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Two approaches to the tangent space of a noncommutative space whose coordinate alge-
bra is the enveloping algebra of a Lie algebra are known: the Heisenberg double construc-
tion and the approach via deformed derivatives, usually defined by procedures involving
orderings among noncommutative coordinates or equivalently involving realizations via
formal differential operators. In an earlier work, we rephrased the deformed derivative
approach introducing certain smash product algebra twisting a semicompleted Weyl al-
gebra. We show here that the Heisenberg double in the Lie algebra case, is isomorphic
to that product in a nontrivial way, involving a datum φ parametrizing the orderings or
realizations in other approaches. This way, we show that the two different formalisms,
used by different communities, for introducing the noncommutative phase space for the
Lie algebra type noncommutative spaces are mathematically equivalent.
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1. Introduction

1.1. Noncommutative algebras and noncommutative geometry may play various

roles in models of mathematical physics; for example describing quantum symmetry

algebras. A special case of interest is when the noncommutative algebra is playing

the role of the space-time of the theory, and is interpreted as a small deformation

of the (commutative) 1-particle configuration space. If one wants to proceed toward

developing field theory on such a space, it is beneficial to extend the deformation of

the configuration space to a deformation of full phase space (symplectic manifold)

of the theory. Deformed momentum space for the noncommutative configuration

space whose coordinate algebra is the enveloping algebra of a finite-dimensional

Lie algebra (also called Lie algebra type noncommutative spaces) has been studied

recently in the mathematical physics literature1,3,5, mainly in special cases, most

notably variants of so-called κ-Minkowski space2,3,11,9,15.

1.2. (Deformed derivative approach)

1
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1.2.1. (Notation) The algebras in the article are over a field k of characteristic zero;

both real and complex numbers appear in applications of the present formalism.

We fix a finite dimensional Lie algebra g with basis x̂1, . . . , x̂n, which are also the

generators of enveloping algebra U(g); the corresponding commuting generators of

the symmetric algebra S(g) will be denoted x1, . . . , xn.

1.2.2. Some authors (e.g. 3,5,15) add to the (linear) enveloping algebra generators,

the corresponding “deformed” partial derivatives ∂1, . . . , ∂n, which are the dual

variables (in g
∗), assumed to mutually commute. Then they seek for the consistent

commutation relations of the form

[x̂i, ∂
j] = φ

j
i , i, j = 1, . . . , n, (1)

where φi
j = φi

j(∂
1, . . . , ∂n) ∈ Ŝ(g∗) are formal power series and φi

j = δij+ higher

order terms. By ”consistency” they mean that one quotients the free associative alge-

bra product of U(g) and of the (commutative) formal power series ring in ∂1, . . . , ∂n

(the latter is isomorphic to the completion of polynomial ring in the dual variables

Ŝ(g∗)) by the commutation relations (1) and the restriction of the quotient map to

each of the parts, U(g) and Ŝ(g∗) separately, has a zero kernel. The resulting quo-

tient algebra generated by x̂1, . . . , x̂m, ∂1, . . . , ∂n will be referred to as the phase

space algebra with the φ-deformed derivatives (of the noncommutative alge-

bra U(g)). It follows from the Jacobi identities14 that this nondegeneracy condition

for the matrix (φi
j)i,j=1,...,n can be expressed by requiring that (φi

j) provides a

solution to the system

φl
j

∂

∂(∂l)
(φk

i )− φl
i

∂

∂(∂l)
(φk

j ) = Cs
ijφ

k
s . (2)

of formal differential equations (summation on repeated indices understood). More-

over a solution exists for all g (such a universal solution is exhibited in 4), but the

solution is not unique; moreover, we have shown in 14 that if we require φi
j = δij+

higher order terms, then the choice of such a solution φi
j is equivalent to any among

some other data of interest (some of the equivalences known before):

- “ordering prescription”5,15

- realization of the enveloping algebra in a semi-completed Weyl algebra4,14 of

the form x̂
φ
i =

∑

j xjφ
j
i ;

- a homomorphism of Lie algebras φ : g → Der(Ŝ(g∗)) (then φ
j
i = φ(−x̂i)(∂

j)).

It extends to a Hopf action also denoted φ : U(g) → End(Ŝ(g∗)).

- a deformed Leibniz rule showing how ∂i acts on a product ûv̂ of û, v̂ ∈ U(g));

- (topological) coproduct ∆ : ˆS(g)∗ → Ŝ(g∗)⊗̂Ŝ(g∗);

- prescription for multiplying certain formal exponentials of a noncommutative

argument16,13,5 (not shown in 14);

- a choice of the star products (belonging to a specific class of star products);

- a coalgebra isomorphism ξ : S(g) → U(g) such that ξ|g = idg;
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For the purpose of the proofs we sketch below some of the relations among the

above data, for more see 14 and Sec. 2.

1.3. (Hopf actions and smash products) Recall that a left action ⊲ : H⊗A → A

of a Hopf algebra H on an algebra A is a Hopf action if it is satisfying the

condition h ⊲ (a · b) =
∑

(h(1) ⊲ a) · (h(2) ⊲ b), where we used the Sweedler notation

∆(h) =
∑

h(1)⊗h(2); we also say that A is a left H-module algebra. In that case, one

defines the smash product algebra (or crossed product) A♯H as the tensor product

A⊗H with the associative multiplication given by

(a⊗ h)(b ⊗ g) =
∑

(ah(1) ⊲ b)⊗ (h(2)g).

1.4. (Heisenberg double) The input for the Heisenberg double6,10,18 construc-

tion is a pair of Hopf algebras H,H ′ in a bilinear pairing 〈, 〉 : H ⊗H ′ → k which is

Hopf, i.e. with the product on pairings on the tensor square, the coproduct and the

product are dual in the sense 〈∆H(a), b ⊗ c〉 = 〈a, b · c〉, 〈a⊗ a′,∆H′b〉 = 〈a · a′, b〉

and similarly for the unit and counit. In our case H = U(g) and the role of H ′

is played by the algebraic linear dual U∗(g) = Homk(U(g),k) which is a topologi-

cal Hopf algebra, i.e. the coproduct of the generators may result in infinitely many

summands from the tensor square, amounting to the need for some completion of

H ⊗ H ′. Similar to the Drinfel’d double, Heisenberg double is the algebra whose

underlying space is (a completion of) H ⊗H ′, but unlike Drinfel’d double it does

not have a Hopf algebra structure itself. One defines the coregular action of H ′

on H given by h′ ⊲h =
∑

h(1)〈h(2), h
′〉 where ∆H(h) =

∑

h(1)⊗h(2); as we required

that the pairing is Hopf pairing, this action of H ′ on H is automatically a Hopf

action (cf. 1.3), hence we can form the corresponding smash product algebra H♯H ′,

the Heisenberg double of H (better, of the data (H,H ′, 〈, 〉)).

1.5. (Sketch of the proof of the main result)

We want to exhibit the isomorphism between the phase space algebra with

φ-deformed derivatives, and the Heisenberg double of U(g). This comprises four

steps/isomorphisms, the first two of which were effectively done in our earlier

work14, and the remaining step is the focus of this paper.

I By the definition, the phase space algebra with the φ-deformed derivatives is

generated by x̂1, . . . , x̂n in U(g) and the mutually commuting formal power series in

∂1, . . . , ∂n with commutation relation (2). In 14, we have shown that it is isomorphic

to the smash product U(g)♯φŜ(g
∗).

II By 14, φ induces an isomorphism of coalgebras denoted ξφ : S(g) → U(g).

The transpose of ξφ is an isomorphism of topological algebras ξTφ : S(g)∗ → U(g)∗

which one composes with the isomorphism Ŝ(g∗) ∼= S(g)∗. Therefore the algebra

isomorphism U(g)♯φŜ(g
∗) ∼= U(g)♯U(g)∗ where the action used for the smash prod-

uct also transfers to the right hand side. This isomorphism is also exhibited in 14.

Notice that the smash product on the right hand side is not yet the Heisenberg

double as the action used is the action of U(g) on U(g)∗ and not the conversely.
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IIB Note that the isomorphism Ŝ(g∗) ∼= U(g)∗ obtained via ξTφ (cf. II) and the

identification Ŝ(g∗) ∼= S(g)∗ induces also a nondegenerate Hopf pairing between

Ŝ(g∗) and U(g). For this pairing we find several descriptions (5),(7) which are used

below to describe the Heisenberg double of U(g).

III The smash product algebra depends on the action used in its definition.

The smash product U(g)♯φŜ(g
∗) in II is derived from the action ⊲ of the Hopf

algebra U(g) on Ŝ(g∗). We relate this action with the “black” action ◮ (see 2.4)

of the topological algebra Ŝ(g∗) ∼= U(g)∗, and show that the two resulting smash

products (one from action of U(g) on S(g) and another from the black action of

U(g∗) on U(g)) are isomorphic as abstract algebras. The action ◮ is a Hopf action

with respect to the topological coproduct on U(g)∗ or equivalently the φ-deformed

coproduct on Ŝ(g∗).

IV We show in 3.5 that the black action ◮ is precisely the coregular action, i.e.

the unique action satisfying P ◮ û =
∑

û(1) 〈û(2), P 〉φ where 〈, 〉φ is the Hopf pair-

ing with the dual topological Hopf algebra (with the dual represented in a specific

way). The coregular action is used in the definition of the Heisenberg double, com-

pleting the identification U(g)♯φŜ(g
∗) ∼= U(g)♯U(g)∗ where for the smash products,

on the left hand side one uses the U(g) action by ⊲, and on the right hand side the

coregular U(g)∗-action.

2. More on deformed derivatives

More familiarity with the structure involved in the method of deformed derivatives

is needed later to exhibit its relation to the Heisenberg double. For the users of our

results we also sketch the connection to star products.

2.1. (Star product perspective) Lie algebra type noncommutative spaces are

simply the deformation quantizations of the linear Poisson structure; given struc-

ture constants Ck
ij linear in a deformation parameter the enveloping algebras of the

Lie algebra g given in a base by [x̂i, x̂j ] = Ck
ij x̂k is viewed as a deformation of the

polynomial (symmetric) algebra S(g) generated by commuting x1, . . . , xn. Given

any linear isomorphism ξ : S(g)
∼=
−→ U(g) we transfer the noncommutative product

on U(g) to a ⋆-product on S(g), defined by f ⋆ g = ξ−1(ξ(f) · ξ(g)). There are

many isomorphisms which may play role of ξ, but in order to introduce either the

φ-deformed derivatives like in 1,5,15,14, or to make the correspondence with the

Heisenberg double construction, we need to restrict to ξ which are coalgebra iso-

morphisms; we also require a “small deformation condition” that ξ is the identity

on the constant and linear parts, i.e. on k ⊕ g ⊂ S(g). Our restriction to coalgebra

isomorphisms, singles out a distinguished class of star products quantizing the lin-

ear Poisson structure. Kathotia7 compares the Kontsevich star product8 for linear

Poisson structures to the PBW-product which corresponds to the case where ξ is

the standard symmetrization (coexponential) map (cf. 4, especially Chapter 10);

Kontsevich star product is not in our class, although it is equivalent to the PBW
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product, which is in our class.

2.2. (Some connections between the basic data) Coalgebra isomorphism

ξ : S(g) → U(g) induces a transpose map ξT : U∗(g) → S∗(g), which is conse-

quently an algebra isomorphism. There is an isomorphism S∗(g) ∼= Ŝ(g∗) where

Ŝ(g∗) denotes a completed symmetric algebra on the dual; the isomorphism de-

pends on a normalization of a pairing between Ŝ(g∗) and S(g) (cf. 4, 10.4, 10.5).

the functionals in S∗(g) ∼= Ŝ(g∗) can be identified with the infinite order differential

operators with constant coefficients: a differential operator applied to a polyno-

mial in S(g) and then evaluated at 0, defines a differential operator. If the dual

generators of g∗ ⊂ Ŝ(g∗) corresponding to the basis x1, . . . , xn are denoted as the

partial derivatives ∂i, this rule and identification explains the choice of normal-

ization in 4, Sec. 10. The topological coproduct on U∗(g) which is the algebraic

transpose to the product on U(g), is (for ξ being the symmetrization map) written

as a formal differential operators in Ŝ(g∗) in 17, where the generalizations for Lie

bialgebras are considered. In 14 we have shown that this deformed coproduct is

the same as a coproduct obtained by using Leibniz rules defined in terms of the

deformed commutation relations; and in the case of symmetric ordering we have

exhibited14 a Feynman-like diagram expansion summing to what is essentially a

Fourier-transformed form of the BCH series.

2.3. As shown in detail in 14, the coalgebra isomorphism ξ : S(g) → U(g) tauto-

logical on k ⊕ g as above, is equivalent to any of several other data listed in the

introduction, including the φ-data described as follows. The star product xi ⋆ f is

always of the form
∑

j xjφ
i
j(∂

1, . . . , ∂n)(f) where (φi
j)i,j=1,...,n is a matrix of ele-

ments in Ŝ(g∗) (formal power series in dual variables ∂1, . . . , ∂n) satisfying a formal

set of differential equations (4 ch. 4) equivalent to the statement that the formula

φ(−x̂i)(∂
j) = φ

j
i defines a Lie algebra morphism φ : g → Der(Ŝ(g∗)).

The correspondence x̂i 7→ x̂
φ
j =

∑

j xjφ
j
i extends to an injective morphism of as-

sociative algebras ()φ : U(g) → Ân,k where Ân,k is the Weyl algebra of differential

operators with polynomial coefficients, completed by the degree of the differen-

tial operator (hence we allow formal power series in ∂i-s but not in xj-s). This

(semi)completed Weyl algebra has the standard Fock representation on S(g). The

Lie algebra homomorphism φ extends multiplicatively to a unique homomorphism

U(g) → End(Ŝ(g∗)) (also denoted φ), which is a Hopf action (cf. 1.3). Thus we can

form a smash product algebra Ag,φ = U(g)♯Ŝ(g∗), the semicompleted n-th Weyl

algebra (Ân,k is the special case of this construction for an abelian Lie algebra).

The rule x̂i 7→ x̂
φ
i , ∂

j → ∂j extends to a unique homomorphism Ag,φ → Ân,k; one

easily shows that it is an isomorphism.

2.4. (The action later used for Heisenberg double) Not only U(g) acts by

Hopf action on Ŝ(g∗) (this action was used in the construction of Ag,φ), but also

conversely Ŝ(g∗) as a topological Hopf algebra acts on U(g). The latter action ◮ is in

the Main Theorem below identified with the smash product action of the Heisenberg
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double! To define the latter action, U(g) is embedded as a subalgebra U(g)♯k →֒

Ag,φ; and similarly for Ŝ(g∗). The action a ⊗ u 7→ a ◮ û, Ag,φ ⊗ U(g) → U(g) is

defined by multiplying within Ag,φ and then projecting by evaluating the second

tensor factor in Ag,φ = U(g)♯Ŝ(g∗) (as a differential operator) at 1. Thus U(g) is an

Ag,φ-module, the deformed Fock space where 1U(g) is the φ-deformed vacuum. It

can be shown14 that the coalgebra isomorphism ξ : S(g) → U(g) can be computed

by composing S(g) →֒ Ân,k
∼= Ag,φ

◮1U(g)
−→ U(g).

2.5. (Deformed coproduct) If we define, for P ∈ Ŝ(g∗) →֒ Ag,φ, the linear

operator P̂ : U(g) → U(g) by P̂ (û) = P ◮ û or (equivalently, according to 14) by

P̂ (ξ(f)) = ξ(P (f)), then the Leibniz rule holds:
∑

P̂(1)(û)·U(g) P̂(2)(v̂) = P (û·U(g) v̂)

for a unique (φ-dependent) deformed coproduct P 7→ ∆(P ) =
∑

P(1)⊗P(2) on Ŝ(g∗)

(with the tensor product allowing infinitely many terms), cf. 4.2.

3. Relating Heisenberg double to the φ-deformed derivatives

3.1. Lemma. The following nonsymmetric formula for ∆(∂µ) holds:

∆(∂µ) = 1⊗ ∂µ + ∂α ⊗ [∂µ, x̂α] +
1

2!
∂α1∂α2 ⊗ [[∂µ, x̂α1 ], x̂α2 ] + . . . (3)

The sum has only finitely many terms when applied to an element in U(g)⊗ U(g).

Proof is by induction, see 14.

3.2. Lemma. If â =
∑n

α=1 a
αx̂α and f̂ ∈ U(g) then

∂̂µ(âpf̂) =

p−1
∑

k=0

(

p

k

)

aα1aα2 · · · aαk âp−k[[∂̂µ, x̂α1 ], . . . , x̂αk
](f̂) (4)

Proof. This is a tautology for p = 0. Suppose it holds for all p up to some p0, and for

all f̂ . Then set ĝ = âf̂ = aαx̂α. Then ∂̂µ(âp0+1f̂) = ∂̂µ(âp0 ĝ) and we can apply (4)

to ∂̂µ(âp0 ĝ). Now

[[[∂̂µ, x̂α1 ], . . .], x̂αk
](ĝ) = aαk [[[∂̂µ, x̂α1 ], . . .], x̂αk

](x̂αk+1
ĝ)

= â[[[∂̂µ, x̂α1 ], . . .], x̂αk
](f̂)+

+ aαk+1 [[[[∂̂µ, x̂α1 ], . . .], x̂αk
], x̂αk+1

](f̂).

Collecting the terms and the Pascal triangle identity complete the induction step.

3.2.1. Remark. It is interesting that this lemma was needed and proved in 14

related to certain Feynman diagram type expansion calculation leading to an exact

summation result, whereas it will be seen here rather as a step toward and a special

case of a formula showing the condition that certain secondary action in the φ-

deformed derivatives picture (the black action) is precisely the coregular action

needed to define the Heisenberg double.
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3.3. Theorem. Given a left Hopf action φ : U(g) → End(Ŝ(g∗)), with

φ(−x̂i)(∂
j) = δij +O(∂), there is a Hopf pairing 〈, 〉φ : U(g)⊗ Ŝ(g∗) → k given by

〈û, P 〉φ = φ(SU(g)û)(P )|0〉 ≡ φ(SU(g)û)(P )(1S(g)) (5)

where û ∈ U(g), P ∈ Ŝ(g∗), and SU(g) is the antipode antiautomorphism of U(g),

and where Ŝ(g∗) is considered a topological Hopf algebra with respect to the φ-

deformed coproduct.

Proof. Clearly the pairing is well defined; the antipode comes because we use left

Hopf actions. The product of diferential operators with constant coeficients evalu-

ated at 1 equals the product of their evaluations at 1. Therefore the fact that φ is

Hopf action implies 〈û, PQ〉φ = 〈∆û, P ⊗Q〉φ. It is less obvious to verify the other

duality: of φ-deformed coproduct and the multiplication on U(g). It is sufficient to

show that one has

〈x̂αû, ∂
µ〉φ = 〈x̂α ⊗ û,∆∂µ〉φ. (6)

for all α and all û in U(g). Indeed, extending to
∏k

i=1 xαi
û for all (α1, . . . , αk) can be

done by induction on k, using the coassociativity of the coproduct and associativity

of the product. Once it is true for any product v̂û in the left argument, it is an easy

general nonsense, using the already known duality for ∆U(g), to extend the property

to products of ∂-s by induction using the following calculation for the induction step

〈v̂û, P1P2〉φ = 〈
∑

v̂(1)û(1) ⊗ v̂(2)û(2), P1 ⊗ P2〉φ
=

∑

〈v̂(1) ⊗ û(1),∆(P1)〉φ〈v̂(2) ⊗ û(2),∆(P2)〉φ
=

∑

〈v̂(1) ⊗ û(1) ⊗ v̂(2) ⊗ û(2),∆(P1)⊗∆(P2)〉φ
=

∑

〈v̂ ⊗ û,∆(P1P2)〉φ

Let us now calculate (6) using the nonsymmetric formula (3) for the φ-coproduct.

All terms readily give zero in first factor unless the first factor is degree 1 in ∂-s.

Thus we effectively need to show
∑

β

〈xα, ∂
β〉φ ⊗ 〈û, [∂µ, x̂β ]〉φ = 〈xαû, ∂

µ〉φ.

The left-hand side is
∑

β φ(−x̂α)(∂
β)φ(SU(g)û

op)(φ(−x̂β)(∂
µ))|0〉 =

=
∑

β φ(−x̂α)(∂
β)|0〉φ(SU(g)(û

op)x̂β)(∂
µ))|0〉 and φ(−x̂α)(∂

β)|0〉 = δβα by the

assumption on φ. Finally, the contraction with the Kronecker delta gives

φ(SU(g)(x̂αû)
op)(∂µ)|0〉.

3.4. Proposition. If ξ = ξφ : S(g) → U(g) is the coalgebra isomorphism corre-

spoding to φ and ξT : U(g)∗ → S(g)∗ ∼= Ŝ(g∗) its transpose, then the pairing may

be described alternatively by

〈û, P 〉φ = (ξT )−1(P )(û) = P (ξ−1
φ (û)) = ǫS(g)(P (ûφ|0〉)) = ǫS(g)((P̂ (û))φ|0〉), (7)

where P (ξ−1
φ (û)) is the evaluation of P ∈ Ŝ(g∗) on ξ−1

φ (û) ∈ S(g) via the pairing.

Proof. We show 〈û, P 〉φ = ǫS(g)(P (ûφ|0〉)). By the previous arguments, it is

enough to show that this alternative formula gives the same (and, in particular,
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Hopf) pairing as (5) when P = ∂µ. This is evident when û = x̂ν for some ν. Now

suppose by induction that (7) holds for û. Then

ǫ∂µ(x̂φ
λû

φ|0〉) = ǫ∂µxαφ
α
λ û

φ|0〉

= ǫxα∂
µφα

λ û
φ|0〉+ ǫφ

µ
λû

φ|0〉

= 0 + ǫφ(SU(g)û)([∂̂
µ, x̂λ])

= ǫφ(SU(g)(x̂λû))(∂
µ),

hence it holds for x̂λû.

The other equalities in (7) are direct: (ξT )−1(P )(û) = P (ξ−1
φ (û)) by the defini-

tion of the transpose operator ξT ; then P (ξ−1
φ (û)) = ǫ(P (ûφ|0〉)) and ǫ(P (ûφ|0〉)) =

ǫ((P̂ (û))φ|0〉) by the basic identities ǫ(ŵ|0〉) = ξ−1(ŵ) and P̂ ◦ ξ = ξ ◦ P .

3.5. Main Theorem. The (g,φ)-twisted Weyl algebra Ag,φ is isomorphic to the

Heisenberg double of the Hopf algebra U(g) where the dual topological Hopf algebra

is Ŝ(g∗) with respect to the φ-deformed coproduct, and with respect to the Hopf

pairing given by (5) or, equivalently, (7). In other words, the left action ◮ used

for the second smash product structure satisfies (and is determined by) the formula

P ◮ û =
∑

〈û(2), P 〉φ û(1)

for all û ∈ U(g) and P ∈ Ŝ(g∗).

Consequently, the phase space algebra with the φ-deformed derivatives (1.2.2)

is isomorphic to the Heisenberg double (and the isomorphism nontrivially depends

on φ).

Proof. If the identity holds for P = P1 and P = P2 then

P1P2 ⊲ û = P1 ⊲
(
∑

〈û(2), P2〉φ û(1)

)

=
∑

〈û(3), P2〉φ 〈û(2), P1〉φ û(1)

=
∑

〈û(2), P1P2〉φ û(1)

hence it holds for P = P1P2. For P = 1 it holds trivially, hence it is sufficient to

check for P = ∂µ and use induction. The identity is linear in û ∈ U(g), so it is

sufficient to prove it for all û of the form û = âp = (
∑n

α=1 a
αx̂α)

p, p ≥ 0 where

â =
∑

α aαx̂α is arbitrary. In that case, ∆(û) =
∑p

k=0

(

p
k

)

âp−k ⊗ âk and we need to

show

∂µ
◮ âp = ∂̂µ(âp) =

p
∑

k=0

(

p

k

)

〈âk, ∂µ〉φ ân−k

but 〈âk, ∂µ〉φ is by (7) equal to

φ(SU(g)(â
k))(∂µ) = (−1)kφ(âk)(∂µ) = (−1)k[. . . [[∂µ, â], â], . . . , â],

what by linearity reduces to (4) for the case f = 1. (This shows IV in 1.5 i.e. that

the black action ◮ is identifiable with the coregular action under the isomorphism

Ŝ(g∗) ∼= U(g)∗).
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While the vector spaces of the two smash products (U(g)♯φŜ(g) and the Heisen-

berg double) are isomorphic by the definition (they are simply the tensor prod-

ucts with the same factors), we need to show that the multiplication is the same;

for this we need to commute the tensor factors. One can easily compute that if

[∂, x̂] = Q ∈ Ŝ(g∗), then also in the Heisenberg double [∂̂, x̂] = Q̂ for ∂ ∈ g
∗ and

x̂ ∈ g →֒ U(g). Therefore for the generators, the commutation relations in the two

smash products agree (this shows III in 1.5), hence the isomorphism of Ag,φ and

the smash product given by the black action, hence the Heisenberg double.

The final sentence in the theorem now follows by I in 1.5, namely we know from

our earlier work14 that the phase space algebra with the deformed derivatives is

isomorphic to the smash product Ag,φ. Step II in 1.5 shown in 14 is used all along

in the construction. Notice that the heart of this paper is performing the step IV

from 1.5; once we have done it, we have recapitulated earlier prepared steps for I,

II and III.

4. Final remarks.

4.1. Though the φ-deformed derivatives are not present there, the Reshetikhin’s

article17 has implicitly much of the structure from this paper (including issues on

dualization of coproducts) implicitly present, including the quantum deformations

of enveloping algebras and more general bialgebras.

4.2. The fact that the Leibniz rule for the action of Ŝ(g∗) on U(g) (for any g and φ)

gives a well-defined coassociative map into the tensor product is not obvious in the

deformed derivative picture1,3,14,15; namely it is a priori undefined up to a kernel

of the multiplication map (add an element in the kernel and the Leibniz rule does

not change). But now the Hopf action is well-defined within the Heisenberg double

construction and the Heisenberg double as an algebra is identified with Ag,φ where

the deformed Leibniz rule was originally defined. Heisenberg double provides an

invariant picture, giving simple ”dual” interpretation to the deformed coproduct,

while the approach via the φ-deformed derivatives and commutators is useful for

calculation, as it is exhibited in the physics literature before.

4.3. The differential forms and exterior derivative can also be extended to the same

setup19,12.
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9. S. Krešić-Jurić, S. Meljanac, M. Stojić, Covariant realizations of kappa-deformed
space, Eur. Phys. J. C 51 (2007), no. 1, 229240, hep-th/0702215.

10. J-H. Lu, On the Drinfeld double and the Heisenberg double of a Hopf algebra, Duke

Math. J. 74 (1994) 763776.
11. J. Lukierski, A. Nowicki, Heisenberg double description of κ-Poincaré algebra and
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