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a b s t r a c t

The maximum entropy (MaxEnt) principle is a versatile tool for statistical inference of the
probability density function (pdf) from its moments as a least-biased estimation among all
other possible pdf’s. It maximizes Shannon entropy, satisfying the moment constraints.
Thus, the MaxEnt algorithm transforms the original constrained optimization problem to
the unconstrained dual optimization problem using Lagrangian multipliers. The Classic
Moment Problem (CMP) uses algebraic power moments, causing typical conventional
numerical methods to fail for higher-order moments ðm > 5—10Þ due to different sensitiv-
ities of Lagrangian multipliers and unbalanced nonlinearities. Classic MaxEnt algorithms
overcome these difficulties by using orthogonal polynomials, which enable roughly the
same sensitivity for all Lagrangian multipliers. In this paper, we employ an idea based
on different principles, using Fupn basis functions with compact support, which can exactly
describe algebraic polynomials, but only if the Fup order-n is greater than or equal to the
polynomial’s order. Our algorithm solves the CMP with respect to the moments of only
low order Fup2 basis functions, finding a Fup2 optimal pdf with better balanced Lagrangian
multipliers. The algorithm is numerically very efficient due to localized properties of Fup2

basis functions implying a weaker dependence between Lagrangian multipliers and faster
convergence. Only consequences are an iterative scheme of the algorithm where power
moments are a sum of Fup2 and residual moments and an inexact entropy upper bound.
However, due to small residual moments, the algorithm converges very quickly as demon-
strated on two continuous pdf examples – the beta distribution and a bi-modal pdf, and
two discontinuous pdf examples – the step and double Dirac pdf. Finally, these pdf exam-
ples present that Fup MaxEnt algorithm yields smaller entropy value than classic MaxEnt
algorithm, but differences are very small for all practical engineering purposes.

� 2009 Elsevier Inc. All rights reserved.

1. Introduction

Many physical processes cannot be characterized deterministically due to the presence of intrinsic or parametric uncer-
tainty due to their physical nature, interpretation or measurements. Therefore, results are usually given in the form of a cer-
tain number of the first few statistical power moments or rarely as a probability density function (pdf). Jaynes [15] defined
the Maximum Entropy (MaxEnt) principle as a versatile tool for statistical inference of the probability density function (pdf)
from its moments (Classic Moment Problem – CMP) by maximizing the Shannon entropy [20]. This provides a least-biased
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estimation among all other possible distributions that satisfy constrained moments but ignore all unknown information. In
other words, the MaxEnt pdf presents the pdf with the highest uncertainty and appears to be a robust tool for pdf prediction
in terms of statistical moments [5].

In the last few decades, a number of MaxEnt algorithms have been developed and applied in many branches of science,
including solid-state physics [6,23], geophysical applications [1–3], econometrics [17,24] and transport planning [21]. The first
robust algorithm was developed in [16] for up to 10–12 moments. However, the MaxEnt algorithms for a higher number of mo-
ments are subjected to high unbalanced nonlinearities, ill-conditioned Jacobian and Hessian matrices in Newton algorithms,
and many other numerical problems such as insufficient arithmetic precision. In order to overcome these difficulties, the Max-
Ent algorithm uses orthogonal polynomials instead of classic monomials. Among others, this ‘‘state of the art” approach is pre-
sented in [23,6], who employed Lagrangian and Chebyshev polynomials, respectively. Recently, Abramov [1–3], in his series of
papers, extended these improvements to multi-dimensional problems using the generalized orthogonal polynomials.

In this paper, we employ a different and original idea using the finite and localized basis functions with compact support
closely related to the algebraic polynomials, which makes possible an efficient MaxEnt algorithm with more balanced non-
linearities and the ability to solve a higher number of moments. We are focused here on localized basis functions with com-
pact support, such as wavelets and splines. Apart from wavelets and splines, there is a relatively lesser known class of atomic
or Rbf basis functions (Rvachev’s basis functions) [18,19]. Atomic functions are classified between classic polynomials and
spline functions. However, in practice, their application as basis functions is closer to splines or wavelets. In this study,
we shall use Fup basis functions, which are one type of atomic basis functions; recent review in [12]. Gotovac and Kozulić
[8] systemized the existing knowledge on atomic functions and presented the transformation of basis functions into a
numerically applicable form. The application of Fup basis functions has been demonstrated in signal processing [14], for
solving the integral Fredholm equations [13], in initial value problems [9], and in the collocation methods for boundary value
problems [10]. Recently, Fup basis functions were applied to the Monte-Carlo methodology and stochastic processes of flow
and transport in heterogeneous porous media [11].

This paper is organized as follows. In the next section, the novel Fup Maximum Entropy Algorithm (FMEA) will be pre-
sented. In Section 3, two continuous pdf examples – the beta distribution and a bi-modal pdf and two discontinuous pdf
examples – step and double Dirac pdf show ability of the method to solve ill-posed maximum moment entropy problem only
with low order Fup2 basis functions enabling a stable and efficient algorithm. We end the paper with conclusions and an
Appendix A, which presents all basic properties of the Fup basis functions needed for development of the FMEA.

2. MaxEnt algorithm

In this section, we will present the maximum entropy principle and discuss numerical schemes for the classic MaxEnt
algorithm with orthogonal polynomials. Last, we will present a novel MaxEnt algorithm that uses Fup2 basis functions with
compact support.

2.1. Maximum entropy principle

The maximum entropy principle (MaxEnt) is widely recognized as an efficient stochastic tool, especially in information
theory. Furthermore, MaxEnt is particularly useful for pdf characterization, since it shows how many conventional statistical
moments are needed in order to accurately describe all pdf properties, such as its shape, tailings, peakedness, number of
peaks, skewness and/or kurtosis. Despite direct and sometimes contradictory relations with classical physical entropy
[15], which describes chaos in a physical system and presents the second law of thermodynamics, Shannon information en-
tropy [20] is defined in a broader sense as

Hðf Þ ¼ �
Z xmax

xmin

lnðf ðxÞÞf ðxÞdx ð1Þ

where I ¼ lnðf ðxÞÞ is a quantity of information and f is the pdf. Shannon information entropy is the expected information
quantity. The logarithm is chosen arbitrarily according to some desired properties of entropy: (a) decreasing probability
causes an increase of information, (b) higher uncertainty causes higher entropy and (c) the total entropy of two independent
events is equal to the sum of the individual entropies [22].

The MaxEnt is defined by Jaynes [15] such that the pdf with highest entropy is selected to give the most information
among all other possible pdf’s that satisfy known constraints. In other words, the MaxEnt principle states that among the
probability distributions that satisfy our incomplete information about the system, the pdf that maximizes entropy is the
least-biased estimate that can be made. It agrees with everything that is known but carefully avoids anything that is un-
known [5,22]. If these constraints are known statistical moments of arbitrary basis functions ðhjðxÞ; j ¼ 0; . . . ;mÞ, MaxEnt
can be defined as the following optimization problem

max Hðf Þ ð2aÞZ xmax

xmin

hiðxÞf ðxÞdx ¼ li; i ¼ 0; . . . ;m ð2bÞ
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Optimization problem (2) can be solved by introducing the Lagrangian function and corresponding multipliers kj

Lðf ; kÞ ¼ Hðf Þ �
Xm

j¼0

kj

Z xmax

xmin

hjðxÞf ðxÞdx� lj

 !
ð3Þ

The problem is reduced to solving the maximum of the Lagrangian function with respect to all possible functions f that sat-
isfy constraints (2b)

@Lðf ; kÞ
@f

¼
Z xmax

xmin

ð�1� lnðf ðxÞÞ �
Xm

j¼0

kjhjðxÞÞdx ¼ 0 ð4Þ

The analytical form of the MaxEnt pdf is

f ðxÞ ¼ exp �1�
Xm

j¼0

kjhjðxÞ
 !

ð5Þ

Finally, for a given constraints, the MaxEnt problem requires solving the Lagrangian multipliers from the nonlinear sys-
tem with ðmþ 1Þ equations, which is formed by introducing the MaxEnt pdf (5) into constraints (2b)Z xmax

xmin

hiðxÞ exp �1�
Xm

j¼0

kjhjðxÞ
 !

dx ¼ li; i ¼ 0; . . . ;m ð6Þ

For a larger number of moments ðm > 2Þ and/or arbitrary basis functions ðhjðxÞ; j ¼ 0; . . . ;mÞ, the integrals in (6) are analyt-
ically intractable, and we use here adaptive Romberg integration

XN

j¼1

aijwj exp �1�
Xm

k¼0

akjkk

 !
� li ¼ 0; i ¼ 0; :::;m ð7Þ

where N is a number of integration points, xj and wj are the x-coordinates and weighting coefficients of integration points,
respectively, and aij are the values of hiðxjÞ. System (7) shows that the original constrained optimization problem (2) can be
transformed into the unconstrained convex optimization problem, which finds a minimum of the dual variable:

D kð Þ ¼
XN

j¼1

wj exp �1�
Xm

i¼0

aijki

 !
�
Xm

i¼0

liki ð8Þ

It can be shown that a minimum of dual variable DðkÞ yields optimal solution k�j , which is also the solution of the original
problem (2), according to the Kuhn–Tucker theorem and solution (5) for a wide range of validity [5]. Note that a minimiza-
tion of DðkÞ, i.e. their derivatives over all Lagrangian multipliers are zero, yields system (7). If basis functions hiðxÞ are mono-
mials xi, then aij ¼ xi

j, along with the original (2) and dual problem (8), are transformed into the Classic Moment Problem
(CMP) where the zeroth normalized condition is given as

R xmax

xmin
f ðxÞdx ¼ 1. The MaxEnt pdf now has the following form

f ðxÞ ¼ exp �1� k0 �
Xm

j¼1

kjxj

 !
ð9Þ

2.2. Classic MaxEnt algorithm

CMP and the corresponding nonlinear system (7) can be solved by a number of classic optimization techniques, such as
generalized or improved iterative scaling, gradient descent, the standard or modified Newton method and the BFGS proce-
dure [2,3,5]. In this paper, we use improved iterative scaling, an iterative procedure that solves only one moment equation
(in system 7) in each nonlinear step and finds a correction of the corresponding Lagrangian multiplier [6]. The procedure
consists of four basic steps, as follows.

Algorithm 1

Step 1: Choose the initial vector k0 (usually the null vector) and sufficiently small threshold g1 > 0, set the iteration coun-
ter k ¼ 0 and calculate the initial value of pdf (9) for k0.

Step 2: Set the index of the current equation as i ¼ ðkmodmÞ and find a correction of kk using the classic Newton method

/k
i kk
� �

¼
XN

j¼1

aijf k xj
� �

exp aijk
k

� �
� li ¼ 0 ð10Þ

Step 3: Add the calculated correction to the current solution vector

kkþ1
l ¼ kk

l þ dlik
k; l ¼ 0; . . . ;m ð11Þ
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Step 4: Calculate the MaxEnt pdf (9) for vector kkþ1. If all moment equations in (7) for a new vector kkþ1 have values less
than g1, then stop the procedure and set the current solution as a final solution (9). Otherwise, set k ¼ kþ 1 and go
to step 2.

This iterative procedure is very attractive and computationally efficient because there is no matrix inversion. The proce-
dure is very stable and not sensitive to the initial vector as in the Newton method, but it usually requires more iteration steps
and exhibits slower convergence. However, all the aforementioned iterative procedures suffer from these numerical difficul-
ties and lack of convergence for CMP problems with m > 5—10 due to unbalanced nonlinearities of the Lagrangian multipli-
ers. These difficulties are closely related to the different behavior of monomials xi in the exponent of pdf (9) [2]. Therefore, for
a larger number of moments, the Jacobian and/or Hessian matrices become ill-conditioned with significant influence from
arithmetic precision, even in the case where extended precision is used [16,23]. These numerical difficulties can be signif-
icantly reduced by using the orthogonal polynomials instead of monomials xi. In this way, Lagrangian multipliers provide
similar sensitivities to the solution changes in the iterative nonlinear procedure, implying that the stable algorithm is well
suited for a larger number of moments. It is conventional to use Chebyshev [6] or Lagrange polynomials [23] for 1-D moment
problems. Abramov [2,3] has used generalized orthogonal polynomials for the multi-dimensional problems, maintaining the
orthogonality by the modified Gramm–Schmidt procedure in each iteration step.

Without loss of generality, we can use shifted Chebyshev polynomials where interval [�1,1] is transformed to [0,1] for
solving the CMP and corresponding Lagrangian multipliers [6]. In that case,aij ¼ TiðxjÞ, and there is a direct relation between
Chebyshev polynomials and monomials

TiðxÞ ¼
Xm

j¼0

aijxj; i ¼ 0; . . . ;m ð12Þ

where aij is the connection matrix. The reverse relation is given as

xi ¼
Xm

j¼0

bijTjðxÞ; i ¼ 0; . . . ;m ð13Þ

where bij ¼ a�1
ij . Due to the linear character of relation (13), it is possible to relate moments in the same way

li ¼
Xm

j¼0

bijtj; i ¼ 0; . . . ;m ð14Þ

Relations (13) and (14) imply that satisfaction of Chebyshev moments also satisfies classic power moments. CMP is now re-
duced to the maximum entropy problem over the Chebyshev polynomials

Z 1

0
TjðxÞ exp �1�

Xm

l¼0

clTlðxÞ
 !

dx ¼ tj; j ¼ 0; . . . ;m ð15Þ

Finally, the optimal MaxEnt pdf that satisfies both power and Chebyshev moments (15) has the following form

f ðxÞ ¼ exp �1�
Xm

j¼0

cjTjðxÞ
 !

ð16Þ

Note that these relations are valid for all types of orthogonal polynomials, as well as for all other basis functions that satisfy
relations (12) and (13).

2.3. Fup MaxEnt algorithm

Although the orthogonal polynomials significantly increase the efficiency of all aforementioned iterative procedures for
the CMP (7), many numerical difficulties are still present. Moreover, the drawback remains of a strong connection between
polynomials and their influence on the moment changes. For example, in light of Algorithm 1, correction kk belongs to the
current moment equation in system (7), but in each iteration step, it may significantly changes all the other moment equa-
tions, which can substantially decrease computational efficiency, especially for a larger number of moments and multi-
dimensional problems [2].

The original idea behind the proposed algorithm is to use finite and localized basis functions hiðxÞ with compact support
so that correction kk in each iteration step changes only a few moment equations in system (7), namely, the ones that belong
to the neighboring basis functions. This concept can significantly decrease the number of iteration steps in Algorithm 1. Clas-
sic candidates are B-splines and wavelets, which exactly describe polynomials. In this paper, we use Fup basis functions,
which belong to the atomic class of basis functions [8]. Fup basis functions also exactly describe polynomials if the Fup order
is equal to or higher than the polynomial order, as shown in Appendix A [8]. However, this means that Fup basis functions, as
well as other basis functions with compact support, require a higher order for a larger number of moments and have loose
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localized properties in this particular case (the compact support is greater than the considered interval from 0 to 1). More-
over, the iterative procedure shows even poorer performance than the algorithms with classic orthogonal polynomials. In
order to use the full capabilities of Fup basis functions, it is better to use low Fup order (we use here n ¼ 2Þ, but the exact
relation (13) still does not hold for the description of arbitrary polynomials of the mth order m > 2 or monomials with m > 2

xi ¼
Xm

j¼0

dijFup2jðxÞ þ eiðxÞ; i ¼ 0; . . . ;m ð17Þ

where eiðxÞ are residual functions that describe the difference between monomials of the mth order and their Fup2 approx-
imation. Appendix A shows that a linear combination of displaced Fup2 basis functions describes exactly the monomials up
to m ¼ 2, but all higher-order monomials are described approximately. Eq. (17) presents the connection matrix dij, which
depends on the Fup2 approximation and on the location and number of basis functions and, consequently, moments. For in-
stance, the collocation procedure [10] calculates exactly monomials in the collocation points, and residual functions fluctu-
ate around the zero, with significantly smaller values than Fup basis functions (Appendix A and Theorem 1). For increasing
numbers of moments and basis functions, the residual functions converge to zero. In the limit, for m!1, Eq. (17) converges
to the exact relation (13). Using Eq. (17), we can relate classic power moments and Fup2 moments

li � Dlðl�t1Þ
i ¼

Xm

j¼0

dijlFup2ðlÞ
j ; i ¼ 0; . . . ;m ð18Þ

where li;Dlðl�1Þ
i and lFup2ðlÞ

j are moments of monomials, residual and Fup2 basis functions, respectively. Since moments of
residual and Fup2 basis functions are unknown, the algorithm must be defined in an iterative way, where l is a counter of
iteration steps. An algorithm starts with an initial pdf guess ðl ¼ 0Þ. In each iteration step, the residual moments are first cal-
culated from the previous iteration or initial conditions, then Fup2 moments are obtained from the system (18), and finally
the MaxEnt nonlinear system is solved with respect to only Fup2 momentsZ 1

0
Fup2iðxÞ exp �1�

Xm

j¼0

cjFup2jðxÞ
 !

dx ¼ lFup2
i ; i ¼ 0; . . . ;m ð19Þ

The procedure is repeated until convergence is achieved. The Fup MaxEnt algorithm is reduced to CMP over the moments of
Fup2 basis functions. Finally, the optimal pdf has the form

f �ðxÞ ¼ exp �1�
Xm

j¼0

cjFup2jðxÞ
 !

ð20Þ

where classic power moments are satisfied exactly according to the relations (17) and (18)

li ¼
Z 1

0
xif �ðxÞdx ¼

Xm

j¼0

dij

Z 1

0
Fup2jðxÞf �ðxÞdxþ

Z 1

0
eiðxÞf �ðxÞdx; i ¼ 0; . . . ;m ð21Þ

This algorithm solves higher-order MaxEnt moment problem with only low order Fup2 basis functions which is opposite to
all existing MaxEnt algorithms. Only consequence is an iterative algorithm defined by Eq. (18), while classic MaxEnt algo-
rithms directly solve CMP due to exact relation (13) between monomials and orthogonal polynomials. However, iterative
scheme (18) converges very quickly due to small residual moments (see Appendix A) and their weak influence on changes
of Fup2 moments. Therefore, an initial pdf guess as Gaussian normal distribution leads to fast convergence and relatively
small number of outer iterations as will be shown in the sequel.

Algorithm 1 now has the better convergence properties because the correction kk will change only six moments of the
closest Fup2 basis functions. This implies that for a larger number of moments, the compact support is smaller, while the
connections between moment equations in system (7) are weaker. This results in a considerably smaller number of itera-
tions and more efficient the nonlinear Algorithm 1. Fup moments have a direct mathematical interpretation because they
present the average value of the pdf over the compact support. In the limit, the Fup basis function converges to the Dirac
function, while the compact support reduces to the point and corresponding moment describes the exact value of the pdf
at that point. This algorithm is called the Fup MaxEnt Algorithm (FMEA), and it is described by the following iterative
procedure:

Algorithm 2

Step 1: For a given set of mþ 1 classic power moments on general interval ½xmin; xmax�, calculate their values on unit inter-
val [0,1] by applying the simple linear transformation.

Step 2: Set mþ 1 uniformly displaced Fup2 basis functions (Appendix A) on unit interval [0,1] and calculate connection
matrix dij and residual functions (17). Choose the initial pdf ðl ¼ 0Þ.

Step 3: Calculate residual moments in the lth iteration step.
Step 4: l ¼ lþ 1; Solve the system (18) and find Fup2 moments.

H. Gotovac, B. Gotovac / Journal of Computational Physics 228 (2009) 9079–9091 9083
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Step 5: Solve the MaxEnt problem with Fup2 moments (19) using Algorithm 1 and aij ¼ Fup2jðx� x0
i Þ, where x0

i are vertices
of the corresponding basis functions. Also, obtain the optimal pdf (20).

Step 6: Calculate the difference between power moments (Eq. 21) in the l and l� 1 iteration step. If this difference is below
some prescribed threshold g2, stop the procedure. Otherwise, go to step 3.

Finally, note that Fup optimal pdf in (20) is inexact although exactly satisfies prescribed set of moments because only
optimal pdf in (9) yields upper entropy bound according to Eqs. (1)–(8) and Section 2.1. In the sequel, we will discuss what
consequences imply inexact entropy bound in practical pdf examples.

3. Pdf examples

In this section, we will present an application of the Fup MaxEnt Algorithm (FMEA) on two illustrative continuous pdf
examples: the unimodal beta distribution and a bi-modal pdf, and two illustrative discontinuous pdf examples: the step dis-
tribution and a double Dirac pdf. We concentrate mainly on the accuracy of the algorithm in terms of reproduction of the
exact pdf and their original power moments. FMEA uses Fup2 basis functions, which means that at least 4 basis functions
are needed for Algorithm 2 ðm ¼ 3Þ. It is well known that the Gaussian distribution is indeed also the MaxEnt pdf for
m ¼ 2. Therefore, the choice of the Fup2 basis functions seems reasonable, as this allows the maximum use of localized basis
functions, while retaining good approximation properties. Threshold g1 in Algorithm 1 is chosen up to the limit of the ma-
chine’s double precision ðaround 10�15Þ. Threshold g2 in Algorithm 2 then depends on g1 and iterative algorithm (18). We
will show accuracy of the algorithm if g1 ¼ 10�15. The initial pdf is the Gaussian pdf. The most efficient strategy is to first
solve the MaxEnt pdf with m ¼ 3. In that case, the Gaussian pdf is a very good starting vector, implying fewer inner iterations
in Algorithm 1 and outer iterations in Algorithm 2. Then, we gradually increase the number of moments, so that the previous
pdf solution is the initial pdf for the next simulation. In this paper, we use a dyadic grid (m ¼ 2j þ 2 where j ¼ 0;1; . . . is a
resolution level), which implies that the number of moments increases from m ¼ 3 to m ¼ 4;6;10;18, and so on, until the
Fup optimal pdf converges to the exact pdf.

In the first example, we consider the beta distribution

f ðxÞ ¼ Cðaþ bÞ
CðaÞCðbÞ x

a�1ð1� xÞb�1 ð22Þ

which is defined on interval [0,1] and depends on two parameters a and b, while C is the gamma function. In this example,
a ¼ 3 and b ¼ 5, defining a slightly skewed pdf that requires more than two moments for its accurate description. Fig. 1
shows that three moments overestimate the pdf peak and produce a larger error at the left boundary. Four moments reduce
the differences between the exact and optimal pdf, especially for the right tail. Six moments quite accurately describe all pdf
features, while 10 moments completely reproduce the exact pdf.

Table 1 presents an accuracy and convergence analysis for the Fup MaxEnt approximation of the beta distribution for six
moments. We calculate the absolute moment error between the given and calculated power moments over all moments for

x

f(
x)

0 0.25 0.5 0.75 1
0

0.5

1

1.5

2

2.5

3

m = 3
m = 4
m = 6
m = 10
Exact pdf

Fig. 1. MaxEnt approximation of the beta pdf using Fup2 moments up to m ¼ 10.
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g1 ¼ 10�15. Table 1 shows how the actual moment error decreases with the number of outer iterations in Algorithm 2. For
l ¼ 5—10, the moment error is already small and acceptable for many practical and engineering purposes. After 50 outer iter-
ations, the moment actual error, 2:5� 10�12, reaches the asymptotic limit that is influenced by Fup threshold g1 ¼ 10�15. In
each outer iteration, there are ð20—50Þ �m inner iterations in Algorithm 1 in order to produce the double precision accuracy
of Fup2 calculated moments in (18). Algorithm 1 is characterized by a stable nonlinear solver due to localized properties of
Fup2 basis functions and converges regardless the initial vector which is the most important property for an ill-posed MaxEnt
problem. After only ð2—5Þ �m inner iterations, Algorithm 1 obtained the single precision accuracy due to weak connections
between basis functions which produces a nonstiff and well-balanced nonlinear system. This relatively large number of total
iterations can be significantly reduced if thresholds g1 and g2 are chosen to be large enough that the obtained moment errors
satisfy our current requirements.

In the second example, we define a more complex bi-modal pdf as a sum of two Gaussian pdfs, normalizing its total area
to unity in a similar way as in [2]. For instance, a bi-modal pdf can be a real example of the concentration pdf in turbulent
diffusion or in porous media as a consequence of the pore-scale dispersion [4]. Fig. 2 shows the approximation of the bi-mod-
al pdf by m ¼ 3;4;6;10 and 18. The MaxEnt pdf with three moments remains unimodal, while bi-modality is obtained for all
pdfs with more than three moments. This means that four moments are usually needed to describe the bi-modal nature of
the pdf. Higher-order moments ðm > 4Þ have significant influence on the accuracy, where the MaxEnt pdf with 10 moments
describes very accurately all features of the pdf, while the MaxEnt pdf with m ¼ 18 completely reproduces the exact pdf.

Table 2 presents the accuracy of the FMEA in terms of maximum absolute error defined for the bi-modal pdf,
m ¼ 10 and g1 ¼ 10�15. As in the first example, 5—10 outer iterations ensure that the moment error is quite small for many
practical and engineering purposes. In this case, after only 20 outer iterations, the actual moment error is comparable with
the usual threshold in Newton algorithms.In each outer iteration, there are ð20—50Þ �m inner iterations in Algorithm 1 for
the double precision accuracy. Furthermore, increasing the number of moments yields a pdf that converges to the exact one.
The number of iterations is large compared to the Newton method, but this algorithm uses a stable iterative procedure with
low order basis functions, which can solve a larger number of moments without sensitivity to the initial vector or classic
numerical difficulties such as lack of convergence, arithmetic precision or ill-conditioned related matrices.

Fig. 3 presents the approximation of the step discontinuous pdf by m ¼ 6;10 and 18. This example is quite difficult due to
discontinuity at x ¼ 0:5. Increasing number of moments clearly presents a better description of the exact step pdf, particu-
larly its boundaries and region around the front. Localized properties of Fup2 basis functions enable the efficient resolving of
all discontinuities and nondifferentiable regions relating only few particular Lagrangian multipliers to these places. Contrary,
the classic MaxEnt algorithms use orthogonal polynomials and related Lagrangian multipliers defined on the whole domain

Table 1
Absolute moment error for beta pdf and m ¼ 6 with respect to number of outer iteration steps and g1 ¼ 10�15.

Outer iteration step (l) 5 10 20 50 100 200

Absolute moment error 1:4� 10�4 9:4� 10�7 1:5� 10�11 2:7� 10�12 2:5� 10�12 2:5� 10�12

x

f(
x)

0 0.25 0.5 0.75 1

Exact pdf
m=18

m=3
m=4
m=6
m=10

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

2.75

3

Fig. 2. MaxEnt approximation of the bi-modal pdf using Fup2 moments up to m ¼ 18.
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which cannot always efficiently resolve pdf’s with spatially different features. Despite pdf discontinuities, Table 3 presents a
quite accurate calculation of power moments and consequently small corresponding absolute moment error.

Discussion for MaxEnt approximation of more demanding discontinuous pdf examples has been given by Bandyopadhyay
et al. [6]. Therefore, we choose one their example (Fig. 1 in [6]), the double Dirac pdf with pulses at x ¼ 0:25 and 0.75 in order
to show robustness and accuracy of our algorithm. Fig. 4 presents that Fup MaxEnt approximation for m ¼ 18 correctly de-
scribes Dirac pulses without any numerical oscillations at boundaries or between them. Moreover, pulses are symmetric,
while peak value is around 175. By comparison in [6], pulses are slightly nonsymmetrical and peak value is around 47 using
the 25 shifted Chebyshev moments. Higher peak value implies more accurate MaxEnt approximation of double Dirac pdf.
Furthermore, absolute moment error is around 10�10 which means that algorithm keeps accuracy, even for very demanding
and discontinuous pdf examples. All four examples present ability of FMEA to accurately describe different pdf’s and all its
features keeping the stability of algorithm for a larger number of moments.

Finally, we need to check consequences of an inexact nature of our algorithm with respect to the upper entropy bound
comparing entropy values for classic MaxEnt Algorithm and pdf in (9) or (16) and for FMEA and pdf in (20). In the first exam-
ple (beta pdf), we firstly check the entropy values for basic algorithm with monomials and pdf (9) and algorithm with Cheby-
shev polynomials and pdf (16). For instance, both algorithms with m ¼ 4 yield H ¼ �0:428134. Therefore, for all other pdf
examples and higher number of moments we will use classic MaxEnt algorithm based on Chebyshev polynomials [6] for
comparative purposes. On the other side, our algorithm yields somewhat smaller entropy value H ¼ �0:428421. Accordingly,
for the bi-modal pdf and m ¼ 10, classic algorithm yields H ¼ �0:423428, since our algorithm yields H ¼ �0:423583. Also,
for the step pdf and m ¼ 10, classic algorithm yields H ¼ �0:123142, since our algorithm yields H ¼ �0:123424. The double
Dirac pdf is not suitable for comparison due to larger differences between our pdf solution and one in [6]. First three pdf
examples demonstrate that our algorithm is inexact because it yields smaller entropy value than classic MaxEnt algorithms,
as in [6]. However, in all these particular pdf examples, entropy differences are around 10�4 which yield small entropy value

Table 2
Absolute moment error for bi-modal pdf and m ¼ 10 with respect to the number of outer iteration steps and g1 = 10�15.

Outer iteration step (l) 5 10 20 50 100 200

Absolute moment error 4:8� 10�6 7:7� 10�9 2:1� 10�12 4:3� 10�13 4:2� 10�13 4:2� 10�13

0.5

f(
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Fig. 3. MaxEnt approximation of the step pdf using Fup2 moments up to m ¼ 18.

Table 3
Absolute moment error for step pdf and m ¼ 10 with respect to the number of outer iteration steps and g1 ¼ 10�15.

Outer iteration step (l) 5 10 20 50 100 200

Absolute moment error 3:5� 10�6 4:7� 10�8 1:7� 10�10 1:5� 10�11 1:3� 10�11 1:3� 10�11

9086 H. Gotovac, B. Gotovac / Journal of Computational Physics 228 (2009) 9079–9091



Author's personal copy

error implying ‘‘almost” obtained upper entropy bound and similar pdf’s in (9), (16) and (20), with differences irrelevant for
all practical purposes.

4. Conclusions

The Classic Moment Problem (CMP) causes typical conventional numerical methods to fail for higher-order moments
ðm > 5—10Þ due to different sensitivities of Lagrangian multipliers and unbalanced nonlinearities. Classic MaxEnt algorithms
overcome these difficulties by using orthogonal polynomials, which enable roughly the same sensitivity for all Lagrangian
multipliers. In this paper, we present the Fup MaxEnt Algorithm (FMEA). This algorithm is based on low order Fup2 basis
functions with compact support, which exactly describe polynomials up to the second order but approximately expressed
other higher-order polynomials. Therefore, the MaxEnt nonlinear algorithm possesses more balanced nonlinearities due
to localized Fup2 basis functions with compact support and enables a robust and efficient numerical procedure well suited
for a larger number of moments. As a consequence, the algorithm exactly satisfies power moments over the Fup optimal
MaxEnt pdf using the iterative scheme (Eq. (18)) where algebraic power moments are calculated as a sum of Fup2 and resid-
ual moments. However, due to the excellent approximation properties of Fup2 basis functions for description of polynomials,
the residual moments are quite small implying a fast convergence of presented iterative stable algorithm. Robustness and
accuracy of our algorithm is demonstrated on two continuous pdf examples: beta and bi-modal pdf, and two discontinuous
pdf examples: step and double Dirac pdf. Particularly, presented algorithm does not satisfy upper entropy bound in compar-
ison with classic MaxEnt algorithms [6]. However, presented pdf examples clearly demonstrated that Fup2 optimal pdf in
(20) ‘‘almost” yields upper entropy bound with value differences irrelevant for practical engineering purposes.

This new type of MaxEnt algorithm can be further developed for multi-dimensional problems [2,3] and an extreme num-
ber of moments (m > 20), as needed in solid-state physics [6,23]. Finally, the potential usefulness of Fup basis functions and
other functions with compact support should be explored for new algorithms in stochastic modeling, such as Bayesian Max-
imum Entropy [7].

Appendix A. Fup basis functions

A.1. Calculation of the Fup2 basis functions

Atomic basis functions are compactly supported and infinitely differentiable functions [18,19]. Atomic functions yð:Þ are
defined as solutions of differential-functional equations of the following type:

LDyðxÞ ¼ kD

XM

k¼1

Ckyðax� bkÞ ðA:1Þ

where LD is a linear differential operator with constant coefficients, kD is a nonzero scalar, Ck are coefficients of the linear
combination, a > 1 is a parameter defining the length of the compact support and bk are coefficients that determine the
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Fig. 4. MaxEnt approximation of the double Dirac pdf (pulses at x ¼ 0:25 and 0.75) using Fup2 moments up to m ¼ 18.
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displacements of the basis functions. Rvachev and Rvachev [18], in their pioneering work, called these basis functions
‘‘atomic” because they span vector spaces of all three fundamental functions in mathematics: algebraic, exponential and
trigonometric polynomials. Also, atomic functions can be divided into an infinite number of small pieces that maintain all
their properties, implying a so-called ‘‘atomic structure.”

The simplest function, which is the most studied among atomic basis functions, is the up(x) function. Function up(x) is a
smooth function with compact support [�1,1], which is obtained as a solution of a differential-functional equation:

up0ðxÞ ¼ 2upð2xþ 1Þ � 2upð2x� 1Þ ðA:2Þ

with the normalized condition
R1
�1 upðxÞdx ¼

R 1
�1 upðxÞdx ¼ 1. Function up(x) can be expressed as an inverse Fourier

transform

upðxÞ ¼ 1
2p

Z 1

�1
eitx
Y1
j¼1

sinðt2�jÞ
t2�j

 !
dt ðA:3Þ

Since Eq. (A.3) represents an exact but mathematically intractable expression, Rvachev [19] and Gotovac and Kozulic [8] pro-
vided tractable means for calculating the function up(x)

upðxÞ ¼ 1�
X1
k¼1

ð�1Þ1þp1þ���þpk pk

Xk

j¼0

Cjkðx� 0;p1 . . . pkÞ
j ðA:4Þ

where coefficients Cjk are rational numbers determined according to the following expression

Cjk ¼
1
j!

2jðjþ1Þ=2upð�1þ 2�ðk�jÞÞ; j ¼ 0;1; . . . ; k; k ¼ 1;2; . . . ;1 ðA:5Þ

Calculation of the upð�1þ 2�rÞ; r 2 0;1½ � in binary-rational points (Eq. (A.5)), as well as all details regarding the calcu-
lation of the function up(x) values, is provided in [8]. The argument ðx� 0; p1 . . . pkÞ in Eq. (A.4) is the difference between the
real value of coordinate x and its binary form with k bits, where p1 . . . pk are digits, 0 or 1, of the binary representation of the x
coordinate’s value. Therefore, the accuracy of the x coordinate computation, and, thus, the accuracy of the up(x) function at
an arbitrary point, depends on the machine’s accuracy.

From Eq. (A.2), it can be seen that the derivatives of the up(x) function can be calculated simply from the values of the
function itself. The general expression for the derivative of the mth degree is

upðmÞðxÞ ¼ 2C2
mþ1
X2m

k¼1

dkupð2mxþ 2m þ 1� 2kÞ; m 2 N ðA:6Þ

where C2
mþ1 ¼ mðmþ 1Þ=2 is the binomial coefficient and dk are the coefficients with �1 value according to the recursive for-

mulas d2k�1 ¼ dk; d2k ¼ �dk; k 2 N; d1 ¼ 1. It can be observed that the derivatives consist of the up(x) function compressed
to an interval of 2�mþ1 length with ordinates extended with the 2C2

mþ1 factor.
The FupnðxÞ function satisfies the following differential-functional equation

Fupn0 ðxÞ ¼ 2
Xnþ2

k¼0

Ck
nþ1 � Ck�1

nþ1

� �
FupnðxÞ 2x� 2�n�1kþ 2�n�2 nþ 2ð Þ

� �
ðA:7Þ

where n is the Fup order. For n ¼ 0; Fup0ðxÞ ¼ upðxÞ, since FupnðxÞ and its derivatives can be calculated using a linear com-
bination of displaced up(x) functions instead of using their Fourier transforms

FupnðxÞ ¼
X1
k¼0

C�kðnÞup x� 1� k
2n þ

nþ 2
2nþ1

� �
ðA:8Þ

where C�0ðnÞ ¼ 2C2
nþ1 ¼ 2nðnþ1Þ=2 and C�kðnÞ ¼ C�0ðnÞ � C

0
kðnÞ, where a recursive formula is used for calculating auxiliary coeffi-

cients C0kðnÞ

C00ðnÞ ¼ 1; when k ¼ 0; i:e:when k > 0

C0kðnÞ ¼ ð�1ÞkCk
nþ1 �

Xmin k;2nþ1�1f g

j¼1

C 0k�jðnÞ � djþ1 ðA:9Þ

The FupnðxÞ is defined on the compact support �ðnþ 2Þ2�n�1; ðnþ 2Þ2�n�1
h i

. Fig. A.1 shows the Fup2ðxÞ function and its first

two derivatives, which are used in this paper. In order to define Fup2ðxÞ basis functions on interval [0,1] in Algorithms 1 and
2, the location of each basis function is actually determined by the location of the vertex and defined by bk ¼ ðk� 1ÞDx where
k ¼ 0; . . . ;m is the corresponding moment index, while Dx ¼ 1=ðm� 2Þ is the characteristic interval or distance between ver-
tices of basis functions (Fig. A.2). The calculation of basis function values at a general characteristic interval Dx should be
done in the following form with respect to a basic characteristic interval 2�n
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Fup2kðxÞ ¼
1

4Dxð Þ Fup2
x� bk

4Dx

� �
ðA:10Þ

A.2. Approximation properties of the Fup2 basis functions

Index n also denotes the highest degree of the polynomial that can be expressed exactly in the form of a linear combina-
tion of nþ 2 FupnðxÞ basis functions, uniformly displaced by a characteristic interval Dx. In this paper, we use low order
Fup2ðxÞ basis functions, which exactly express polynomials (or monomials in this specific case) up to the second order on
interval [0,1] by a collocation procedure presented in [8]

x0 ¼ 1
4

Xm

k¼0

Fup2
x

4Dx
� k�

4

� �
ðA:11Þ

x ¼ Dx
4

Xm

k¼0

k�Fup2
x

4Dx
� k�

4

� �
ðA:12Þ

x2 ¼ Dx2

4

Xm

k¼0

k�
2
� 5

18

� �
Fup2

x
4Dx
� k�

4

� �
ðA:13Þ

where k� ¼ k� 1. Other higher-order monomials are expressed approximately. Differences between monomials and their
Fup2ðxÞ approximation are defined by residual functions. Fig. A.2 shows a distribution of uniformly displaced Fup2ðxÞ basis
functions for the approximation of monomials in [0,1] and m ¼ 10. Note that basis functions defined for k ¼ 0 and k ¼ m
are external basis functions, while other functions are internal basis functions. Their influence is only considered within
the domain [0,1]. Higher-order monomials up to the 8-order can be presented by a collocation procedure [8] as follows

x3 ¼ Dx3

4

Xm

k¼0

k�3 � 5
6

k�
� �

Fup2
x

4Dx
� k�

4

� �
þ e3ðxÞ ðA:14Þ

x4 ¼ Dx4

4

Xm

k¼0

k�
4
� 5

3
k�

2
þ 5

27

� �
Fup2

x
4Dx
� k�

4

� �
þ e4ðxÞ ðA:15Þ

x5 ¼ Dx5

4

Xm

k¼0

k�
5
� 25

9
k�

3
þ 25

27
k�

� �
Fup2

x
4Dx
� k�

4

� �
þ e5ðxÞ ðA:16Þ

x6 ¼ Dx6

4

Xm

k¼0

k�
6
� 25

6
k�

4
þ 25

9
k�

2
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324

� �
Fup2

x
4Dx
� k�

4

� �
þ e6ðxÞ ðA:17Þ
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4

Xm

k¼0

k�
7
� 35

6
k�

5
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27
k�

3
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324
k�

� �
Fup2

x
4Dx
� k�

4

� �
þ e7ðxÞ ðA:18Þ

x8 ¼ Dx8

4

Xm
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k�
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9
k�
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27
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k�

2
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� �
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x
4Dx
� k�

4

� �
þ e8ðxÞ ðA:19Þ

Fig. 2 presents the residual functions e3ðxÞ � e8ðxÞ for m ¼ 10. Their values are zero in the collocation points which are lo-
cated in the vertices of basis functions [8,10]. Between collocation points, the nonzero residual functions are a considerably
smaller than the monomials. Convergence of the iterative scheme (18) in presented Algorithm 2 mainly depends on the
approximation properties of the basis functions. Smaller residual functions imply the faster convergence in Algorithm 2.
Choice of the Fup2ðxÞ basis functions seems reasonable due to their low order implying a stable algorithm, but still retains
good approximation properties because they span the vector space which is closely related to the vector space of monomials.
Accuracy of the collocation algorithm on the uniform grid has been shown in [13] by the following theorem:

Theorem 1. If f ðxÞ 2 Cn, then exist Fup coefficients ðdijÞ in Eq. (17) such that

eiðxÞk k 6 KnDxn�1xnðf ; DxÞ; i ¼ 0; . . . ;m ðA:20Þ

where Kn is a real number independent of Dx, but depends on n-Fup order, while xnðf ; DxÞ is the modulus of continuity

xnðf ; DxÞ ¼ max
x0�x�0j j6Dx

@n

@xn
f x0ð Þ � f x�0

� �� �����
���� ðA:21Þ

It means that generally Fup approximation depends on three factors: n� Fup order;Dx and derivative differences of the n-or-
der inside the Dx. In the limit when m!1, then Dx! 0 and consequently the derivative differences converge to zero, i.e.
xnðf ; DxÞ ! 0. It implies that for m!1, the residual functions are zero and Eq. (17) becomes the exact relation (13) be-
tween Fup2(x) basis functions and monomials.
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