
such solution. In this manner, FRT will approximately calculate
all particles and variables defined on them in the form of an ana-
lytic continuous function. However, FRT finds only a minimum
number of particles in order to describe transport variables for
all particles. Consequently, there is some difference between
FRT and exact solution, but it is less than the prescribed thresh-
old which guarantees obtaining transport variables with desired
accuracy.

Transfer between the discrete and continuous forms is one of
the most important properties of the presented approach. If the
FRT reaches desired accuracy in each realization, this means that
ensemble averaging cannot introduce additional errors. In the next
subsection we will present 1-D and 2-D transverse displacement
and travel time multi-resolution approximation. Note that extend-
ing this algorithm to 3-D flow fields and/or unsteady velocity fields
is straightforward.

6.2. Transverse displacement and travel time fields

Using the particle tracking method explained above, a multi-
resolution approximation of the transverse displacement g(y0;x)
and travel time s(y0;x) is presented in Fig. 15 for arbitrary control
plane at distance x/IY = 52 if source area is located at distance x/
IY = 12, while the vertical axis y0 represents coordinate of a particle
within the source area.

Fig. 15 illustrates a high variation of both variables for the single
realization in Fig. 5. Each dominant flow channel occupies some
significant portion of the vertical axis. So, lower velocity zones
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occupy only small portion of the vertical axis. Transverse displace-
ment (Fig. 15a) has similar value for an entire channel, but sharp
changes or fronts are recorded in the lower velocity zones, which
separate dominant flow channels.

The travel time distribution (Fig. 15b) is also influenced by po-
sition of the dominant flow channels, but mainly with ‘temporal
history’ of each streamline. Higher level of heterogeneity causes
more complex ‘temporal history’ because some streamlines or tra-
jectories belong to the one dominant channel, but after some time
transfer to another channel or to low permeable zones and vice
versa. We can conclude that the travel time field contains a lot of
information about heterogeneity and velocity fields exposing a
complex structure.

Figs. 16 and 17 present 2-D transverse displacement and travel
time distributions from the chosen realization (Fig. 5), respectively.
Solutions are obtained in the transformed domain such that verti-
cal and horizontal lines represent control planes and streamlines,
respectively. Vertical axis has the same meaning as in Fig. 15. Figs.
16 and 17 represent solutions for all control planes and streamlines
in the inner computational domain in order to avoid influence of
the flow boundary conditions. Fig. 16a shows transverse displace-
ment field structure. In the vertical direction or in each CP, trans-
verse displacement has the monotonic slope because advective
transport streamlines do not cross each other. In the horizontal
direction or for each streamline, transverse displacement fluctu-
ates around the mean position, and the function is more compli-
cated. Note that values of the presented transverse displacement
field g(y0;x) in Fig. 16a must be decreased by initial source position
g(y0;x0) in order to obtain transverse displacement field according
to Eq. (6).

Travel time has the monotonic slope in the horizontal direction
because more distant CP requires longer travel time, while the
function is more complex in the other direction due to abrupt
changes between different particles within the CP (Fig. 17a). Both
fields show a complex structure, which is mainly caused by high
heterogeneity. This unique presentation clearly shows significant
difference between relatively close control planes and/or stream-
lines. Note that we consider here function s(x) for each particle.
Its inversion leads to classic displacement function X0(t), required
for calculation of the macrodispersion tensor. Both fields are ob-
tained with desired accuracy, which is defined by the prescribed
threshold. Relative accuracy of less than 0.1% satisfies all our prac-
tical requirements.

Figs. 16b and 17b present adaptive grid or distribution of col-
location points for transverse displacement and travel time fields,
respectively. Adaptive grid shows not only the minimum colloca-
tion points needed for describing both fields with desired accu-
racy, but also all spatial scales which represent solutions. Due to
different behavior, adaptive grids of both variables are different.
This implies that the presented adaptive procedure ‘‘finds” a par-
ticular grid for each variable resolving only important spatial
scales. Higher levels or finer scales and resolutions are required
in zones where fields exhibit sharp changes due to fluctuating
streamlines, transfers between dominant channels, interchanging
of the lower and higher velocity zones and maybe some other
approximation reasons. Transverse displacement requires less
streamlines, but more polynomial interpolation within the stream-
line. Travel time requires more streamlines and collocation points
due to more complex structure. For this realization ðr2

Y ¼ 6Þ
around 4000 particles and 200,000 collocation points were re-
quired to obtain such accurate solutions. Typical realization can
fluctuate only 10% around average quantities. Smaller variances
require a considerably lower number of particles due to absence
of nonlinear effects.

6.3. Convergence

Accuracy is defined by the prescribed threshold in each realiza-
tion. Only convergence aspects remain to be analyzed in this sub-
section. As in the flow analysis described earlier, influence of the
log-conductivity resolution and number of MC realizations is of
interest. Fig. 18a and b presents pdf’s of the transverse displace-
ment and travel time for four cases with r2

Y ¼ 6: (a) nY = 4,
nMC = 300, (b) nY = 4, nMC = 500, (c) nY = 8, nMC = 300 and (d) nY = 8,
nMC = 500. Differences between cases c and d, and also b and d
are relatively small, especially for travel time. Transverse displace-
ment pdf requires more realizations due to small remaining statis-
tical oscillations, which do not change global accuracy of the pdf.
Therefore, results show that the resolution nY = 8, relative accuracy
less than 0.1% in each realization and 500 MC realizations ensure
accurate pdf’s of the transverse displacement and travel time
ensemble statistics.



Fig. 16. Transverse displacement field (a) and corresponding adaptive grid (b) from one chosen realization (Fig. 5) in the inner computational domain with exponential
covariance and r2

Y ¼ 6 (nY = 8, nh = 32, threshold is 0.02).
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7. Discussion

The proposed Adaptive Fup Monte-Carlo Method (AFMCM) rep-
resents a general framework for flow and transport in highly het-
erogeneous porous media which uses a novel form of the
adaptive collocation method AFCM for the differential flow equa-
tion and the Fup transformations for log-conductivity and trans-
port approximations, respectively (Fig. 2). This methodology
enables a multi-resolution of different spatial and temporal scales
for all flow and transport variables. The main idea behind this ap-
proach is finding separately the minimum number of collocation
points and resolution levels to describe each flow and transport
variable with desired accuracy on a particular adaptive grid. There-
fore, adaptive and multi-scale nature of the methodology enables
not only computational efficiency and accuracy, but describes sub-
surface processes closely related to their understood physical
interpretation.

AFMCM combines the most desirable properties of existing
numerical methods: (1) localized basis functions as in conven-
tional FE, (2) application of strong formulation and simple proce-
dure as in conventional FD, (3) accuracy and continuity of basic
variables and their derivatives and usage of Fup transformations
as in spectral methods, and (4) adaptive and efficient procedure
with error estimation as in all modern numerical approaches.

Monte-Carlo methodology needs to describe and interconnect
log-conductivity, flow and transport approximations. Crucial and
the most demanding MC step is the flow solver which uses the
log-conductivity field as input and yields the velocity field as out-
put based on Eqs. (3) and (4). Representation of the log-conductiv-
ity field as well as its approximation used in any particular
numerical procedure strongly affects the obtained velocity field.
The main task for a flow solver is obtaining continuous velocity
fields which enable accurate and efficient particle tracking and
transport approximations, especially in highly heterogeneous por-
ous media. Traditional FE methods with linear or bilinear head
interpolations result in velocity discontinuities between elements
with different conductivity. Continuous velocity field can be ob-
tained by special flow post-processing [8,58] or with a mixed FE
formulation [46] whereby velocities across element sides are con-
stant and continuous. All these procedures require non-negligible
additional computational resources and efforts.

Stream formulation inherently yields continuous velocity fields
and streamlines for particle tracking, but they are difficult to
implement for 3-D and/or transient problems with sink-sources



Fig. 17. Travel time field (a) and corresponding adaptive grid (b) from one chosen realization (Fig. 5) in the inner computational domain with exponential covariance and
r2

Y ¼ 6 (nY = 8, nh = 32, threshold is 0.001).
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[6,22]. Contrary, block centered FD scheme (essentially close re-
lated to the finite volume formulation) where the head in the cen-
ter of block are obtained by applying a mass balance over the edges
of the block [17], gives continuous and constant velocities across
block sides as in FE models without additional CPU efforts. These
methods usually imply Pollock semi-analytic particle tracking pro-
cedure and exact derivation of travel time and displacement in
each block or element [48]. Note that the Pollock procedure implies
continuous velocity in each point in the sense of bilinear interpola-
tion from the edge velocities.

By comparison, AFMCM uses continuous a log-conductivity
field (FRT) and collocation algorithm for the flow approximation
(AFCM). Disadvantage of this approach lies in the fact that an ellip-
tic problem is transformed to the advection–dispersion problem
and global mass conservation is violated due to the collocation nat-
ure of the algorithm. Therefore, for high heterogeneity our head
solution requires higher resolution than log-conductivity in order
to obtain an accurate solution and decrease the Peclet number (re-
lated to the log-conductivity variations) and mass balance error
(Figs. 10–14). However, AFMCM yields continuous velocity fields
with the same accuracy in each point which significantly outper-
forms (low-order) conventional mentioned methods. Furthermore,
efficient particle tracking can use higher and more accurate time
integration schemes along the streamlines and without additional
effort include as many particles as are needed in order to accu-
rately present travel time, transverse displacement and/or other
transport variables. The drawback, as mentioned, is that accuracy,
multi-resolution and other AFMCM properties require a relatively
expensive flow solver.

On the other side, novel finite element and other multi-scale
methods try to find fine scale velocity solution on coarse grid using
the only most relevant fine scale information [20]. However, veloc-
ity error due to loss of particular fine scale information can play a
key role for some important features of flow and transport in
highly heterogeneous porous media such as early arrivals, travel
time peaks and tailings, asymptotic dispersivity or higher-order
moments. Unfortunately, it means that usually we need fine scale
velocity field which require extensive CPU resources for extensions
to 3-D flows for all aforementioned approaches. Since an extension
of AFMCM to 3-D flow and transport problem is conceptually
straightforward, the 3-D flow solution with the presented ap-
proach is still an open problem due to a large linear system of
equations (O(109–1011)) which can outperform even existing
parallel supercomputer capabilities [7,17,34]. Analysis of
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multi-Gaussian heterogeneity fields with other correlation struc-
tures (such as Gaussian correlation, Figs. 10–12) or other non-
Gaussian and fractal fields could yield more correlated structures
and significantly smaller Peclet numbers (Fig. 10) and mass
balance errors (Fig. 11). Therefore, AFMCM can describe more
efficiently such fields using the adaptive multi-resolution grid,
compared to the classic multi-Gaussian case with exponential
correlation which has become the standard prototype statistical
model for numerical and analytical studies. Alternative heteroge-
neity structures, for which AFMCM can be much more readily
extended to 3-D flows, are relevant for applications and are the
topic of our current research.

The main remaining numerical problem for mesh-free colloca-
tion methods with localized basis functions such as Fup (atomic),
wavelets or splines is solving flow for irregular geometries.
Although adaptive Fup approach essentially solves irregular geom-
etry on higher levels by appropriate adaptive a priori criteria, there
are still a number of implementation problems when satisfying all
geometry requirements. It is worthwhile noting that work is cur-
rently in progress to extend the presented methodology to prob-
lems with irregular geometry.

Due to its adaptive properties, accuracy and convergence anal-
ysis using AFMCM enables direct estimation of the error in each
step of the MC procedure. Accuracy is primarily defined by the par-
ticular prescribed threshold for each variable. Convergence analy-
sis proved that resolutions of nY = 8 and nh = 32, 500 MC
realizations and around 4000 particles are sufficient for accurate
ensemble statistics for all flow and transport variables in highly
heterogeneous porous media with r2

Y 6 8. There were no accuracy
and convergence analysis of the FE flow solution of Salandin and
Fiorotto [58] who used (nY = nh = 8) for r2

Y up to 4 and FD solution
of de Dreuzy et al. [17] with nY = nh = 10 and r2

Y up to 9. In sense of
AFMCM accuracy, both studies have maximum grid flow Peclet
number greater than four, while mass balance error is higher than
10% which is quite significant (Figs. 10 and 11). Their low-order
conventional solutions exactly satisfy mass conservation, however
local accuracy of the computed velocity fields which directly af-
fects transport computations, has yet to be shown as satisfactory.
Note that for r2

Y up to 4 both Eulerian velocity variances (Fig. 13)
are in a close agreement with their solutions, but de Dreuzy
et al. [17] did not report results for r2

Y > 4.
8. Conclusions

In this paper we presented a new Monte-Carlo methodology
based on compactly supported Fup basis functions and a multi-res-
olution approach in order to obtain reliable flow and travel time
statistics in highly heterogeneous porous media. We considered
for illustration 2-D steady, linear and unidirectional flow of
(64IY * 32IY) domain size with isotropic exponential correlation
heterogeneity structure and lnK variance up to 8. Although MC
method is appealing in its conceptual simplicity and generality,
each MC step presents a potentially serious source of errors, espe-
cially for highly heterogeneous aquifers. In our study, strict accu-
racy and convergence analysis is performed in order to define
which resolution level for all flow and transport variables is needed
to obtain reliable flow and travel time statistics.

The main conclusions can be summarized as follows:

1. Log-conductivity field in each realization is presented by a con-
tinuous function (FCT or FRT) and a high resolution level
(nY = 4–32 points per integral scale) reproducing very accu-
rately prescribed covariance properties.

2. In each realization, head solution should satisfy grid flow Peclet
number, head correction and mass balance criteria. Numerical
experiments show that a high resolution level is needed to
accurately solve the flow equation due to the large variability
in hydraulic properties. If grid flow Peclet number is satisfied
over the entire domain, other two criteria usually show accept-
able accuracy.

3. Velocity is obtained as a continuous function and a mesh-free
field with the same accuracy in each point of the domain, which
enables the formulation of an accurate particle tracking algo-
rithm and transport analysis.

4. Results indicate that resolutions nY = 8 and nh = 32 yields very
accurate flow solutions in each realization with relative mass
balance error smaller than 3% and quite accurate velocity
covariance. Furthermore, high lnK variance and heterogeneity
requires finer head resolution levels than the chosen log-con-
ductivity resolution level.

5. Transport analysis based on the proposed particle tracking algo-
rithm that uses high order Runge–Kutta–Verner (8,5:6) numer-
ical integration scheme and Fup Regularized Transform (FRT)
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tracks particles very accurately with adaptive time step control-
ling the local integration error. Moreover, the algorithm can
represent all particles and variables defined on them such as
transverse displacement and travel time as continuous function
in an analytical form of linear combinations of Fup basis func-
tions with desired relative accuracy (0.1%) in each realization.
Furthermore, resolution nY = 8 and around 4000 particles in
each realization ensures an accurate pdf of the transverse dis-
placement and travel time.

6. All required flow and transport variables require up to 500
Monte-Carlo realizations in order to stabilize fluctuations of
the ensemble statistics in highly heterogeneous formations
with r2

Y 6 8.

Development of the adaptive Fup multi-resolution approach
opens new possibilities for future investigations of advective trans-
port in heterogeneous porous media. We are particularly inter-
ested in analysis of higher moments of the solute flux, reactive
transport in t–s domain (multi-resolution solving of the sharp
fronts of different chemical species), analysis of concentration fluc-
tuations and influence of the local pore-scale dispersion. Finally,
our main objective in the next step is to use AFMCM to perform
3-D analysis of the aforementioned problems.
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Appendix A

Accuracy of the collocation algorithm on the uniform grid can
be shown by a certain list of theorems [40]. Since presented adap-
tive strategy does not decrease accuracy with respect to the uni-
form grid due to neglecting collocation points which does not
contribute to the solution (e.g. Fig. 4), then it is possible to adapt
analysis of Kravchenko and Basarab [40] to the multi-resolution
grid and prove at each level:

Theorem 1. If u(x) 2 Cn, then exist Fup coefficients ðdj
kÞ in Eq. (16)

such that

kuðxÞ � ujðxÞk 6 KnDxn�1
j xnðu; DxjÞ ðA1Þ

where Kn is a real number independent of Dxj, but depends on n-Fup
order, while xn(u;Dxj) is the modulus of continuity:

xnðu; DxjÞ ¼ max
jx0�x�0 j6Dxj

@n

@xn
ðuðx0Þ � uðx�0ÞÞ

����
���� ðA2Þ

It means that generally Fup approximation depends on three factors: n-
Fup order, Dxj and derivative differences of the n-order inside the Dxj.

Theorem 2. If u(x) 2 Cn+1 and dj
k are Fup coefficients obtained by pro-

posed collocation algorithm (FCT), then the approximation (16) satis-
fies the following relation:

kuðxÞ � ujðxÞk 6 ð1þ 2nr�1ÞkuðxÞ � uj
�ðxÞk ðA3Þ

where r ¼ uj
kðb

j
kÞ � 2

Pn=2
s¼1u

j
kðb

j
k�sÞ for any k, while uj

�ðxÞ is the best
approximation (16) among all possible Fup coefficients which satisfy
(A1). If n = 2, from Eq. (13) or Fig. 3 r = 26/9 � 2 � 5/9 = 16/9 and
1 + 2nr�1 = 52/16 which means that the FCT has the same order of
the approximation as the best possible Fup2 approximation uj

�ðxÞ.
Difference between FCT and FRT approximation is defined by
the following theorem [40]:

Theorem 3. If u(x) 2 Cn+2, then the following relation is valid:

kujðxÞ � uj
nðxÞk ¼ OðmaxðDxnþ2

j ;Dynþ2
j ÞÞ ðA4Þ

Therefore, at a sufficiently high level (related to the threshold e) differ-
ence between FCT and FRT should be a quite small. It means that FRT
retains good approximation properties of the FCT, but in a more effi-
cient computational way (Eq. (23)).
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