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Summary 

An improved theory of the torsion of thin-walled girders with open cross-section is 
presented. The influence of shear on torsion is taken into account. An analogy between shear- 
influenced bending and torsion is made. Application of the theory is illustrated in the case of a 
prismatic pontoon with a ship-like cross-section. The obtained results are verified by the 3D 
FEM analysis. It is shown that twist centre differs from the well-known shear centre. 
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Nomenclature 
A – cross-section area 
Ai – integration constants 
As – shear area 
B – ship breadth 
Bw – warping bimoment 
E – Young's modulus 
Etot – strain energy 
f – normal stress flow 
G – shear modulus 
g – shear stress flow 
H – ship depth 
Ib – cross-section moment of inertia  
Is – shear inertia modulus 
It – torsional modulus 
Iw – warping modulus 
L – girder length 
l – half of L, length of finite element 
M – bending moment 
Mt – external torque 
Q – shear force 
Sw – sectional moment of area portion  
s – contour coordinate 
T – torque 

Tt – pure twist torque (St. Venant torque) 
Tw – warping torque 
t – plate thickness 
Sw – sectional moment of area portion 
u – axial displacement 
w – deflection 
wb – bending deflection 
ws – shear deflection 
w  – warping function 
x, y, z – Cartesian coordinate 
β, γ – parameters 
ϑ  – twist deformation 
µx – distributed torque 
ν  – Poisson's ratio 
ξ  – dimensionless coordinate 
σ  – normal stress 
τ  – shear stress 
ψ  – twist angle 

sψ  – shear twist angle 
tψ  – pure twist angle 

k – stiffness matrix 
µ – load vector 
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1. Introduction 
The influence of shear on the bending of a thin-walled girder is a well-known fact 

from Timoshenko's beam theory [1, 2, 3, 4]. The contribution of shear to beam deflection is 
increased with the aspect ratio of beam height and length. It is especially emphasized in the 
case of beam vibrations, where the distance between vibration nodes is relevant for the 
influence of shear. Thus, the influence of shear is increased for higher vibration modes [5]. 

In ordinary torsion theories of thin-walled girders with open cross-sections, the 
influence of shear on the twist angle is neglected [6, 7, 8, 9]. Therefore, the application of 
these theories is restricted to relatively long beams where the influence of shear can be 
ignored. However, that is not the case with relatively short girders such as ship hulls of large 
container ships [10, 11]. 

An advanced torsion theory of thin-walled girders, which takes the influence of shear 
into account, is presented in this paper. Following the analogy between bending and torsion, 
the shear effect is considered in similar way as in the case of bending [12, 13]. An analytical 
solution for a prismatic beam is given, and a beam finite element for non-uniform girders is 
developed for general use. The application of the numerical procedure is illustrated in the case 
of a prismatic pontoon with a ship-like cross-section. The obtained results are verified by the 
3D FEM analysis. 

2. Analogy between bending and torsion influenced by shear 
Referring to Timoshenko's beam theory [1, 4, 14] one can assume that the total 

deflection, w, consists of pure bending deflection, wb, and shear release, ws, Fig. 1: 

sb www += , (1) 

where 
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Fig. 1  Beam bending and torsion 
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E and G are the Young's and shear moduli, while Ib and As are the cross-section moment of 
inertia and the shear area, respectively. The angle of cross-section rotation is caused by the 
bending deflection 

d
d

bw
x

ϕ = . (3) 

The sectional forces are the bending moment 
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wM EI
x

= −  (4) 

and the shear force 
3
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s b
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w wQ GA EI
x x

= = − . (5) 

Similarly to bending, the total twist angle, ψ, consists of a pure twist angle, ψt, and the 
shear contribution, ψs, due to the effect of the shearing strain in the plane of the cross-section, 
Fig. 1 [4, 11]. 

t sψ ψ ψ= + , (6) 
where 
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Iw and Is are the warping modulus and the shear inertia modulus, respectively. The second 
beam displacement, which causes the warping of cross-section (analogous to the cross-section 
rotation due to bending), is a variation of pure twist angle 

d
d

t

x
ψ

ϑ = . (8) 

The torsional sectional forces are the total torque, T, consisting of the pure twisting 
torque, Tt, and the warping torque, Tw, [4, 11], i.e. 

wt TTT += , (9) 

where 

3

3

d
d
d d
d d

t
t t

s t
w s w

T GI
x

T GI EI
x x

ψ

ψ ψ

=

= = −
 (10) 

and the warping (sectional) bimoment 
2

2

d
d

t
w wB EI

x
ψ

= . (11) 

It is the pure (St. Venant's) torsional modulus. 

3. Definition of girder stiffness 
Geometrical properties of a thin-walled girder include a cross-section area, A, moment 

of inertia of the cross-section and shear area in vertical and horizontal directions, Ib and As, 
respectively, torsional modulus It, warping modulus, Iw, and shear inertia modulus Is. For a 
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simple cross-section these parameters can be determined analytically as pure geometrical 
properties [12, 13]. 

However, the determination of cross-section properties for an open multi-cell cross-
section, as in the case of ship hull, is quite a difficult task. Therefore, the strip element method 
is applied for solving this statically undetermined problem [15]. First, the axial node 
displacements, due to bending caused by a shear force and due to torsion caused by a 
variation of twist angle, are calculated. Then, shear stress in bending τb, shear stress due to 
pure torsion τt, shear and normal stresses due to restrained warping τw and σw, respectively, are 
determined. Based on the equivalence of strain energies induced by sectional forces and 
calculated stresses, it is possible to formulate cross-section properties in the same way as 
given below: 
 
shear area 
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d d

b
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b b
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QA g A
τ

τ
= = =
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torsional modulus 
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shear inertia modulus 
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d d
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warping modulus 
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 (15) 

The above quantities are not pure geometrical cross-section properties any more since they 
also depend on Poisson's ratio as a physical parameter. 

4. Torsion of prismatic girder 

Differential equation of the girder torsion represents the equilibrium between internal 
sectional torques, Eq. (9), and the external distributed torque, µx, [4, 16] 

4 2

4 2

d d
d d

t t
w t x

ψ ψEI GI µ
x x

− = . (16) 

The solution of the equation reads 

0 1 2 3ch sht pψ A A x A βx A βx ψ= + + + + , (17) 

where Ai are the integration constants, 

t

w

GIβ
EI

=  (18) 

and ψp is a particular solution which depends on µx. 
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The total twist angle, according to (6), yields 

0 1 2 31 ch 1 sht t w
p p

s s s

I I EIψ A A x A βx A βx ψ ψ
I I GI

   
′′= + + − + − + −   

   
. (19) 

 
Fig. 2  Torsion of a free beam 

As an illustrative example, let us consider the torsion of a girder loaded by a torque Mt 
at the ends, while µx = 0, Fig. 2. The warping of the girder ends is restrained. In this case, the 
twist angle is an anti-symmetric function and therefore constants A0 and A2 in (19) are zero. 
The remaining constants A1 and A3 are determined by satisfying the boundary conditions 

d:       ,      0
d

t
t

ψx l T M u w
x

= = = = , (20) 

where u is the function of axial displacements over cross-section, and w  is the warping 
function (i.e. sectorial coordinate for a simple cross-section). Thus, one finds 

1 3,  
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t t

t t
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GI GI β βl

= = −  (21) 

and displacements and sectional forces take the following form: 
 
total twist angle 
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axial displacement due to warping 
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pure twisting and warping torques 
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warping bimoment 
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Total torque t w tT T T M= + =  is uniform along the beam. 
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5. Beam finite element 
One of the most efficient ways to solve torsion of a non-uniform girder is the 

application of the finite element method. The beam finite element properties can be derived 
by the energy approach. The strain energy reads [14] 

2 222
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where l is the element length. A two-node finite element has four torsional degrees of 
freedom, Fig. 3, 
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Fig. 3  Beam finite element 

The basic beam displacement ψt can be presented by a third-order polynomial 
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,  . . . . . . .
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Furthermore, by satisfying alternately the unit value for one of the nodal displacements V and 
zero values for the remaining displacements, it follows that 

,  ,  ,  1,2,3,4,t ti s si i iψ ψ ψ ψ ψ ψ= = = =V V V  (29) 

where ψti, ψsi, and ψi are the following shape functions: 

,  ,  k k k
ti ik si ik i ikd e fψ ψ ψ= = =ξ ξ ξ  (30) 
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By substituting (29) into (26), one obtains 

[ ]1
2

T
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where, assuming constant values of the element properties, 
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is the warping-shear stiffness matrix, 
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is the torsional stiffness matrix, 
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is the torsional load vector and 
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is the nodal force vector. Furthermore, by taking Eq. (30) into account, the stiffness matrices, 
Eqs (35) and (36), are developed to their final forms: 
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For linearly distributed load along the finite element 

0 1µ µ µ ξ= +  (41) 

the load vector (37) reads 
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It should be mentioned that the constitution and construction of torsional properties for the 
beam finite element are very similar to bending properties since the same shape functions are 
used in both cases [14]. 

The total element energy has to be at its minimum, and by satisfying the relevant 
condition 

totE∂
=

∂
0

V
, (43) 

the ordinary form of the finite element equation is obtained 

( )ws t= + −R k k V µ . (44) 

6. Torsion of ship-like pontoon 
A uniform pontoon of a double skin open cross-section of a 7800 TEU (Twenty-feet 

Equivalent Units) container ship is considered, Fig. 4. The pontoon length is 2 300L l= =  m. 
According to the program STIFF [17], based on the thin-walled girder theory [15], the cross-
section properties are determined as follows: 

cross-section area A = 6.394 m2 
horizontal shear area Ash = 1.015 m2 
vertical shear area Asv = 1.314 m2 
vertical position of neutral line zNL = 11.66 m 
vertical position of shear centre zSC = -13.50 m 
horizontal moment of inertia Ibh = 1899 m4 
vertical moment of inertia Ibv = 676 m4 
torsional modulus It = 14.45 m4 
shear inertia modulus Is = 710.5 m4 
warping modulus Iw = 171400 m6. 

Young's modulus, shear modulus and Poisson's ratio are 82.06x10E =  kN/m2, 80.7923x10G =  
kN/m2, 0.3ν = , respectively. The position of shear centre, zSC, is rather low due to the open 
cross-section. The warping function of cross-section, w , is shown in Fig. 5. The shear stress 
flows, gt and gw, and the normal stress flow, fw, are shown in Figs. 6, 7 and 8, respectively. 
Distribution of fw over the cross-section according to (20) is the same as w  [4]. 
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Fig. 4  Midship cross-section of a container ship 

   
 Fig. 5  Warping function of cross-section Fig. 6  Shear stress flow due to torsion 
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 Fig. 7  Shear stress flow due to restrained warping Fig. 8  Normal stress flow due to restrained warping 

The pontoon is loaded by torques 40570tM = ±  kNm at its ends, Fig. 2. Warping of the 
pontoon ends is restrained; therefore, the formulae for displacements and sectional forces 
derived in Section 4 are relevant. Diagram of twist angle, ψ, with indicated shear contribution, 
ψs, in dimensionless form, is shown in Fig. 9. Longitudinal distribution of the relative axial 
(warping) displacement, /u w , is shown in Fig. 10. Twisting and warping torques, Tt and Tw, 
which equilibrate together the constant load Mt, are presented in Fig. 11. Fig. 12 shows the 
distribution of warping bimoment, Bw, as a result of the normal stress distribution over cross-
section. 

 
Fig. 9  Pontoon twist angle 
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Fig. 10  Relative axial displacement 

 
Fig. 11  Twisting and warping torques 

 
Fig. 12  Warping bimoment 
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7. Verification of a beam model 

The pontoon strength analysis is performed by combining the beam theory with the 
thin-walled girder theory for determining beam cross-section properties. The reliability of 
such a combined (1+2)D model is checked by a comparison with the results of 3D FEM 
analysis, performed by means of software [18]. 

 
Fig. 13  A typical pontoon superelement 

The pontoon structure is represented by 22 superelements. A typical superelement, 
consisting of shell finite elements, is shown in Fig. 13. The pontoon ends are closed with 
transverse bulkheads. The pontoon is loaded at its ends with forces on the left and the right 
side of each end distributed vertically in the opposite directions. In this way these forces 
generate the total torque 40570tM =  kNm, Fig. 14. Transverse and vertical displacements are 
fixed in the midship section, and axial displacements (warping) are fixed at the pontoon ends. 

  
 Fig. 14  Load at the model free end Fig. 15  Lateral and bird’s-eye views  
  of a deformed pontoon 

The lateral and bird’s-eye views of the deformed pontoon model are shown in Fig. 15. 
The distortion of the pontoon cross-section is not noticed since the double skin is reinforced 
with rather rigid web frames, Fig. 4. For the same reason, bending stresses in the plating are 
negligible compared to membrane stresses; therefore, the structure behaves as a membrane 
one. Since these assumptions introduced in the thin-walled girder theory are satisfied, the 
obtained results of the 3D FEM analysis are comparable to those of the (1+2)D model. 
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If one draws a twist angle diagram based on 3D FEM results, he would obtain the 
same shape as that from the (1+2)D analysis, Fig. 9. The ratios of the maximum 
displacements in two models, i.e. their twist angles and warping displacements, read 

( )1 2 D

3D

0.00108934/ 2 :  1.00685,
0.00108192

ψ
x L

ψ
+= = =  

( )1 2 D

3D

2.187180,  upper deck: 1.00488,
2.17655

u
x

u
+ −

= = =
−

 

( )1 2 D

3D

2.63947 mm0,  bilge: 1.01806.
2.59264 mm

u
x

u
+= = =  

The discrepancies of displacements are within 2%, which is quite good. 
The maximum twist angles at the pontoon ends are also compared in Fig. 16. The total 

twist angle of the analytical solution, ( )1 2 Dψ + , is almost equal to that of the FEM analysis, 3Dψ . 

The value of ( )1 2 Dψ +  consists of a pure torsional part tψ  and shear contribution sψ . The former 

causes the cross-section rotation around the shear centre, S.C., while the additional rotation by 
the latter one is realized around the section of the double bottom neutral line and the cross-
section centreline, point P in Fig. 16. As a result, the twist centre, T.C., which slightly differs 
from the shear centre, S.C., is defined. 

 
Fig. 16  Twist angle at the pontoon end 
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8. Conclusion 

The ordinary torsional theory of thin-walled girders is extended by taking into account 
the influence of shear on the cross-section rotation. The analogy between the shear-influenced 
bending and torsion is emphasized. The shear inertia modulus is specified as a result of shear 
flow due to restrained warping. In the analytical solution of uniform beam torsion an explicit 
insight into the role of all relevant geometrical parameters is possible. The theory is verified 
by the correlation analysis of the analytical solution for a pontoon with a ship-like cross-
section and of the 3D FEM solution. Quite good agreement between the results is obtained. 
The analysis shows that the shear centre in the thin-walled girder theory is also the twist 
centre if the influence of shear on torsion is neglected. However, the shear effect slightly 
changes the position of the twist centre, as it is confirmed by the 3D FEM analysis. Pure twist 
rotation due St. Venant's torsion is realised around the shear centre. On the other hand, as a 
novelty, the rotational centre for additional cross-section angle due to the shear effect lies on 
the neutral line of the centreline longitudinal section. The described theory and the numerical 
example taken from the naval architecture practice show the importance of incorporating the 
shear effect into the torsion analysis of large container ships, which are relatively flexible due 
to large hatch openings [19]. 
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APPENDIX: SHEAR INERTIA MODULUS OF A U-GIRDER 
The open midship cross-section of the ship hull can be approximately idealized with a 

U-section, Fig. A1. In that case the cross-section properties can be determined analytically. 
According to [4, 11, 12], the shear inertia modulus is presented in the following form: 

2

d

w
s

w

A

II
S A
t

∗
=

 
 
 
∫

, (A1) 

where wS ∗  is the sectorial moment of the cut-off portion of the cross-section area, and A is the 
total area. 

 
Fig. A1  Idealized ship cross-section 
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Fig. A2  Sectional coordinate, w  

Referring to [11], the sectorial coordinate for the side shell and bottom, Fig. A2, read: 
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is the coordinate of the shear centre, Fig. A1. The warping modulus, according to definition, 
yields 
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The sectorial moment is split into two domains, Fig. A3: 
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Fig. A3  Integral of a sectional coordinate, wS ∗  
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One finds for the integrals of shear flow that 
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