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a b s t r a c t

This work presents an improved apparatus and a numerical approach to obtain the estimate of thermal
diffusivity of complex materials. Transient thermal response at the axis of cylindrical sample is measured
when boundary temperature is suddenly changed. Instead of assuming an ideal step temperature excite-
ment, a measured temperature of a material boundary was employed. An iterative procedure, based on
minimizing a sum of squares function with the Levenberg–Marquardt method, is used to solve the
inverse problem. A graphical user interface is built to enable easy use of the inverse thermal diffusivity
estimation method. The reference materials used to evaluate the method are Agar water gel, glycerol and
Ottawa quartz sand.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Thermal diffusivity a (m2 s�1) is an important property of mate-
rial in all problems involving transient heat conduction. It is a mea-
sure of rapidity of the heat propagation through a material and
combines thermal conductivity (k), specific heat (cp) and density
(q) according to:

a ¼ k
qcp

ð1Þ

There are many cases in which thermal diffusivity of the studied
material is not available, e.g. cement materials of different compo-
sitions during cement setting and hardening [1–8], powdered gran-
ular or porous food products with variable heterogeneous structure
[9,10], and wide range of composite materials [11]. Furthermore,
these materials may be wet and porous and in order to prevent
development of humidity gradients under imposed thermal gradi-
ents, one finds transient measurement methods as preferable
[12,13]. Through such complex heterogeneous, multiphase and
polydisperse materials the heat is transferred by a combination of
different modes. They include conduction through the solid parti-
cles, conduction and convection through the gaseous and liquid
phases, evaporation–condensation mechanism [8,13], and radiation
at the particle surfaces. However, the overall heat transfer process is
usually modelled solely by a heat conduction model considering the
conduction parameters as apparent [1–13].

The determination of thermal diffusivity is very challenging since
it belongs to a class of inverse problems where an estimated param-
eter is very sensitive to measured quantities necessary for its calcu-
lation. There are several methods to measure the thermal diffusivity
of materials. Laser flash method requires relatively complex instru-
mentation [14,15], thin samples (below�1 cm) and special prepara-
tion techniques for testing low-conducting materials [16]. A hot
wire method, which is a standard transient method for thermal con-
ductivity determination, is much less sensitive and reliable for ther-
mal diffusivity determination [5,17,18]. A simple experimental
technique based on the thermal response of cylindrical samples
when boundary temperature is suddenly changed is shown efficient
and reliable for estimating thermal diffusivity [1,2,9,10]. The meth-
od is based on one-dimensional solution of Fourier’s heat balance.
Based on the existing experimental transient method the thermal
diffusivity can be estimated by fitting the experimental results to a
theoretical expression based on a Bessel function [19,20] or its linear
(first term) approximation [9,10]. Materials which cannot be
molded or require tests under sealed conditions (most of the afore-
mentioned materials) necessitate usage of tube sample holder.
However, the accuracy of the estimated value is strongly influenced
by a discrepancy between real and conceptual boundary conditions.
Therefore, in this work a numerical approach for thermal diffusivity
estimation is proposed for better accuracy and precision on materi-
als which require a sample holder. Instead of assuming an ideal step
temperature change, a measured temperature for the material
boundary condition is employed. A graphical user interface (GUI)
built to enable easy use of the presented inverse thermal diffusivity
estimation method is freely available by sub-programs that were
written for the setting of Matlab.
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2. Numerical inverse solution for estimating the thermal
diffusivity

The inverse estimation of thermophysical properties can be
classified into two main groups [21]. First is the direct problem
usually solved with numerical methods such as finite differences.
Second is the inverse problem, which is actually an optimization
problem, in this work solved using Levenberg–Marquardt algo-
rithm [22,23]. This iterative method for solving least square opti-
mization is quite stable, powerful and straightforward and is
applied in a large variety of inverse heat transfer problems.

The solution of inverse heat transfer problems with the Leven-
berg–Marquardt method can be suitably arranged in the following
basic steps:

� The direct problem
� The inverse problem
� The computational algorithm
� The stopping criteria

The details of each of these steps are presented below. Based on the
experimental design (see Section 3.2) we assume that the temper-
ature distribution in the mold can be calculated from the
one-dimensional transient heat conduction model. Transient heat
conduction in the radial direction in an infinitely long cylinder
can be expressed as [24]:

1
a

oTðr; tÞ
ot

¼ o2Tðr; tÞ
or2 þ 1

r
oTðr; tÞ

or
þ qv

k
ð2Þ

Tðr; t ¼ 0Þ ¼ f ðrÞ; initial condition
Tðr ¼ R; tÞ ¼ gðtÞ; boundary condition
oT
or ðr ¼ 0; tÞ ¼ 0; symmetry

ð3Þ

For materials that involve no chemical reactions or phase changes,
the volumetric heat generation/sink term, qv (W m�3) in Eq. (2) is
zero. It should be noted that for a sufficiently constant heat genera-
tion rate during a period of testing, this term can be also disregarded.
Initially, a material has a defined temperature field T(r, t = 0) = f(r).
After a required period of stabilization and no heat generation or
sink term a uniform initial temperature T(r, t = 0) = T0 can be
assumed. A Dirichlet condition is considered for material boundary

value with imposed measured time-dependant temperature
increase.

2.1. The direct problem

In the direct problem associated with the physical problem de-
scribed above, the thermal diffusivity is known. The objective of
the direct problem is then to determine the transient temperature
field T(r, t) in the material.

2.2. The inverse problem

For the inverse problem considered of the interest here, the
thermal diffusivity is estimated, based on obtained transient tem-
perature measurements taken at a location r = 0 and r = R at times
ti, i = 1, 2. . ., I, and the minimization of an objective function, S.

SðaÞ ¼ T� uðaÞ½ �Tr T� uðaÞ½ � ð4Þ

where a is unknown thermal diffusivity, T and u are the vectors
containing the measured and estimated temperatures (at a location
r = 0), respectively, and the superscript Tr indicates the transpose of
a vector. The estimated temperatures are obtained from the solu-
tion of the direct problem with an estimate for the thermal
diffusivity.

Thus, the ordinary least squares norm, given by Eq. (4), can be
written as:

SðaÞ ¼ ½T� uðaÞ�Tr½T� uðaÞ� ¼
XI

i¼1

½Ti � uiðaÞ�2 ð5Þ

where the subscript i refers to time ti, where i = 1, . . ., I.

2.3. The iterative procedure

To minimize the least squares norm given by Eq. (5) the derivative
of S(a) with respect to the unknown parameter is equated to zero,

oSðaÞ
oa
¼ 0 ð6Þ

Such necessary condition for the minimization of S(a) can be repre-
sented in matrix notation by equating the gradient of S(a) with re-
spect to parameter a to zero

Nomenclature

2R inner diameter of cylindrical tube (mm)
a thermal diffusivity (m2 s�1)
cp specific heat capacity (J kg�1 K�1)
e user prescribed tolerance (�C)
GUI graphical user interface
I length of temperature vector T
J sensitivity (Jacobian) vector
k iteration number
m mass fraction
qv volumetric heat generation or sink term (W m�3)
qv volumetric heat generation (W m�3)
r radial dimension (m)
R radius of cylindrical base of specimen (m)
S objective (sum of squares) function
SD standard deviation (�C)
SDfit standard deviation of fitted temperature response (�C)
T temperature (�C)
t time (s)
T vector containing the measured temperatures (at a loca-

tion r = 0)

u vector containing the estimated temperatures (at a loca-
tion r = 0)

Greeks symbols
k thermal conductivity (W m�1 K�1)
l damping parameter
q density (kg m�3)
u volume fraction
X Levenberg–Marquardt parameter

Subscript
i time ti where i = 1, . . ., I

Superscripts
0 initial value
k iteration number
Tr transpose of a vector
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rSðaÞ ¼ 2 � ouTrðaÞ
oa

� �
T� uðaÞ½ � ¼ 0 ð7Þ

ouTrðaÞ
oa

¼ o

oa

� �
½T1 T2 . . . TI� ð8Þ

The sensitivity or Jacobian vector, J(a), is defined as the transpose of
Eq. (8), that is,

JðaÞ ¼ ouTrðaÞ
oa

� �Tr

ð9Þ

Therefore, we can write the sensitivity vector in the form

JðaÞ ¼ ouTrðaÞ
oa

� �Tr

¼

oT1
oa
oT2
oa

..

.

oTI
oa

2
666664

3
777775

ð10Þ

The elements of the sensitivity vector, called the sensitivity coeffi-
cients are thus defined as the first derivative of the estimated tem-
perature at time ti with respect to the unknown parameter.

Ji ¼
oTi

oa
ð11Þ

The estimation of the parameter for a small value of the magnitude
of Jj is difficult, because basically the same value for temperature
would be obtained for a wide range of parameter values. The esti-
mation problem is ill-conditioned near the initial guess used for
the unknown parameter, creating difficulties in the applications of
Gauss method. The Levenberg–Marquardt method [22,23] alleviates
such difficulties by utilizing an iterative procedure in the form:

akþ1 ¼ ak þ ðJkÞTr½T� uðakÞ� ðJkÞTrJk þ lk Xk
h i�1

ð12Þ

where lk is a positive scalar named damping parameter, and Xk is a
Levenberg–Marquardt parameter.

The purpose of the term lk Xk, included in Eq (12), is to damp
oscillations and instabilities due to the ill-conditioned character of
the problem, by making it large as compared to JTrJ if necessary [21].

2.4. Determining the sensitivity coefficients

There are several different approaches for the computation of
the sensitivity coefficients including: the direct analytic solution,
the boundary value problem, and the finite-difference approxima-
tion [21]. In this work, a boundary value problem for the determi-
nation of sensitivity coefficients is obtained by differentiating the
original direct problem presented in Eqs. (2) and (3) with respect
to the unknown parameter, a. The sensitivity problem governing
the sensitivity coefficients Ja ¼ oT

oa is thus:

1
a

oJaðr; tÞ
ot

¼ o2Jaðr; tÞ
or2 þ 1

r
oJaðr; tÞ

or
þ 1

a2

oTðr; tÞ
ot

ð13Þ

Jaðr; t ¼ 0Þ ¼ 0
Jaðr ¼ R; tÞ ¼ 0
oJ
or
¼ ðr ¼ 0; tÞ ¼ 0

ð14Þ

2.5. Statistical analysis

The standard deviation of the fitted temperature response, SDfit

is calculated from the ordinary least squares norm, S(a) as:

SDfit ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
SðaÞ

N � 1

r
ð15Þ

The standard deviation for the estimated thermal diffusivity, SDa

can be obtained from the standard deviation of the measurement
error, SDT and the sensitivity vector J(a) according to:

SDa ¼ SDT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
JTrJ
h i�1

r
ð16Þ

2.6. Stopping criteria

The iterative procedure of the Levenberg–Marquardt method is
stopped after fulfilling the following criterion:

SDfitðakþ1Þ < e ð17Þ

where e is user prescribed tolerance; used value in this paper is
about e � 0.015 �C. This criterion results from the fact that the least
squares norm is sufficiently small when the method has converged
[25].

2.7. Computation algorithm

Different versions of the Levenberg–Marquardt method can be
found in the literature, depending on the choice of the value X
and on the form chosen for the variation of the damping parameter
l [21]. A procedure with the X is taken as:

Xk ¼ ðJkÞTrJk ð18Þ

An initial guess a0 and maximal number of iterations, kmax is set. A
value for k and l0 was set to k = 1, and l0 = 10�4. Then

Step 1. Solve the direct problem given by Eqs. (2) and (3) with the
available estimate ak to obtain the temperature vector
u(ak) = [u1, u2, . . ., uI].

Step 2. Compute S(ak) from Eq. (5).
Step 3. Compute the sensitivity vector Jk by solving Eqs. (13) and

(14) and then the value Xk with Eq. (18), by using the cur-
rent values of ak.

Step 4. Solve the following linear system of algebraic equations,
obtained from the iterative procedure of the Levenberg–
Marquardt method in order to compute vector Dak:

Dak ¼ ðJkÞT ½T� uðakÞ� ½ðJkÞT Jk þ lk Xk��1 ð19Þ

Step 5. Compute the new estimate as

akþ1 ¼ ak þ Dak ð20Þ

Step 6. Solve the direct problem in Eqs. (2) and (3) with the new
estimate ak+1 in order to find u(ak+1). Then compute
S(ak+1), with Eq. (5).

Step 7. If S(ak+1) P S(ak), replace lk by 10lk and return to Step 4,
but if lk > 1020 go to Step 8.

Step 8. If S(ak+1) < S(ak), accept the new estimate ak+1 and replace
lk by 0:1 lk.

Step 9. Accept the estimated value if the stopping criterion, Eq.
(17), is satisfied. Otherwise, replace k by k + 1 and return
to Step 3. If k = kmax stop the iteration.

3. Experimental

3.1. Materials

The reference materials used to evaluate the method and used
apparatus are gelatinous water (Agar gel 0.7%), glycerol (p.a.
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redistilled) and Ottawa (quartz) sand. For detailed discussion on
reference materials used please see further in Section 4.2.

3.2. Thermal diffusivity measurement setup

To determine thermal diffusivity of a sample, an improved
experimental transient method was used based on existing method
[1,2,9,10]. The experimental setup consists of a two thermostated
water baths (±0.03 �C), the copper tube container, K-type thermo-
couples wiring, data acquisition unit and a PC. Two sizes of cylindri-
cal copper containers were used, with inner diameter 2R = 51 or
26 mm, length 250 mm. Thickness of the larger (2R = 51 mm) and
smaller (2R = 26 mm) container, is 1 and 0.7 mm, respectively.
The copper tube was carefully filled with the material continuously
applying vibrations in order to minimize air entrapment. One ther-
mocouple was placed at the axis of the tube. The accurate radial po-
sition of the thermocouple measuring end (r = 0 ± 1 mm) was
obtained by using a prestressed plastic thread, 0.30 mm thick, sup-
ported diagonally at the bases of a cylinder, as shown in Fig. 1. Sec-
ond thermocouple is placed at the inside surface of the copper tube
wall. The copper tube filled with material is carefully sealed with
styropore and rubber stoppers and placed vertically in a tempera-
ture controlled water bath (±0.03 �C). The wires exit through the
upper base of the tube. Upper insulating base is above a bath water
level, Fig. 1. A cylindrical specimen contained in copper tube,
attains a uniform temperature of first bath, T1, and then is suddenly
immersed in a second bath at temperature T1 + DT. The tempera-
ture at the tube axis, T(r � 0, t) and the material boundary temper-
ature, T(r = R, t) are measured as a function of time.

K-type thermocouples 0.2 mm thick with grounded twisted-
shielded wiring were used to obtain accuracy and eliminate noise.
Cable shielding and twisted wire pairs are used to minimize or
eliminate capacitive coupled interference and to aid in lowering
electro-magnetically induced errors. The thermocouples are cali-
brated before use (using Pt 100 with overall accuracy ±0.03 �C),
and they are observed to have an accuracy of ±0.1 �C in a temper-
ature range of 0–90 �C. An eight channel data logger (TC-08 pico
technology) is used for temperature measurements. The 20 bit res-
olution ensures detection of minute changes in temperature. It

stores the entire set of temperatures once every 100 ms. The exper-
imental data is simultaneously transferred to a PC. Thermocouple
cold junction is held at room temperature and sensed by a preci-
sion thermistor in good thermal contact with the input connectors
on thermal block of the measuring instrument. In order to have
accurate cold junction compensation a change of its temperature
is kept as low as possible.

Prior to loading the mold, the Ottawa sand was dried at 105 �C.
The gelatinous water was prepared by mixing 0.7% of Agar powder
(Biolife) by weight with hot (85 �C) deionized water in a laboratory
glass. The mixture was heated and stirred vigorously using a mag-
netic stirrer hot plate. Once the gel was melted, it was poured into
a mold by tapping it to help the air bubbles rise to the surface. The
mold was put in a water bath at 20 �C and waited for at least 4 h to
attain uniform temperature. For measurements on glycerol care
was devoted regarding to its hygroscopic nature.

4. Results and discussion

4.1. Numerical method for inverse thermal diffusivity estimation

In this work, a numerical approach for thermal diffusivity
estimation is adopted to employ a real measured temperature
excitement for the material boundary condition, T(r = R, t). Fou-
rier’s one-dimensional radial heat conduction model in Eqs. (2)
and (3) and the sensitivity problem given by Eqs. (13) and (14)
was solved using Matlab’s built-in solver ‘‘pdepe” [26,27]. The
Levenberg–Marquardt method [22,23] for optimization was used
for the solution of the inverse problem of the parameter estimation
[21]. The inverse problem was solved and optimized by using a
sub-program that was written for the setting of Matlab 6.5 (The
MathWorks, Inc., Natick, MA); script files comprising a specially
built graphical user interface (GUI) are freely available upon re-
quest to the corresponding author. In order to speed up the itera-
tive computing, the temperature-time input, i.e. T(r = R, t) and
T(r = 0, t) is previously reduced as follows. First, the accurate onset
of excitement was determined from raw temperature data col-
lected each 100 ms. Then the temperature records were reduced
to about 1000 time points for each measurement position.

4.1.1. Graphical user interface (GUI)
By providing an interface between the user and the applica-

tion’s underlying code, GUIs enable the user to operate the applica-
tion without managing the commands required by a command line
interface. Therefore, applications that provide GUIs are much eas-
ier to learn and use than those that are run from the command line.

Based on the built GUI shown in Fig. 2 and a guided instructions
written by the author even the first time users of Matlab with no pro-
graming skills are encourage to use the developed numerical meth-
od for inverse thermal diffusivity estimation. After importing and
plotting the data the required inputs for the GUI listed in order as
shown in Fig. 2 are: radial grid, r/m (introduced as the axial starting
point (always zero), increment and radius of the tube R), the initial
condition T(r, t = 0) = T0, radial position of ‘axial’ thermocouple, ini-
tial guess a0, prescribed tolerance for the stopping criteria e (see
Section 2.6), and maximal number of iterations. The output of the
numerical model gives a result of thermal diffusivity estimate
(example shown in Figs. 3 and 4). Ten iterations for such data run
on Intel� Pentium� 4 CPU 3.00 GHz, 1 GB RAM, take about 40 s.

4.2. Evaluation on reference materials

The reference materials used to evaluate the used apparatus
and method are gelatinous water (Agar gel 0.7%), glycerol (p.a.
redistilled) and Ottawa quartz sand.Fig. 1. Thermal diffusivity measuring set-up.
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Agar is gel-forming polysaccharide, widely used in industry
and in scientific applications. Agar form gels at approximately
35 �C and once formed does not melt below 85 �C. Gelation occurs
when a chain of macromolecules forms a network capable of
entrapping the dispersing medium. Such gel has a composition
very close to a pure liquid but resemble a solid. In that way heat
transfer through Agar is by conduction solely, excluding natural
convection.

Ottawa sand consists of spherical grains (high purity silica) with
an accurately graded particle size distribution to pass an 850-lm
(US Standard No. 20) sieve and to be retained on a 600-lm (US
Standard No. 30) sieve. The solid density of the Ottawa sand was
measured by submerging a known mass of sand in water and mea-
suring the volume change of the liquid. The solid density was

found to be 2.69 g/cm3, which is very close to the published value
of 2.65 g/cm3 [28]. Knowledge of the bulk density is important be-
cause the thermal properties can change based on how tightly the
sand particles are packed. Measured bulk density of investigated

Fig. 2. The developed graphical user interface enables easy usage of the inverse thermal diffusivity estimation method.
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Fig. 3. An example of a result for estimation of thermal diffusivity based on the
measured temperature response (Agar gel, 2R = 26 mm) and the radial heat
conduction model in Eqs. (2) and (3).
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Fig. 4. An example of a result for estimation of thermal diffusivity based on the
measured temperature response (Ottawa sand, 2R = 51 mm) and the radial heat
conduction model in Eqs. (2) and (3).

Table 1
Literature data on thermal conductivity and thermal diffusivity of reference materials
at T = 22.5 �C.

Material k (W m�1 K�1) a � 107 (m2 s�1)

Water 0.603 [34] 1.444 [34]
Glycerol 0.285 [35] 0.958 [35]
Ottawa sand 0.306 [29] 2.33a [30–33]

a Sand in general.
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Ottawa sand of 1.650 g/cm3 is close to the published value of
1.615 g/cm3 [29]. Data on the thermal conductivity of Ottawa sand
in air is readily available from several sources [29], although no
specific standard exists for this property. However, the thermal dif-
fusivity data on Ottawa sand are not readily found in the literature.
Hence, the value obtained is compared to thermal diffusivity of
sand in general [30–33]. Literature data [29–35] on thermal con-
ductivity and thermal diffusivity of investigated materials at
T = 22.5 �C are given in Table 1.

The low temperature rise of material, obtained by applying low
boundary temperature increase, is desirable in terms of minimiz-
ing the effects of natural convection, radiation and/or gas evolu-
tion. On the other hand, higher excitement reduces the effect of
noise and allow for a more precise temperature measurement. In
this work, the applied inducement temperature difference was
5 �C, the average temperature being 22.5 �C. Only for measure-
ments on glycerol the excitements were reduced to 3 �C in order
to minimize the natural convection effect.

An example of a result for estimation of thermal diffusivity
based on the measured temperature response on Agar gel,
2R = 26 mm, and the radial heat conduction model in Eqs. (2) and
(3) is given in Fig. 3. An excellent fit with a standard deviation of
1.0 � 10�2 �C is obtained.

The higher the value of thermal diffusivity for tested material
the higher radius of the cylinder should be used in order to in-
crease the sensitivity of the method, i.e. the sensitivity coefficients
Jia, defined by Eq. (11). In that way higher precision and accuracy
can be obtained according to Eq. (16). An example of a result for
estimation of thermal diffusivity on Ottawa sand, 2R = 51 mm, is
given in Fig. 4. A good fit with a standard deviation of 1.3 �
10�2 �C validates the appliance of the heat conduction model used
for describing the heat transfer of investigated granular material.

A repeatability analysis was conducted on samples by repeating
the measurements 10 times. The mean values of the thermal con-
ductivities and estimated precision at a 95% confidence level are
listed in Table 2. Very good agreement was found between the re-
sults of the experimental investigation and sources of available
data. This finding validates the accuracy of the method and mea-
surement apparatus. It can be concluded that the results of the
method evaluation on reference materials indicated an accuracy
of 1% and a precision of 0.7% (for 95% confidence).

In order to demonstrate the effect of the thermal inertia of a
sample holder, the estimation results on obtained measured
responses employing ideal and real boundary temperature in-
crease were compared. An assumption of ideal boundary tempera-
ture increase resulted in a systematic error of 7.5% and 9.4% lower
value of estimated thermal diffusivity based on measurements
done on Ottawa sand (2R = 51 mm) and Agar gel (2R = 26 mm),
respectively.

4.2.1. Experimental appliance to various molds and different boundary
excitement techniques

The developed method makes possible to estimate the thermal
diffusivity based on measured time-dependant boundary and

‘axial’ temperature increase in one-dimensional heat transfer. This
extends the experimental appliance to different variety of molds,
e.g. thicker (larger) and even plastic tubes. It should be noted that
to obtain accuracy and precision the boundary temperature in-
crease should be as fast as possible, and the cylinder radius as large
as possible. The optimal experimental design should be investi-
gated by numerical simulations (developed Matlab ‘.m’ GUI sub-
program also freely available upon request). Furthermore, different
boundary excitement techniques can be used assuring that the cyl-
inder surface heat transfer is homogenously applied. For example,
the thermal diffusivity of Ottawa sand was additionally estimated
by experimental method using only one temperature bath. After
the temperature stabilization of a material in a temperature bath
at T = 20 �C the temperature on thermostat is set to 25 �C and thus
provided a bath temperature heating ramp of about 1.1 K/min. The
comparison of results for estimated thermal diffusivity obtained by
using experimental method with two baths (described in Section
3.2) and one bath with the heating ramp indicated deviation of
1%. This deviation is slightly above the precision of the measure-
ment, Table 2.

5. Conclusion

An improved experimental technique and a numerical approach
for thermal diffusivity estimation are presented for better accuracy
and precision on materials which require a sample holder. The re-
sults of the method and used apparatus evaluation on reference
materials indicated an accuracy of 1% and a precision of 0.7% (for
95% confidence). The higher the value of thermal diffusivity for
tested material the higher radius of the cylinder should be used
in order to increase precision and accuracy of the method.

The developed method extends the experimental appliance to
different variety of molds (e.g. thicker (larger) and even plastic
tubes) and to different boundary excitement techniques (e.g. use
of only one temperature bath with a heating ramp). The built
GUI enables even the first time users of Matlab with no programing
skills to use the presented numerical method for inverse thermal
diffusivity estimation.

Results on fitting the temperature response by the numerical
method provide a tool for investigating the appliance of the heat
conduction model used for describing the complex heat transfer
in wet and porous materials.
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