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Summary. Mathematical model for ship hydroelastic analysis, comprised of structural, 
hydrostatic and hydrodynamic models, is described. The modal superposition method is used 
and ship natural modes are determined for the sophisticated beam model based on the 
advanced thin-walled girder theory. The consistent restoring stiffness is formulated. 
Application of the numerical procedure is illustrated in the case of a large container ship. 
 
1 INTRODUCTION 

Large container ships are quite flexible concerning torsion and structural natural 
frequencies can fall into the range of encounter frequencies1. Therefore, hydroelastic response 
becomes very important issue for ship safety. The methodology of hydroelastic analysis 
includes the definition of the structural model, ship and cargo mass distributions, and 
geometrical model of ship surface. First, dry natural vibrations are calculated, and then modal 
hydrostatic stiffness, added mass, damping and wave load are determined. Finally, wet natural 
vibrations, as well as the transfer functions (RAO – response amplitude operator) for 
determining ship structural response to wave excitation, are obtained2. 

2 BEAM STRUCTURAL MODEL 

The hydroelastic analysis can be performed by coupling 1D or 3D FEM structural model 
with 3D hydrodynamic model based on the radiation-diffraction theory3. The former 
hydroelastic model is more rational for preliminary design stage while the latter is used for the 
final strength analysis. 

The beam model can give quite accurate results if it is based on the advanced thin-walled 
girder theory, i.e. by taking shear influence on bending and torsion, and stiffness contribution 
of transverse bulkheads into account in a reliable way. Total beam deflection and twist angle 
consist of pure bending and torsion, respectively, and shear contribution4

 
2

2

d
d

b
b s b

s

EI ww w w w
GA x

= + = − b ,     
2

2

d
d

w t
t s t

s

EI
GA x

= + = −
ψψ ψ ψ ψ , (1) 

where bI  is moment of inertia of cross-section, sA  is shear area, wI  is warping modulus and 

sI  is shear inertia modulus. We see that there is an analogy between bending and torsion 
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where Q and  are shear force and torque due to restrained warping, and wT Qτ  and wτ  are 
corresponding shear stresses, respectively. 

The effect of large number of transverse watertight and support bulkheads can be 
incorporated into the hull torsional stiffness5
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where  is the web height of bulkhead girders,  is the bulkhead spacing,  is the 
net length, C is the energy coefficient, and U is the bulkhead grillage and stool strain energy 
due to warping of cross-section. Warping shape function can be assumed in the following 
form 
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where H is the ship height, b is one half of bulkhead breadth, d is the distance of warping 
centre from double bottom centroid, while y and z are transverse and vertical coordinates, 
respectively. 

The governing matrix equation of dry natural vibrations in a FEM analysis yields 
 ( )2Ω− =K M 0δ , (5) 
where K is stiffness matrix, M is mass matrix, Ω is dry natural frequency and δ is dry natural 
mode. As solution of the eigenvalue problem (5), Ωi and δi are obtained for each the i-th dry 
mode, where i = 1,2...N, N is total number of degrees of freedom. The first six natural 
frequencies  are zero with corresponding eigenvectors representing the rigid body modes. iΩ

If 1D analysis is applied, the beam modes are spread to the ship wetted surface using the 
expressions for vertical and coupled horizontal and torsional vibrations, respectively4
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where w is hull deflection, ψ is twist angle, y and z are coordinates of the point on ship 
surface, and zN and zS are coordinates of centroid and shear centre, respectively. 

3 HYDRODYNAMIC MODEL 
The coupling procedure does not depend on the used hydrodynamic model, and is therefore 

described here for the zero speed case, as the simplest one. Harmonic hydroelastic problem is 
considered in frequency domain and therefore we operate with amplitudes of forces and 
displacements. In order to perform the coupling of structural and hydrodynamic models, it is 
necessary to express the external pressure forces in a convenient manner6. First, the total 
hydrodynamic force Fh has to be split into two parts: the first part FR depending on the 
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structural deformations, and the second one FDI representing the pure excitation. Furthermore, 
the modal superposition method can be used. Vector of the wetted surface deformations H (x, 
y, z) can be presented as a series of dry natural modes hi (x, y, z). 

The potential theory assumptions are adopted for the hydrodynamic part of the problem. 
Within this theory, the total velocity potential ϕ , in the case of no forward speed, is defined 
with the Laplace differential equation and the given boundary values. Furthermore, the linear 
wave theory enables the following decomposition of the total potential1
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where Iϕ  is incident wave potential, Dϕ  is diffraction potential, Rjϕ  is radiation potential and 
A and ω represent wave amplitude and frequency respectively. 

Once the potentials are determined, the modal hydrodynamic forces are calculated by 
pressure work integration over the wetted surface, S. The total linearised pressure can be 
found from Bernoulli's equation 
 p i gz= −ωρϕ ρ . (8) 
First, the term associated with the velocity potential ϕ  is considered and subdivided into 
excitation and radiation parts 
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Thus, DI
iF  represents the modal pressure excitation. Now one can decompose (9) into the 

modal inertia force and damping force associated with acceleration and velocity, respectively 
 , (10) 2
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where Aij and Bij are elements of added mass and damping matrices, respectively. 
Determination of added mass and damping for rigid body modes is a well-known 

procedure in ship hydrodynamics. Now the same procedure is extended to the calculation of 
these quantities for elastic modes. The hydrostatic part of the total pressure, – ρgz in (8), is 
considered within the hydrostatic model. 

4 HYDROSTATIC MODEL 
In spite of the fact that ship hydroelasticity has been a known issue for many years7, there 

is still no unique solution for restoring stiffness8, 9, 10, 11. Here, its consistent formulation is 
presented in a condensed form. 

The restoring stiffness consists of hydrostatic and gravity parts. Work of the hydrostatic 
pressure, which represents the generalized force, can be derived in the following form 
 ( ) dh

z
S

F g H Z⎡ ⎤= − + ∇⎣ ⎦∫∫ H Hnρ S , (12) 
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where  is Hamilton differential operator, H  is displacement vector,  is differential of 
wetted surface, Z is its depth and n is unit normal vector. According to definition, the stiffness 
is relation between incremental force and displacement, so it is determined from the 
variational equation 

∇ dS

 ( ) dh
z

S

F g H Z⎡ ⎤= − + ∇⎣ ⎦∫∫ H Hnδ ρ δ S

j j

. (13) 

Furthermore, the modal superposition method is used, and the variation is transmitted to 
modes, i.e. modal forces and displacements 
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In that way, Eq. (13) is decomposed into the modal equations 
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are stiffness coefficients due to pressure, and normal vector and mode contributions, 
respectively. 

Similarly to the pressure part, the generalized gravity force reads 
 ( ) dm

s z
V

F g H= − ∇∫∫∫ Hρ V , (17) 

where sρ  and V are structure density and volume, respectively. In order to obtain consistent 
variational equation, it is necessary to strictly follow the definition of stiffness and to vary 
displacement vector in (17) and not its derivatives 
 ( ) dm

s z
V
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Application of the modal superposition method leads to the modal variational equation 
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where 
 ( ) dm j

ij s i z
V

C g h V= ∇∫∫∫ hρ  (20) 

are the gravity stiffness coefficients. Finally, the complete restoring stiffness coefficients are 
obtained by summing up its constitutive parts, p nh m

ij ij ij ijC C C C= + + . 

5 HYDROELASTIC MODEL 
After the structural, hydrostatic and hydrodynamic models have been determined, the 

hydroelastic model can be constituted. The governing matrix differential equation for coupled 
ship motions and vibrations is deduced 
 ( ) ( )2( ) ( )i⎡ ⎤+ − + − + =⎣ ⎦k C d B m A ξ Fω ω ω ω , (21) 
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where k, d, and m are structural stiffness, damping and mass matrices, respectively, C is 
restoring stiffness, B(ω) is hydrodynamic damping, A(ω) is added mass, ξ is modal 
amplitudes, F is wave excitation and ω is encounter frequency. All quantities, except ω and 

, are related to the dry modes. The solution of (21) gives the modal amplitudes ξξ i and 
displacement of any point of the structure obtained by retracking to (14). 

6 COMPUTER PROGRAMS 
Geometrical properties of ship hull cross-sections are determined by program STIFF12, 

which is based on the advanced thin-walled girder theory. It calculates cross-section area, 
moments of inertia of cross-section, shear areas, torsional modulus, warping modulus and 
shear inertia modulus, for closed and opened cross-sections. The effective values of the above 
quantities can be also determined for the assumed sinusoidal modes. 

For the hydroelastic analysis DYANA13 program has been developed based on the 
advanced beam theory and finite element technique, taking shear, bending, pure torsion, shear 
torsion and warping of cross-section into account. The restoring stiffness is calculated 
according to Eqs. (16) and (20) for the deformed wetted surface, determined by spreading the 
beam deformation. The hydrodynamic part in DYANA is taken from program 
HYDROSTAR14 and adopted for hydroelastic analysis. 

7 HYDROELASTIC ANALYSIS OF CONTAINER SHIP 

A large container ship of 11400 TEU, x x 348 45.6 29.74ppL B H x x=  m, is considered. The 

equivalent torsional modulus due to influence of transverse bulkheads reads 1.9t tI I∗ = . The 
reliability of the beam model is checked by correlating the natural frequencies and mode 
shapes with those of 3D FEM analysis performed by NASTRAN, Figs. 1 and 2. 

Transfer functions of torsional moment and horizontal bending moment at the midship 
sections are shown in Figs. 3 and 4, respectively. They are compared to the rigid body ones 
determined by program HYDROSTAR. Very good agreement is obtained in the lower 
frequency domain, where the ship behaves as a rigid body. Discrepancies are very large at the 
resonances of the elastic modes. 

Figure 1: The first dominantly torsional mode, lateral 
and bird view, light weight, 1D model, ω1=0.639 rad/s 

 
Figure 2: The first dominantly torsional mode, lateral 
and bird view, light weight, 3D model, ω1=0.638 rad/s 
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Figure 3: Transfer function of torsional moment, 

χ=120°, U=24.7 kn 
Figure 4: Transfer function of horizontal bending 

moment, χ=120°, U=24.7 kn 

8 CONCLUSIONS 
The illustrative numerical example of the 11400 TEU container ship shows that the 

developed mathematical model, utilizing the beam FEM model and 3D hydrodynamic model, 
is an efficient tool for application in ship hydroelastic analysis. The used sophisticated beam 
model, based on the advanced thin-walled girder theory with included shear influence on 
torsion and contribution of transverse bulkheads to torsional stiffness, is a reasonable choice 
in preliminary design stage. 3D FEM model of ship structure is preferable for final strength 
analysis and stress concentrations as a prerogative for fatigue estimation. Very good 
agreement between ship hydroelastic and rigid body responses in vicinity of zero encounter 
frequency, determined by the modal superposition method and direct integration, respectively, 
is obtained due to usage of the consistent restoring stiffness. Numerical procedure for ship 
hydroelastic analysis should be further evaluated by correlation analysis with model tests and 
full scale measurements, before its application for ship design. 
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