
Empirical Analysis of Two Different
Metaheuristics for Real-World

Vehicle Routing Problems

Tonc̆i Carić1, Juraj Fosin1, Ante Galić1, Hrvoje Gold1, and Andreas Reinholz2

1 Faculty of Transport and Traffic Sciences, University of Zagreb
Vukelićeva 4, HR-10000 Zagreb, Croatia

{Tonci.Caric,Juraj.Fosin,Ante.Galic,Hrvoje.Gold}@fpz.hr
2 University of Dortmund, D-44221 Dortmund, Germany

Andreas.Reinholz@gmx.de

Abstract. We present two hybrid Metaheuristics, a hybrid Iterated Lo-
cal Search and a hybrid Simulated Annealing, for solving real-world ex-
tensions of the Vehicle Routing Problem with Time Windows. Both hy-
brid Metaheuristics are based on the same neighborhood generating op-
erators and local search procedures. The initial solutions are obtained
by the Coefficient Weighted Distance Time Heuristics with automated
parameter tuning. The strategies are compared in an empirical study
on four real-world problems. A performance measure is used that also
considers multiple restarts of the algorithms.

Key words: Vehicle Routing Problems with Time Windows, Coefficient
Weighted Distance Time Heuristics, Iterated Local Search, Simulated
Annealing

1 Introduction

The Vehicle Routing Problem (VRP) is defined by the task of finding optimal
routes used by a group of vehicles when serving a group of customers. The
solution of the problem is a set of routes which all begin and end in the depot,
and which suffices the constraint that all the customers are served only once.
The objective is to minimize the overall transportation cost. Transportation cost
can be improved by reducing the total traveled distance and by reducing the
number of the needed vehicles. By adding only capacity constraints to the VRP
problem, it is transformed into the most common variation, the Capacitated
Vehicle Routing Problem (CVRP). By adding time constraints to the CVRP
in the sense that each customer must be served within a customer specific time
window, the VRP turns into the well known Vehicle Routing Problem with Time
Windows (VRPTW).

The VRPTW is an important NP hard combinatorial optimization problem
[1]. It has a wide applicability and has been the subject of extensive research
efforts. The solving of real-world VRPTW for delivering or collecting goods



needs distance and travel time information between customers that is based on
a road network. Therefore the Euclidean metric that is widely used in scientific
community for VRPTW (e.g. in the Solomon’s benchmarks problems [2]) has to
be substituted by real data from an Geographic Information System. Considering
the bidirectional nature of traffic flows on streets and road networks the access to
this data is organized as an asymmetric look-up matrix. Especially the existence
of one-way streets in the cities makes the usage of asymmetric matrices very
important for the optimization of routes in the urban area. Due to the time
constraints, an additional matrix containing forecasted travel times between each
pair of customers has to be created. The quality of forecasting can have a high
impact on the feasibility of solutions which are executed in the real-world.

For solving VRPTW problems, a large variety of algorithms has been pro-
posed. Older methods developed for the VRPTW are described in the survey [1]
and [3]. Most of the new methods tested on Solomon’s benchmarks are comprised
in [4], [5].

Methods that applied the two-phase approach of solving VRPTW are found
to be the most successful [6]. During the first phase the constructive heuristic
algorithm is used to generate a feasible initial solution. In the second phase
an iterative improvement heuristic can be applied to the initial solution. The
mechanism for escaping from local optimum is often implemented in the second
phase, too.

This paper describes the method of finding the strategy that needs less time
to produce a solution of desired quality. The success of strategies is determined
by the time needed to reach the quality threshold with some probability. Algo-
rithm implementations proposed in the paper could be improved step by step
by refining and adding more complex and powerful elements and procedures [7].

Reaching and escaping local optimum are important steps in the process of
finding the global optimum for the Iterated Local Search (ILS) and Simulated
Annealing (SA). Both strategies are developed in the same computational en-
vironment in order to have fair conditions for comparison. Both strategies use
the same way of reaching the local optimum which is local search procedure
with single λ(1, 0) operator for searching the neighborhood [8]. Escaping from
local optimum is done by perturbation procedure which is implemented as k-
step move in the solution neighborhood. The initial solution and the number of
iterations are the same as well. Iteration is defined as one cycle of algorithm’s
outer loop. The second step is significantly different for each strategy. In the
applied ILS the perturbated solution is brought to local optimum using the local
search procedure. If the new local optimum is better than the so far global best,
then that solution is the starting point for a new perturbation; otherwise, the
escaping step is discarded. On the contrary, Simulated Annealing never sets the
global best solution as the starting point for a new iteration. Also, the series
of perturbations are allowed if acceptance criteria are activated successively so
that there is a possibility of accepting an inferior solution.

The main contribution of this paper is an attempt to implement the known
strategies in the form of simple algorithms on real cases and to conduct the statis-



tical analysis for finding the best suitable strategy for each considered problem.
Also, the Coefficient Weighted Distance Time Heuristics (CWDTH) is a novel
construction algorithm which gives feasible initial solution for all the considered
problems. The automated parameter tuning implemented in CWDTH algorithm
enables better adaptation of algorithm to problems with different spatial and
temporal distribution of customers. The remainder of the paper is organized as
follows: In Section 2 the initial solution methodology and improvement strate-
gies are described. Computational experiments and results are given in Section
3. Finally, in Section 4 conclusions are drawn.

2 Solution Methodology

2.1 Initialization

In order to solve the VRPTW problems, a constructive heuristic method CWDTH
based on the assignment of weights to serving times and distances to the serving
places [9] has been developed, Fig. 1.

procedure CWDTH ()
for each k[0, 1] in steps of 0.01 do

s := NewSolution()
v := FirstVehicle()
while not Solved()

c := BestUnservedCustomer(k)
Move(v, c)
if CapacityExhausted(v) then

Move(v, depot)
v := NextVehicle()

endif
endwhile
remember s if best so far

next
return s

end

Fig. 1. Coefficient Weighted Distance Time Heuristics algorithm

Coefficient interval [0, 1] traversed in empirically determined steps of 0.01 is
used for the construction of 101 potentially different solutions. In each pass the
algorithm starts from an empty solution and selects the first vehicle. Until all
customers are served, the routes are constructed by moving the selected vehicle
from its current position to the next best not yet served customer.

Procedure BestUnservedCustomer() uses coefficient k to put different weight
to distance and time constraint while selecting the next customer to serve. The



criteria of customer selection are:

f(x) := MIN(k ·Distance(v, c) + (1-k) · LatestT ime(c)) .

Selection of customer c which minimizes function f(x) depends on the sum
of its geographic distance to vehicle v multiplied by coefficient k and its upper
bound of time window yield by function LatestTime multiplied by 1-k. After
the capacity of the selected vehicle is exhausted, it is returned to the depot
to complete the route and the next available vehicle is selected for routing.
The best of all the generated solutions is returned as initial solution for further
optimisation.

Such approach improves the capability of solving VRPTW problems that
have different time window configurations. In other words, the algorithm uses
the automated parameter tuning for better adaptation to the specific problem.

2.2 Local search

The local search does not solve the VRP problem from the start, but rather
requires in-advance prepared feasible solution obtained by some other method,
e. g. CWDTH. The local search generates the neighborhood of the given solution
and thus successfully reduces the number of potential solutions that will be
candidates for the next iteration.

The mechanism of generating local changes, which is the basis for the success
of the iterative local search, is performed by single relocation of the customer
from one route into another over the set of all route pairs [8]. On such a way
the neighborhood Ni(s) is generated where s stands for the seed solution. The
principle in which the λ(1, 0) operator modifies the routes is presented in Fig. 2.

Fig. 2. Local search operator λ(1, 0)

By iterative procedure this local search tries to improve the solution until it
is stuck in the local optimum. In each iteration, from the neighborhood of all the
feasible moves that respect time and capacity constraints, the best move that
produces the most significant saving is chosen to improve the current solution,
Fig. 3.



procedure LocalSearch(s)
terminate := false
do

find best candidate solution s’ in neighborhood Ni(s) produced by λ(1, 0)
if f (s’ ) <f (s) then

s := s’
else

terminate := true
endif

while not terminate
return s

end

Fig. 3. Local search procedure

2.3 Implementation of perturbation

Perturbation operator k-step move uses the same operator λ(1, 0) as local search
procedure but instead of the best move, random move is chosen to modify the
solution, Fig. 4.

procedure RandomLocalSearch(s)
choose random candidate solution s’ from neighborhood Ni(s) produced by λ(1, 0)
return s’

end

Fig. 4. Random local search procedure

This process is k times repeated during one perturbation. The described
perturbation gives a feasible solution regarding vehicle capacity and time con-
straints, Fig. 5.

The number k is generated by binomial distribution generator with success
probability p and number of trials n. Values for p and n are empirically obtained.
Parameter n is set to number of customers in VRPTW problems and parameter
p is set to value 1/n.

2.4 Iterated Local Search

The local search process is started by selecting an initial candidate solution
and then proceeded by iteratively moving from one candidate solution to the
neighboring candidate solution, where the decision on each search step is based
on limited amount of local information only. In Stochastic Local Search (SLS)
algorithms, these decisions as well as the search initialization can be randomized
[10].



procedure Perturbate(s)
n := CustomerCount()
p := 1 / n
k := BinomialDistribution(p, n)
for i :=1 to k

s := RandomLocalSearch(s)
next
return s

end

Fig. 5. Perturbation procedure

Generally, in the Iterated Local Search (ILS) two types of SLS steps are
used [11]. One step for reaching local optima as efficiently as possible and the
other for efficiently escaping local optima. Fig. 6 shows an algorithm outline for
ILS. From the initial candidate solution provided by CWDTH algorithm, local
search procedure is performed. Then, each iteration of ILS algorithm consists
of three major stages: first, a perturbation is applied to the current candidate
solution s. This yields a modified candidate solution s’ from which in the next
stage subsidiary local search procedure is performed until a local optima s” is
obtained. In the last stage the new global best solution is updated. The algorithm
stops after the termination criterion is met.

procedure ILS()
init := CWDTH ()
s := LocalSearch(init)
best := s
while not Terminate() do

s’ := Perturbate(s)
s” := LocalSearch(s’ )
if (f (s”) <f (best)) then

best := s”
s := best

endif
endwhile
return best

end

Fig. 6. Iterated Local Search Algorithm

2.5 Simulated Annealing

Simulated Annealing is a stochastic relaxation technique that finds its origin
in statistical mechanics [12], [13], [14]. The name of the method comes from



analogy with the annealing process in metallurgy. In the annealing process the
material that is heated at high temperature slowly cools and crystallizes under
the outside control. Since the heating process allows random movement of atoms,
sudden cooling prevents the atoms from achieving the total thermal equilibrium.
When the cooling process goes slowly, atoms have enough time to achieve the
state of minimal energy forming the ordered crystal grid.

In the optimisation problem the solving of the configuration of atoms is
referred to as the state of combinatorial problem, the role of energy is given
to cost function and temperature is replaced by control parameter. Simulated
Annealing uses stochastic approach to guide the search. The method allows the
search to continue in the direction of the neighbor even if the cost function gives
inferior results in that direction.

In Simulated Annealing algorithm, the starting solution obtained by CWDTH
heuristic and local search procedure is the same as for ILS algorithm and it is
set as the global best and as the current solution s as well, Fig. 7.

procedure SA()
T := InitialTemperature()
init := CWDTH ()
s := LocalSearch(init)
best := s
while not Terminate() do

s’ := Perturbate(s)
s” := LocalSearch(s’ )
if (f (s”) <f (s)) then

s := s”
else

j := rnd(0, 1)
k := -((f(s”)-f(best))/f(best))/T
if j <exp(k) then

s := s”
endif

endif
if (f (s) <f (best)) then

best := s
endif
T := CoolingSchedule()

endwhile
return best

end

Fig. 7. Simulated Annealing algorithm

At each iteration of SA the k-step perturbation produces solution s’. The
perturbated solution s’ is additionally improved by the local search producing
a new solution s”. If a new solution s” is better than the current solution s, it



is accepted as a new current solution. Otherwise, if random generated number
within interval [0, 1) is smaller than the current value of acceptance criteria,
i.e. exp(-((f(s”)-f(best))/f(best))/T ), even a worse solution is accepted as the
current one. The global best solution is updated if the newly generated solution
is better. Initial temperature and cooling schedule are empirically determined
once during construction of algorithm and remain the same for all real-world
problems and Solomon’s benchmark.

2.6 Benchmark results

Before application of algorithms on real-world problems, CWDTH initial solution
algorithm and ILS and SA strategies were tested on the standard Solomon’s
benchmark problems [2]. Comparison of obtained results with the competent
results from the literature is shown in Table 1. Testing of both strategies was
performed on the 30 independent runs and 4000 iterations as termination criteria.

Table 1. Comparison of results obtained by CWDTH, ILS and SA to the best recently
proposed results for Solomon’s VRPTW problems. CM stands for cumulative values,
CPU stands for the processor characteristics and execution time.

R1 R2 C1 C2 RC1 RC2 CM CPU

HG [15] 12.08 2.82 10.00 3.00 11.50 3.25 408 Pentium 400
1211.67 950.72 828.45 589.96 1395.93 1135.09 57422 3 runs; 1,6 min

BC [16] 12.08 2.73 10.00 3.00 11.50 3.25 407 Pentium 933
1209.19 963.62 828.38 589.86 11389.22 1143.70 57412 1 run; 512 min

PR [17] 11.92 2.73 10.00 3.00 11.50 3.25 405 Pentium 3000
1212.39 957.72 828.38 589.86 1387.12 1123.49 57332 10 runs; 2,4mi

M [18] 12.00 2.73 10.00 3.00 11.50 3.25 406 Pentium 800
1208.18 954.09 828.38 589.86 1387.12 1119.70 56812 1 run; 43,8 min

CWDTH 15.08 3.64 10.44 3.50 14.00 4.25 489 Centrino 2000 duo
1543.42 1436.86 1004.17 815.22 1797.21 1661.52 77556 100 runs; 0,1 min

ILS 13.67 3.55 10.00 3.25 13.25 4.25 459 Centrino 2000 duo
1257.79 1022.12 839.47 613.44 1443.52 1192.51 59888 30 runs 7 min

SA 13.08 3.27 10.11 3.25 12.63 3.75 441 Centrino 2000 duo
1282.22 1053.64 901.37 621.14 1444.15 1239.03 61523 30 runs; 7 min

It is interesting to observe numerical values of cumulative number of vehicles
in Table 1. This number include all variations of Solomon’s and roughly depict
robustness of algorithms.

Comparison of results obtained by very simple CWDTH constructive algo-
rithm and algorithms with advance techniques for optimization, shows that sim-
plicity degrades results approximatively for 20%. Additional local search with
one operator λ(1, 0) guided by ILS or SA basic strategies can improve solutions
for 10% more.



2.7 Performance measure

To compare different algorithms or different parameterized algorithms in an
empirical study we were using a performance measure [19] that is motivated
by the following question: How often do we have to run an algorithm with a
concrete parameter setting so that the resulting solutions are equal or better
than a requested quality threshold at a requested accuracy level (i.e. 90%). The
lowest number of runs that assures these requests is called multi-start factor
(MSF ). The MSF multiplied by the average runtime of the fixed parameterized
algorithm is the performance measure that has to be minimized.

The estimation of the MSF is based on the fact that the success probability
p of being better than the requested threshold quality in one run is Bernoulli
distributed. Therefore we can use a parameterized maximum likelihood estimator
to determine the success probability p for one run. This implies that the success
probability for k runs (in k runs there is at least one successful run) is exactly
1− (1− p)k and that the MSF for reaching a requested accuracy level(AL) can
be easily computed using a geometrical distribution with success probability p

MSF := min(k ∈ N with 1− (1− p)k ≥ AL) .

When using the intermediate results after each iteration of an algorithm, this
procedure can also be used to determine the best combination out of stopping
criteria (i.e. maximal number of iterations) and number of restarts for a requested
quality threshold and accuracy level.

In this paper we were using the statistical data out of 30 runs for each
algorithm and problem instance to estimate the success rates and the average
runtimes for all stopping criteria up to 4000 iterations.

The statistical analysis was applied to a series of combinations out of three
accuracy levels and two quality thresholds. For the accuracy levels we were using
the predefined values 90%, 95%, and 99%. The quality thresholds were chosen
out of the data by following procedure: The first quality threshold was defined
by the quality value that was reached by the worst out of the 25% best runs
after 4000 iterations. The second quality threshold was defined by the quality
value that was reached by the worst out of the 10% best runs.

3 Computational Results

3.1 Characteristics of data set

Comparison of ILS and SA strategies was performed on four real-world problems.
The objective function for all problems is constructed without penalty because
all the operators produce a feasible solution. To force reduction of vehicles in the
fleet the objective function is defined as a product of the number of vehicles and
the total traveled distance. Problems are classified as VRPTW and described in
Table 2.



Table 2. Problem characteristics

Problem Domain Customers Vehicles

VRP1 Drugs delivery 64 7

VRP2 Door-to-door delivery of goods 90 3

VRP3 Delivery of consumer goods 107 14

VRP4 Newspaper delivery 154 6

Fig. 8. Geographical distribution of customers for all problems



All problems have homogeneous fleet of vehicles except problem VRP3, and
are located in the same geographical area of the city of Zagreb, the capital of
Croatia, Fig. 8.

Only one problem, VRP3, spreads on the road networks outside the capital
and uses highways between cities. Problems VRP1, VRP3 and VRP4 are math-
ematically described by distance asymmetric look-up matrix and the related
forecasted travel time matrix. The calculation of travel time matrix is based on
the average velocity on a particular street or road segments. If such information
is not available then the calculation is based on the rank of the road segments.
The road ranking follows the national classification which divides them in six-
teen categories. Problem VRP2 has linear dependency between the matrix of
minimal distances and the matrix of travel times. In problems VRP2 and VRP4
several customers have narrow time windows and in problems VRP1 and VRP3
most of the customers are constrained by terms of working hours of the pickup
and delivery department, which means that time windows are relatively wide.

The substitution of the Euclidean metric by the matrix of minimal distances
between customers and the use of forecasted travel times for checking time win-
dow constraints raises many interesting questions. One of them is the possibility
of losing information which can be usable for additional optimisation when we
transform real transport networks of streets and roads from geographic informa-
tion system to asymmetric bidirectional graph with the mentioned asymmetric
lookup matrix of minimal distances. At first glance the loss of such information
seems to be a problem, but precise analysis leads us to the conclusion that all
information that is really important for optimisation of routes are still stored
in asymmetric minimal distance matrix. Another important issue is the travel
time forecasting model. Such model should be able to predict how much time is
needed for a vehicle to move from one geographic location to another in dynamic
traffic environment.

3.2 Comparative Analysis

Final results of experiments are shown in Table 3 and Table 4. The examination
pool of results was constructed by 240 runs of developed ILS and SA algorithms.
In order to determine which strategy needs less time, i.e. number of restarts
multiplied by the number of iterations, to produce a solution below the threshold
with some accuracy, each problem was solved 60 times (each algorithm 30 runs).
Table 3 shows optimal parameters of the winning strategy for all problems.

Parameters from Table 3 guarantee reaching of the threshold interval in min-
imal time with accuracy of 90%. For example, VRP1 needs to be restarted 17
times with halting criteria set to 1606 iterations per start for ILS algorithm. If
we increase the accuracy level the number of restarts increases. For each problem
the dependencies of multi-start factor and accuracy level are shown in Table 4.

The thresholds are defined in such a way that all the results obtained by
ILS and SA are sorted in a list where the value of objective function on the last
iteration is the number on which the sorting is done. Threshold T1 is calculated
so that 25% of runs in the sorted list are in the T1 threshold interval. Threshold



Table 3. Optimal tuning parameters for VRP problems. AL = Accuracy Level, T =
Threshold, ALG = Algorithm, MSF = Multi-start factor, IT = Optimal number of
iterations per each run

AL VRP1 VRP2 VRP3 VRP4
90% ALG MSF IT ALG MSF IT ALG MSF IT ALG MSF IT

T1 ILS 9 418 ILS 17 334 SA 9 720 SA 6 1210
T2 ILS 17 1606 ILS 17 3623 SA 34 720 SA 13 1955

Table 4. Multi-start factors for VRP problems. AL = Accuracy Level, T = Threshold,
IT = Optimal number of iterations per each run

VRP1 VRP2 VRP3 VRP4

AL T1 T2 T1 T2 T1 T2 T1 T2
IT=418 IT=1606 IT=334 IT=3623 IT=720 IT=720 IT=1210 IT=1955

90% 9 17 17 17 9 34 6 13

95% 12 21 21 21 12 44 8 17

99% 26 49 49 49 26 101 18 38

T2 has 10% of best runs. Runs that reached the threshold interval T2 for all
four problems are depicted in Fig. 9.

Statistical analysis of 30 runs gives us the result for VRP1 and VRP2 re-
vealing that ILS will reach the threshold in less time than SA algorithm. It is
reasonable to say that ILS algorithm achieved steeper descent of cost function
in fewer iterations for VRP1 and VRP2 compared to SA. On the other hand
SA algorithm performs better for two larger problems VRP3 and VRP4. The
overall best results for problems VRP3 and VRP4 are obtained by SA near the
end of the cooling schedule, so that the resulting graphs confirm the expected
convergence behavior of SA at very low temperature. The average running times
of algorithms for each problem are given in Table 5. All algorithms are coded in
programming language MARS [20].

Table 5. Average running time. The CPU time is given for 10 runs and 4000 iteration
per run

Problem VRP1 VRP2 VRP3 VRP4

Algorithm ILS SA ILS SA ILS SA ILS SA

CPU [min] 1:03 1:02 4:55 4:46 2:01 1:54 11:31 13:13



Fig. 9. Results that reached threshold interval T2, i.e. 10% best runs, for each VRP
problem. SA - Simulated Annealing, ILS - Iterated Local Search, sr - success rate, sb
- statistically best



4 Conclusions

Test-bed with four real-world VRPTW problems was set up for comparison of
two metaheuristic strategies. The Iterated Local Search and the Simulated An-
nealing strategies are evaluated in the computationally fair environment using
the same procedures such as perturbation and local search, and the same exper-
imental setting like the number of iterations and the initial solution.

A decision criterion for choosing the strategy is optimal time for reaching the
threshold interval with the targeted accuracy level. The time is represented as
the product of the number of runs and the time for reaching maximal iterations
per each run. The threshold interval is defined empirically by the number of best
runs. The accuracy level is the probability to reach the threshold in the defined
time. The results of the conducted experiments give optimal number of restarts
and the number of iterations for each run and also refer to the strategy which is
best to use to achieve the threshold in minimal time.

The developed algorithms and the applied statistical procedures show that
we can validly choose between the well known ILS and SA strategies for a set of
test problems. The increase of accuracy level has as a consequence the increase
of the number of runs but does not change the number of iterations for this
particular set of examined problems.

There is no obvious lead to state that ILS or SA is better than the other
one for all the examined problems, but the results show that ILS is better for
smaller problem instances and that ILS reaches threshold interval faster. SA
works better for larger problems. The application of the described methodology
may be able to help a practitioner to roughly approximate the running time with
minor changes in topology and constraints of a problem.

The implemented CWDTH algorithm could be a good choice for the initial
feasible solution because of its simple implementation especially in the case of
practical problems.

New real-world problems with asymmetric matrices of minimal distances and
forecasted travel times are introduced.

References

1. Cordeau, J-F., Desaulniers, G., Desrosiers, J., Solomon, M., and Soumis, F.: The
Vehicle Routing Problem with Time Windows. In: Toth P. and Vigo D. (eds.): The
Vehicle Routing Problem, SIAM Publishing: Philadelphia, (2002) 157–193

2. Solomon, M.: Algorithms for the Vehicle Routing and Scheduling Problems with
Time Windows Constraints. Operations Research. 35 (1987) 254–265

3. Laporte G.: The Vehicle Routing Problem: An Overview of Exact and Approxima-
tive Algorithms. European Journal of Operational Research. 59 (1992) 345–358

4. Bräysy, O., Gendreau, M.: Vehicle Routing Problem with Time Windows Part I:
Route construction and local search algorithms. Trans. Sci. 39 (2005) 104–118

5. Bräysy, O., Gendreau, M.: Vehicle Routing Problem with Time Windows Part II:
Metaheuristics. Trans. Sci. 39 (2005) 119–139



6. Bräysy, O., Dullaert, W.: A Fast Evolutionary Metaheuristic for the Vehicle Rout-
ing Problem with Time Windows. International Journal on Artificial Intelligence
Tools. Vol. 12, Issue 2, (Jun 2003) 153–173

7. Reinholz, A.: A Hybrid (1+1)-Evolutionary Algorithm for Periodic and Multiple
Depot Vehicle Routing Problems. The 6th Metaheuristics International Confer-
ence, Vienna, Austria, August 22-26, 2005, Proceedings on CD. University of Vi-
enna, Department of Business Administration (2005) 793–798

8. Osman I.: Metastrategy Simulated Annealing and Tabu Search Algorithms for the
Vehicle Routing Problems. Annals of Operation Research. 41 (1993) 421–451

9. Galić, A., Carić, T., Fosin, J., Ćavar, I., Gold, H.: Distributed Solving of the
VRPTW with Coefficient Weighted Time Distance and Lambda Local Search
Heuristics. In: Biljanović, P., Skala, K. (eds.): Proceedings of the 29th Interna-
tional Convention MIPRO, MIPRO, Rijeka (2006) 247–252

10. Hoos, H., Sttzle, T.: Stochastic Local Search: Foundation and Application. Morgan
Kauffman, San Francisco (2005)

11. Laurenço, H.R., Serra, D.: Adaptive search heuristics for the generalized assign-
ment problem. Mathware & Soft Computing, 9 (2-3) (2002) 209–234

12. Kirkpatrick, S., Gelatt, C.D. Jr., Vecchi, M.P.: Optimization by Simulated Anneal-
ing. Science. 220 (1983) 671–680

13. Cerny, V.: A Thermodynamical Approach to the Travelling Salesman Problem: An
Efficient Simulation Algorithm. Journal of Optimization Theory and Applications.
45 (1985) 41–51

14. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H.: Equations
of State Calculations by Fast Computing Machines. The Journals of Chemical
Physics. 21 (1953) 1087–1092

15. Homberger, J., Gehring, H.: A two-phase hybrid metaheuristic for the vehicle rout-
ing problem with time windows. European Journal of Operational Research. 162
(2005) 220-238

16. Le Bouthillier, A., Crainic, T.G.: Cooperative parallel method for vehicle routing
problems with time windows. Computers and Operations Research. 32 (2005) 1685-
1708

17. Pisinger, D., Röpke, S.: A general heuristic for vehicle routing problems. Technical
Report, Department of Computer Science, University of Copenhagen (2005)

18. Mester, D., Bräysy, O., Dullaert, W.: A multi-parametric evolution strategies algo-
rithm for vehicle routing problems. Expert Systems with Applications. 32 (2007)
508-517

19. Reinholz, A.: Ein statistischer Test zur Leistungsbewertung von iterativen Varia-
tionsverfahren. Technical Report 03027, SFB559, University of Dortmund (2003)
(in German)

20. Galić, A., Carić, T., Gold, H.: MARS - A Programming Language for Solving
Vehicle Routing Problems. In Taniguchi, E., Thompson, R. (eds.): Recent Advances
in City Logistics. Proceedings of the 4th International Conference on City Logistics.
Elsevier, Amsterdam (2006) 48–57


