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Abstract: Traditional methods for condition monitoring of 
machinery are based on detecting situations when values of 
features extracted form measurement data leave 
predetermined bands consistent with normal machine 
operation. Design of such systems requires considerable 
amounts of measurement data describing machinery failure 
modes that are generally very difficult to obtain due to large 
number of failure examples necessary. Novelty detection is the 
identification of new or unknown data or signal that a machine 
learning system is not aware of during training. Assumption is 
that in case of impeding failure, new previously unseen 
measurement data will appear. In this paper method of novelty 
detection in machine vibration data is described based on 
clustering of features extracted from measurement data. 
During training system discover main operational regimes of 
machine and assign to them clusters of feature data. Later, 
during machine exploitation, by comparing intraset distances 
within cluster members with closest distance of new example to 
cluster centers, system is able to detect abnormal new 
measurement data that were not known at the time of training 
the model. Method is presented on car engine vibration data. 
 
Index Terms: novelty detection, vibration analysis, clustering 
 
 

I. INTRODUCTION 
 

Machine operation involves the generation of forces that 
produce vibrations. During operation, all machines are 
subjected to fatigue, wear, deformation, and foundation 
settlement. Vibration signature of an operating machine 
provides a lot of information about the inner working of the 
machine. When a vibration problem exists, a detailed 
analysis of vibration can identify the specific cause. 
Vibration analysis is used today as a predictive maintenance 
tool in a wide variety of industrial areas, especially for 
rotating and reciprocating machines. For successful 
detection of machine problems by vibration analysis it is 
necessary to know vibration signatures of a machine in good 
running condition. When confronted with a large pool of 
machines that were in use for a long period it is possible and 
convenient to collect vibration signatures sampled at 
successive intervals and form a database for future vibration 
analysis. However, when machine is of a new kind, put 
recently into exploitation, very reliable, or pool of machines 
is very small, there are simply not enough examples of 
faults, as they either don't exist yet, or are very rare, and 
hence there are not enough vibration signature data for 
comparisons. In such situations novelty detection in 
vibration data may be viable solution for machine vibration 
monitoring. 

 
II. NOVELTY DETECTION 

 
Novelty detection is the identification of new or 

unknown data or signal that a machine learning system 

is not aware of during training. Instead of training the 
system to recognize the faults, the system learns a model of 
the normal environment that does not have any problems 
and the novelty filter detects deviations from this model. A 
vibration signature constructed from many hours of data 
from normal machine operation may be used as a model of 
normality for that machine. New values observed during 
machine operation are compared to the model. Decision 
whether new values are normal or abnormal is based on 
decision boundary or novelty threshold. The objective of 
novelty detection is the generation of reliable and robust 
alerts if the condition of the system being monitored is 
deemed to have deteriorated, [1]. Novelty detection is 
generally performed using statistical methods and artificial 
neural networks (eg. Kohonen self-organizing maps - 
SOM, Radial Basis Functions - RBF). Overview of novelty 
detection methods can be find in [1, 2, 3]. 
 

 
III. CLUSTERING 

 
A. BASIC CONCEPTS 
 

Clustering is the partitioning of a data set into subsets 
(clusters), so that the data in each subset share some 
common trait. In clustering process is necessary to select a 
distance measure, which will determine how the similarity 
of two elements is calculated. Similarity is related to 
distance in the sense that the greater the similarity between 
two data points, the lesser the distance is between them. 
 

 
Fig. 1.  Illustration of clustering 

 
Clustering based approaches are aimed at partitioning 

data into a number of clusters, where each data point can 
be assigned a degree of membership to each of the clusters. 
If the degree of membership is thresholded to suggest if a 
data point belongs or not to a cluster, novelty can be 
detected when a sample belongs to none of the available 
classes, [4]. 
 
Two important concepts in clustering are: 
- Interset distance: distance between members of same 

cluster. 
- Intraset distance: distance between members of 

different clusters. 
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B. K-MEANS CLUSTERING 
 

K-means is one of the simplest unsupervised learning 
algorithms that solve the well known clustering problem. 
The procedure follows a simple and easy way to classify a 
given data set through a certain number of clusters (assume 
k clusters) fixed a priori. This algorithm aims at minimizing 
an objective function, in this case a squared error function. 
The objective function is 
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is a chosen distance measure between a data point )( j
ix and 

the cluster centre jc , is an indicator of the distance of the n 

data points from their respective cluster centres (centroids). 
Domain knowledge must be used to guide the formulation 
of a suitable distance measure for each particular 
application. 
  

The basic k-means algorithm consists of the following 
steps: 
 
1. Place K points into the space represented by the objects 

that are being clustered. These points represent initial 
group centroids. 

2. Assign each object to the group that has the closest 
centroid. 

3. When all objects have been assigned, recalculate the 
positions of the K centroids. 

4. Repeat Steps 2 and 3 until the centroids no longer 
move. This produces a separation of the objects into 
groups from which the metric to be minimized can be 
calculated.  

Results of clustering process are dependent on choice of 
initial cluster centers. The main advantages of this algorithm 
are its simplicity and speed which allows it to run on large 
datasets. Its disadvantage is that it does not yield the same 
result with each run, since the resulting clusters depend on 
the initial random assignments. It minimizes intra-cluster 
variance, but does not ensure that the result has a global 
minimum of variance. 

 

IV. NOVELTY DETECTION USING CLUSTERING 
 

Clustering is suitable for creating dataset clusters that 
correspond to numerous regimes of normal operation. 
Novelty detection method works in two modes: learning and 
operating mode. During learning mode description of 
normality is acquired by clustering process on presented 
data that correspond to normal machinery operation. In 
operating mode new signal is verified for normality by 
determining similarity with formed cluster representatives.  

A. LEARNING MODE 
 

Clustering process can be performed using k-means 
clustering. Learning can be unsupervised if training data is 
not labeled or supervised if there are labels attached to 
available training data learning. In later case clustering 
algorithm can be used to find new cluster representatives 
different from initial choices, but also to move some data 
from one cluster to another as these data may better be 
members of other cluster. Such case can result from engine 
regime transitions captured among data for particular 
regime. Training data associated with normal machine 
operation includes data from several regimes of machine 
operation. Each engine regime corresponds to a cluster 
center. 
 
B. OPERATING (MONITORING) MODE 
 

New samples (ie. test feature vectors) are compared with 
cluster representatives (cluster centers). Closest mach is 
find and distance compared to average intraset distance 
from cluster center to other members of same cluster. If 
distance of new sample surpass novelty threshold, sample 
is considered as a novelty and warning alarm is given.  
 
C. NOVELTY THRESHOLD 
 

There exist various ideas how to set value for novelty 
threshold. If distance is smaller or equal to threshold test 
feature vector is considered as normal: 
 

TdT                                       (3) 

 
If larger than a threshold test feature vector is considered 

novelty (abnormal situation): 
 

TdT                                       (4) 

 
Some common ways for calculation of the threshold are: 
 

1. maximum training distance for particular cluster 
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2. calculate mean μ and standard deviation σ of training 

distances for particular cluster 
 

 nT                                   (6) 

 
Assumption is that if distribution of training distances is 

normal, distance of few σ from cluster centroid enclose 
almost all possible members for that cluster (in case of 
normal distribution 3  account for 99.7% of all data). 
Training distance is here considered as a distance between 
cluster centroid and cluster member. 
 
3. In addition new sample can be considered a novelty if 

any feature vector element surpass minimal or 
maximal value of that element present in cluster 
training data. Feature vector is considered a novelty if 
there exist vector element outside minimal and 
maximal boundaries for that element within cluster: 
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ix  
maxxxi                                 (7) 

or 

ix minxxi                                  (8) 

 
xmin is minimal value of element xi within particular cluster, 
and xmax is maximal value of element xi within particular 
cluster 
 
4. Novelty detection via Cluster Win Frequency 
 

In some cases all test feature vectors classified to some 
cluster can be recognized as novel. This may be due to low 
training win frequency for that cluster or specific knowledge 
of the problem domain. Any new feature vector that maps to 
that cluster is considered novel.  
 
 

V. NOVELTY DETECTION IN MACHINE 
VIBRATION DATA 

 
In order to store, display, and modify vibration signals on 

a digital computer, the signals must be digitized. This is 
done through two processes known as sampling and 
quantization, process known as analog-to-digital (A/D) 
conversion. 
 
A. DATA PREPROCESSING 
 

Data preprocessing includes include following activities: 
 

1. Adjusting input level - amplitude normalization 
2. Temporal processing - downsampling in case of very 

high sampling rate 
3. Frequency processing - low pass filtering that cut signal 

frequency components above half of sampling rate. 
4. Windowing is generally not performed for time-domain 

analysis (except special case of rectangular window), 
but is common for frequency analysis 

 
B. FEATURE EXTRACTION 

 
Feature extraction is the representation of signals using a 

smaller set of quantities, termed features [3]. In analysis of 
machine vibration data time domain features have been 
used: RMS, crest factor and kurtosis. This is just one 
educated choice, best set of features is application 
dependent. For particular class of faults features in 
frequency domain may be more suitable. 
 
1. RMS - Root Mean Square value 
 

The RMS value of a vibration signal is an important 
measure of its amplitude. 
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The crest factor and kurtosis function are used to describe 
the shape characteristics of the signal and change together 
with vibrations produced by machinery. 

  
2. Crest factor Cf is defined by:  
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Pl is the signal peak level. 
 

The crest factor calculation tells us how much impacting 
is occurring in a waveform.  

 
3. Kurtosis 
 

The fourth order moment, kurtosis, is defined as: 
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The kurtosis is sensitive to impulsiveness or "spikeness" 
of the data.  

 
C. CONSTRUCTING A FEATURE VECTOR  
 

Feature vector is constructed for each successive time 
interval (eg. every 50 ms).  
 

 D
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After some time we get set of N feature vectors 
 

 Nxx ,,1                                   (13) 

 
for time intervals  1 … N  comprising one dataset. 
 
D. NORMALIZATION 
 

Different features in a feature vector generally don't have 
same dynamic range. It is desirable to normalize feature 
vectors in such way that individual elements may be 
compared. Among many methods for normalizing a feature 
vectors, one appropriate choice may be component-wise 
normalization described in following equation: 
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where 
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is the mean, and 
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standard deviation of element xi

d across the whole dataset. 
If all elements of a features vector have same dynamic 
range and are of equal importance in classification decision 
Euclidian distance may be convenient choice as similarity 
measure between elements during clustering and 
classification process.  
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E. CLUSTERING OF TRAINING DATA 
 

After feature normalization clustering process is 
performed using k-means algorithm. Number of cluster 
centers corresponds to number of engine regimes for which 
training data is available. Initial cluster centers (centroids) 
are determined for each training data subset (engine regime) 
by determining sample mean of labeled training set.  
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Feature vector xi closest to mean feature vector is 

considered starting centroid, c. 
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For some regimes there are more training data subsets, for 

each subset there is one centroid. After choice of initial 
cluster centroids is finished, k-means algorithm is 
performed on all training data and new cluster centroid and 
cluster members are determined. 
 
F. CLASSIFICATION OF NEW FEATURE VECTOR 
 

For each new feature vector, closest cluster centroid in 
terms of similarity by Euclidian distance is determined. In 
such way new vector is classified to cluster that corresponds 
to one engine regime. Than, similarity measure is compared 
to novelty threshold. If Euclidian distance is greater of 
novelty threshold, than feature vector is considered as 
novelty. 
 
 

VI. EXPERIMENT SETUP 
 

Signals have been downloaded from internet [5], but were 
initially collected from car engine. Details of car end engine 
are following: 
 
- Car: 1979 Chrysler Sigma GL, Built in Adelaide, 

South Australia 
- Engine: Astron 2000 engine - 2 litre, four cylinder with 

balancing shafts 
- Idle Speed 680 rpm 
 
A. DESCRIPTION OF VIBRATION SIGNALS 

 
Seven samples of the vibration of the car engine were 

taken by affixing an accelerometer to the air cleaner. The 
signal from the accelerometer was captured using a 
Soundcard, and recorded as a .wav file. The samples were 
recorded as .wav files with 16 bit A/D conversion and a 
sample rate of 22 kHz. Data collected represent four engine 
regimes with seven signal examples: 

1. Car Engine (Starting): Signal 1 
2. Car Engine (Idling) - two signal examples (cold and 

worm engine): Signals 2 and 3 
3. Car Engine (Revving under Load) - three examples 

(different rotation speeds): Signals 4, 5 and 6 
4. Car Engine (Stopping): Signal 7 

Later, during learning process these seven signals will 
produce seven training datasets with data from normal 
engine operation. 

Collected vibration signals are presented in time and 
frequency domain in figures 2 to 5. The frequency spectra 
were obtained by applying a Hanning window to the time 
signals and then using an FFT with 2048 points to 
transform them to the frequency domain. Although some 
of the time signals for an object appear quite different, the 
spectra obtained using the FFT shows the basic 
information content of the signal is the same. 

a)  

b)  

Fig. 2.  Starting:  a) waveform    b) spectar 

 

a)  

b)  

Fig. 3.  Idle 1:  a) waveform    b) spectar 
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a)  

b)  

Fig. 4.  Rev 1:  a) waveform    b) spectar 

a)  

b)  

Fig. 5.  Stopping:  a) waveform    b) spectar 

B. LEARNING MODE  
 

Feature vectors have been extracted from recorded signal 
in intervals of 50 ms. After normalization and determination 
of initial cluster centers clustering process has been 
performed. Downloaded engine vibration data were used as 
training data. Feature vector elements were of different 
dynamic range and data normalization was performed 
according to (14). Mean values from each training dataset 
have been used as initial cluster centers. K-means clustering 
method was performed on presented training datasets and 
new cluster centers were determined. Cluster centers 
remained stable after 10 iterations. For each cluster center 
distances to all other members of same cluster have been 
determined and following statistics calculated, Table I. 

 
TABLE I  DISTANCES CLUSTER CENTER TO MEMBERS 

Cluster 
Distances from cluster center 

to other cluster members 
μ σ max 

1 0,562389 0,31446 1,036689 
2 0,507966 0,251336 0,863775 
3 0,557343 0,252240 1,171913 
4 0,432615 0,254267 1,044999 
5 0,385927 0,167391 0,704329 
6 - - - 
7 0,624355 0,232188 1,137706 

In cluster six there was just one element, used as cluster 
center. 

 
C. MACHINE OPERATION (MONITORING) 
 

The nearest neighbor technique represents a very 
practical approach for direct classification. For each new 
feature vector, classification is performed using 1-NN rule. 
Distance to the closest member of that set is compared 
against threshold. In experiment two types of thresholds 
were used (yielding same result on used test datasets). 
Threshold can be mean intraset distance from cluster center 
augmented by three standard deviations: 
 

 3T                                 (21) 

 
or in simpler case, not taking account of cluster statistics, 
largest intraset distance between cluster center and all 
members of that set augmented by 20%: 
 

max2.1 dT                                  (22) 

 
Maximal distances for each cluster center are presented in 
Table II. 

 
TABLE II  THRESHOLDS FOR VARIOUS CLUSTERS 

Cluster μ+3σ 1.2 dMAX 

1 1,505769 1,2440268 
2 1,261947 1,03653 
3 1,314063 1,4062956 
4 1,195416 1,2539988 
5 0,8881 0,8451948 
6 - - 
7 1,320919 1,3652472 

 
 

Because cluster center is the only element of cluster 6, 
the threshold distance was not determined. 

 
Testing process was performed in two ways: 
 
1. Testing with previously unseen normal data (part of 

engine data) 
 

In all training datasets last feature vector was removed 
from training process, and reserved for testing purpose. 
Such test feature vector represents known normal situation. 
There were seven training datasets available from which 
was taken total of seven test features vectors. 

 
2. Testing with previously unseen abnormal data 

(synthetic sample)  
 

Unfortunately, there was no easily available car engine 
vibration data with fault example. To test the method 
anyway, original signal corresponding to normal engine 
operation (revving under load) was distorted by one of 
many functions of CoolEdit program (dynamic range 
processing), to some extent equivalent to engine operation 
where vibration impulses are much more pronounced. 
Distorted waveform and corresponding spectrum are 
shown in Fig. 6. 
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Fig. 6.  Synthetic fault:  a) waveform    b) spectar 

D. RESULTS OF TESTS 
 

Results of tests are presented in Table III for unseen 
normal training data and in Table IV for synthetic abnormal 
data. For available testing data same results were achieved 
for both variants of threshold. 
 

TABLE III  CLASSIFICATION OF NORMAL DATA 
Feature 
vector 

Classified 
as dataset 

Distance Normal 
/Abnormal 

1 7 0,439109 N 
2 4 1,180472 N 
3 2 0,397505 N 
4 5 0,148827 N 
5 5 0,202249 N 
6 4 0,215940 N 
7 6 0,017204              A (?) 
 

TABLE IV  CLASSIFICATION OF ABNORMAL DATA 
Feature 
vector 

Classified 
as dataset 

Distance Normal/Abnormal 

1 5 0,403693 N 
2 4 0,963157 N 
3 4 2,602669 A 
4 4 2,829521 A 
5 4 3,270817 A 
6 4 3,856194 A 
7 4 4,710083 A 
8 4 5,012846 A 
9 4 2,744308 A 
10 4 4,845574 A 
11 4 3,742057 A 
12 4 3,000267 A 
13 4 3,949844 A 
14 4 3,347194 A 
15 4 3,834809 A 
16 4 4,928098 A 
17 4 2,900509 A 
18 4 4,779285 A 
19 4 1,992792 A 
20 4 5,126909 A 

Results of tests are summarized in Table V. 
 

TABLE V  SUMMARY OF TEST RESULTS 

Testing Data 
Classified as 

Normal Abnormal 
Training(Unseen)   
7 test vectors 6 or 85,7(100*)  % 1 of 7 or 14,3(0*) % 
Synthetic Fault   
19 test vectors 2 of 19 or 12% 17 of 19 or 82% 

*If cluster with just one element is discarded from consideration 
as an exception, all test vectors are correctly classified 
 

Feature vectors from previously unseen normal data 
have been correctly classified as normal in six of seven 
cases. One feature vector that has been classified as 
abnormal came from engine start sequence that is not so 
usual in engine work and closest cluster representative was 
sole member of that cluster (other clusters had 9-29 feature 
vectors). Synthetic produced abnormal data have been 
correctly classified as abnormal in 17 of 19 cases of 
presented feature vectors. Reliable statistics would require 
much large dataset of unseen normal data, however 
original datasets have been small and no more feature 
vectors could be separated for testing purpose as they were 
also necessary in a training process. 
 
 

VII. CONCLUSION 
 

Presented is simple, yet powerful and intuitively 
acceptable method for novelty detection. Described 
experiment serves as a practical illustration of this concept. 
For real-world application it would be necessary to work 
with much larger training datasets for improved accuracy. 
Because comparison of test feature vectors is performed 
only with cluster representatives (cluster centers) method is 
not computationally intensive during monitoring 
(operational) phase.  
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