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ABSTRACT

Results from a set of nine-member ensemble seasonal integrations with a T63L19 version of the European
Centre for Medium-Range Weather Forecasts (ECMWF) model are presented. The integrations are made using
observed specified sea surface temperature (SST) from the 5-year period 1986–90, which included both warm
and cold El Niño–Southern Oscillation (ENSO) events. The distributions of ensemble skill scores and internal
ensemble consistency are studied. For years in which ENSO was strong, the model generally exhibits a relative
high skill and high consistency in the Tropics. In the northern extratropics, the highest skill and consistency are
found for the northern Pacific–North American region in winter, whereas for the northern Atlantic–European
region the spring season appears to be both skillful and consistent. For years in which ENSO was weak, the
distributions of ensemble skill and consistency are relatively broad and no clear distinction between Tropics and
extratropics can be made.

Applying a t test to interannual fluctuations over various tropical and extratropical regions, estimates of a
minimum useful ensemble size are made. Explicit calculations are done with ensemble size varying between
three and nine members; estimates for larger sizes are made by extrapolating the t values. Based on an analysis
of 2-m temperature and precipitation, the use of relatively large (approximately 20 members) ensembles for
extratropical predictions is likely to be required; in the Tropics, smaller-sized ensembles may be adequate during
years in which ENSO is strong, particularly for regions such as the Sahel.

The role of the SST forcing in a seasonal timescale ensemble is to bias the probability distribution function
(PDF) of atmospheric states. Such PDFs can, in addition, be a convenient way of condensing a vast amount of
data usually obtained from ensemble predictions. Interannual variability in PDFs of monsoon rainfall and regional
geopotential height probabilities is discussed.

1. Introduction

The scientific basis for extended-range atmospheric
prediction derives principally from the predictability of
the atmosphere’s lower boundary conditions, particu-
larly sea surface temperature (SST). However, even if
SST could be predicted without error, the associated
atmospheric evolution would not be uniquely deter-
mined, essentially because of the chaotic nature of at-
mospheric dynamics. As a result, the SST anomaly
should be thought of as having a well-defined impact,
not on a specific phase-space trajectory corresponding,
say, to the atmosphere’s evolution over one season, but
on the phase-space geometry of the whole atmospheric
climate attractor. This impact can be specified in terms
of changes to the atmospheric probability distribution
function (PDF) over atmospheric states (Palmer 1993;
Kumar and Hoerling 1995).

In practice, estimating the impact of prescribed SST
anomalies on such probability distributions can be de-
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termined only from ensembles of integrations of a dy-
namical atmospheric model. Examples of such seasonal
ensemble integrations have been discussed recently by
Branković et al. (1994), hereafter referred to as BPF;
Palmer and Anderson (1994); and Barnett (1995). In all
these studies, the issue of what constitutes a reasonable
lower bound on ensemble size was raised; this paper in
part addresses the same issue. Stern and Miyakoda
(1995) also explored the feasibility of seasonal predic-
tion from ensembles of 10-year-long integrations.

In BPF, results from three-member seasonal timescale
ensembles were reported. Not surprisingly, it was found
that the skill of the ensemble mean fields was higher
for the strong ENSO years than for the weak ENSO
years. In the northern extratropics, the skill tended to
be highest in the spring season. This was consistent with
the internal spread of the ensemble, which tended to be
smallest in spring. However, the three-member ensem-
bles were inadequate to assess the statistical significance
of the extratropical response to the underlying SST
anomalies.

The ensemble size for all the experiments in BPF has
since been increased to nine members (see section 2).
The skill scores of anomaly fields and the distribution
of ensemble skill scores and ensemble consistency val-
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TABLE 1. Initial dates for ECMWF seasonal simulations.

En-
semble
mem-

ber DJF MAM JJA SON

1 28 October 27 January 27 April 28 July
2 29 October 28 January 28 April 29 July
3 30 October 29 January 29 April 30 July
4 31 October 30 January 30 April 31 July
5 1 November 31 January 1 May 1 August
6 2 November 1 February 2 May 2 August
7 3 November 2 February 3 May 3 August
8 4 November 3 February 4 May 4 August
9 5 November 4 February 5 May 5 August

FIG. 1. Nine regions (NH1, NH2, . . .) for which distribution of skill scores and ensemble consistency were computed. Regions for which
t-test statistic was calculated are shaded. (The eastern Africa and northern Kalahari regions are broken along 308E.)

ues for difference fields are calculated on a regional
basis (section 3). Based on statistical tests, we determine
the extent to which the increase in ensemble size has
increased our confidence in being able to estimate re-
liably the impact of the imposed SSTs on regional vari-
ables of practical interest, specifically precipitation and
near-surface temperature (section 4). By extrapolation
of the results of the statistical analyses presented, the
likely impact of further increases of ensemble size is
assessed. An assessment of probability forecasts using
the nine-member ensembles is made in section 5. A
summary and discussion of the results are given in sec-
tion 6.

2. Experimental details

As in BPF, all integrations described in the main body
of this paper were made with the ECMWF model at the
reduced horizontal resolution of T63L19, using the so-

called cycle 36 physics package (Simmons et al. 1988;
Miller et al. 1992). The integrations were about 120
days long, depending on season and initial date. They
cover all seasons over the 5-yr period, from spring
(MAM) 1986 to winter (DJF) 1990/91. The nine initial
dates for each calendar season are shown in Table 1.
They were chosen around the first day of the month
preceding the season of interest. Thus, the range of the
BPF initial dates is extended to include four days before
and two days after the dates of the original three-mem-
ber ensembles.

Within a given season, the same SSTs (based on the
U.S. National Meteorological Center analyses), were
used for each ensemble member and were updated every
5 days throughout the integration. For every calendar
season, the interannual variation of the SST anomalies
for the period spring 1986 to winter 1990/91 includes
both warm and cold El Niño–Southern Oscillation
(ENSO) events. As discussed in BPF, we categorize sea-
sons according to whether anomalies in an equatorial
Pacific SST index, computed over the tropical Pacific
strip (78N–78S, 1608E–808W), were either strong and
positive, strong and negative, weak and positive, or
weak and negative (see Figs. 1 and 2 of BPF).

In the rest of this paper we shall be discussing dif-
ferences between pairs of ensemble integrations, each
ensemble having been made using SSTs for a specific
year. Where results are described as associated with
‘‘strong ENSO-index years,’’ one ensemble was made
with SSTs where the Pacific index had strong positive
anomalies; the other ensemble was made with SSTs
where the index had strong negative anomalies. Simi-
larly, for ‘‘weak ENSO-index years,’’ one ensemble was
made using SSTs where the index had weak positive
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FIG. 2. The DJF 500-mb anomaly correlation coefficients for the three Northern Hemisphere regions (NH1, NH2, NH3): when the ‘‘ob-
served climate’’ is used to calculate model anomalies (top), and when the ‘‘model climate’’ is used (bottom).

TABLE 2. Division of the experimental years/seasons according to
the index based on the equatorial Pacific SST anomalies.

Amplitude
of ENSO Season Positive Negative

Strong DJF 1986/87 1988/89
MAM 1987 1989
JJA 1987 1988
SON 1987 1988

Weak DJF 1990/91 1989/90
MAM 1988 1986
JJA 1990 1989
SON 1990 1989

anomalies; the other ensemble was associated with an
index having weak negative anomalies. In practice, the
term ‘‘weak ENSO-index years’’ refers to years in which
significant El Niño SST anomalies were absent. Table
2 shows how each season can be characterized with this
index.

Throughout the paper we focus our discussion on
seasonal averages only. For each experiment, the last
three months, corresponding to conventional calendar
seasons, were averaged. The seasons are denoted con-
ventionally as: spring—MAM, summer—JJA, autumn
—SON, and winter—DJF. For verification purposes,
seasonal averages were also computed from ECMWF
analysis data.

3. Objective verification of ensembles

a. Skill scores of anomaly fields

In this section, model skill scores are given in terms
of anomaly correlation coefficients (ACCs) between
seasonally averaged observed anomaly fields and model
anomaly fields. For a given season, the observed anom-
alies have been computed with respect to the 5-yr av-
erage (1986–90); we refer to this average as the ‘‘ob-
served climate.’’ For the model, anomalies have been
computed with respect to the two different mean fields.
First, we used the ‘‘observed climate’’ as above. This
methodology is consistent with the ECMWF operational
practice for determining the skill of medium-range fore-
casts. (Of course, in the ECMWF operations the climate

is derived from a much longer period than used here.)
In addition to this, model anomalies were also computed
with respect to the mean from all integrations in the
same 5-yr period, that is, from the total of 45 runs. We
refer to this average as the ‘‘model climate.’’ For reason
of space, the discussion in this subsection will be re-
stricted to ACCs of the 500-mb heights in the three
Northern Hemisphere regions (NH1, NH2, NH3; see
Fig. 1) for the DJF season only.

The top row in Fig. 2 shows ACCs when the observed
climate is used to calculate model anomalies; the bottom
row of Fig. 2 shows ACCs when the model climate is
used. The ACCs are shown for all individual integra-
tions within an ensemble (depicted for each year as nine
small crosses) and for ensemble averages (larger diag-
onal crosses). The distribution of small crosses in the
vertical is indicative of the intraensemble range of
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scores, while the small shift between the crosses in the
horizontal represents the different initial dates for in-
dividual model integrations.

When the observed climate is used, the highest scores
are found for the NH2 region (covering the northern
Pacific and much of North America) during DJF 1988/
89. The range of scores for this winter appears to be
the smallest of all winters considered. According to Ta-
ble 2, the 1988/89 winter was classified as a strong
negative ENSO-index season. Skill scores for DJF 1986/
87, the strong positive ENSO-index winter, do not differ
very much from, for example, skill scores for DJF 1987/
88.

On the other hand when the model climate is used
(Fig. 2, bottom row), the highest scores for the NH2
region are found during DJF 1986/87. For all but one
integration, the ACCs for that season fall between 0.6
and 0.9, and the range of scores is small when compared
with the other winters.

The difference between the two sets of skill scores
for NH2 during DJF 1986/87 is striking. The differences
for DJF 1988/89 and for the weak ENSO-index winters
are somewhat smaller, though by no means negligible.
Similar differences in skill scores are also seen for the
NH3 (Asian) and for NH3 (North Atlantic–European)
regions.

Clearly, these inconsistencies are associated with the
different reference fields used to calculate model anom-
alies. Apparent improvement in the model skill in DJF
1986/87, when the model climate is used, may be be-
cause of a larger covariance between model and ob-
served anomalies than that obtained when the observed
climate is used. Such an increase occurs because the
1986–90 model climate projects more strongly on the
La Niña than on the El Niño flow pattern over the north-
ern Pacific–North American region.

These results highlight the dependence of the skill
scores, and in particular the interannual variability of
the skill scores, on the choice of a reference climate.
Even using an observed climate, the scores will be ar-
bitrary to some degree, being dependent on which years
are chosen to form the climate fields. Because of this,
results are shown for most of the body of this paper,
not in terms of the skill of anomalies, but rather in terms
of the skill of differences between pairs of chosen years
(e.g., between an El Niño year and a La Niña year). For
such measures, we do not need to refer to any sample
climatology.

b. Skill-score distributions of difference fields

The ensemble distribution of skill scores was esti-
mated by comparing simulated and observed seasonal-
mean difference fields for the pairs of years shown in
Table 2. Specifically, for a given season let E15{ei

1}
and E25{ei

2} denote two ensembles, the first for a year
taken from the third column of Table 2 (denoted ‘‘pos-
itive’’), the second corresponding to the year shown on

the same row in the fourth column of Table 2 (denoted
‘‘negative’’). The differences (ei

12ej
2) are then corre-

lated with the corresponding observed difference field,
O12O2, for all combinations of subscripts i, j, where i
and j run from 1 to N, and N denotes the ensemble size.
For two nine-member ensembles, there are 81 such dif-
ference fields (ei

12ej
2) with 81 corresponding correla-

tion coefficients. The distribution of relative frequencies
of these correlation coefficients is then computed by
binning them into categories of equal correlation inter-
vals of 0.2. The distributions have been computed cor-
responding to all pairs of years from the rows of Table
2, and for nine regions, which together cover the globe
(see Fig. 1). For the six extratropical regions (three in
the Northern Hemisphere, three in the Southern Hemi-
sphere), the skill scores are shown for the 500-mb height
field. For the three tropical regions, they are shown for
the 200-mb zonal wind field (geopotential height being
rather featureless in the Tropics).

1) STRONG ENSO-INDEX YEARS

Figure 3 shows the distribution of skill scores for
strong ENSO-index years for DJF over the nine regions.
Categories between 21 and 11 are depicted on the x
axis; on the y axis the relative frequency of skill scores
(%) in each category is shown. Compared with the ex-
tratropics, the distributions are strongly peaked in the
tropical regions. This is consistent with the relatively
chaotic nature of the extratropics (e.g., Charney and
Shukla 1981; Palmer 1996). In the region TR2, covering
much of the tropical Pacific, the distribution is peaked
toward the most skillful category, while in the other two
tropical regions (TR1 and TR3), the distributions are
strongly peaked toward the second most skillful cate-
gory. Such a well-defined shift in the skill scores in the
regions TR1 and TR3 is presumably associated with
model error. Overall, these results are consistent with
the fact that the dominant signal is associated with
ENSO itself.

For the region NH2, the distribution is clearly peaked
toward the two categories with largest correlation val-
ues. However, for other Northern Hemisphere regions,
farther away from the ENSO signal, the distribution of
skill scores is both broader and shifted toward less skill-
ful categories. Nevertheless, the distributions are clearly
skewed toward positive values, indicative of an overall
level of skill. The distributions are also broad in the
Southern Hemisphere, and, as for the Northern Hemi-
sphere, the most skillful region (SH2) lies closest to the
ENSO region. The shift toward negative skill values in
SH3 may again be indicative of the influence of model
error, but it also may be related to the quality of ECMWF
verifying analysis for the years in question in these data
sparse areas.

The ensemble-mean difference skill scores have also
been categorized in the same way as individual mem-
bers’ differences. They are shown as small vertical ar-
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FIG. 3. Distributions of relative frequencies (%) of the difference skill scores over the nine regions of
the globe (Fig. 1) for the strong ENSO-index DJF season. In the extratropics (top and bottom panels)
correlation coefficients are computed for 500-mb height differences, in the Tropics (center row panels)
for 200-mb zonal wind differences. Vertical arrows point to category of ensemble-mean difference skill
score.

rows in Fig. 3 (and in subsequent skill score figures),
pointing to the category they fall in. Generally, if the
distribution is skewed strongly toward positive values,
there is a tendency for the ensemble-mean score to either
fall within the same category as distribution’s peak value
or to reside in the adjacent higher category of the peak
value. This reflects the fact that the spatial variance of
individual runs is larger than the spatial variance of the
ensemble mean field and, consequently, ensemble av-
eraging will increase the value of the ACC (Branković
et al. 1990). If the distribution is skewed strongly toward
negative values (as found for some weak-ENSO cases,
see discussion and figures below), the ensemble-mean
score may again coincide with distribution’s peak value
or fall in the adjacent lower category (here, ensemble
averaging can make poor scores even worse!).

Figure 4 shows the skill score distributions in the
three northern extratropical regions for the strong
ENSO-index years, for the three remaining seasons,
MAM, JJA, and SON. It is interesting to note that while
in NH2 (the northern Pacific), the distributions are
skewed to the most skillful categories in DJF (Fig. 3),
in NH1 and NH3, the distributions are most skillful in
MAM. It is not clear at present whether this is associated
with the additional influence of more local (extratrop-
ical) lower boundary forcing anomalies in this season.
The relatively high levels of skill around the Northern

Hemisphere in spring may have some important prac-
tical consequences in the application of seasonal fore-
casts to agricultural production.

In general, it can be seen that the broadest distribu-
tions of skill scores occurs in SON. The distributions
for NH1 and NH3 in SON are a particularly striking
illustration of the nature of internal chaotic variability
in the atmosphere. Within the ensemble difference
fields, there are (pairs of) members with skill scores
exceeding 0.8, and yet others with skill scores between
20.6 and 20.8.

2) WEAK ENSO-INDEX YEARS

Figure 5 shows the DJF skill score distributions for
the weak ENSO-index years for all nine regions. It can
be seen that for these years, comparing with Fig. 3, there
is no clear-cut difference in the distributions in the Trop-
ics and extratropics. In general, it is clear that these
weak-ENSO years are associated with much weaker lev-
els of skill. In the Tropics, both TR1 and TR3 are strong-
ly shifted toward negative skill scores. Once more, this
would appear to be associated with the impact of model
error. It is interesting to note that despite a relatively
broad distribution, the NH2 region still shows a shift
toward positive skill values.

Figure 6 shows the Northern Hemisphere distribu-
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FIG. 4. Same as Fig. 3 but for the strong ENSO-index MAM (top row), JJA (middle), and SON (bottom) seasons
over the Northern Hemisphere regions (NH1, NH2, NH3) only.

FIG. 5. Same as Fig. 3 but for the weak ENSO-index DJF season.
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FIG. 6. Same as Fig. 4 but for the weak ENSO-index MAM, JJA, and SON seasons.

tions for the other three seasons for the weak ENSO-
index years (these can be compared with Fig. 4). Al-
though the distributions are broad, there is some evi-
dence of a shift toward positive skill values, especially
in the Atlantic (NH3) region in MAM and JJA. It is
possible [see section 3b(1)] that lower boundary forcing,
local to NH3, may be having an influence on the pre-
dictability in that region.

c. Consistency of ensembles

As mentioned a number of times above, distributions
of skill scores are influenced by model error. To study
the impact of SST variations on distributions of ‘‘in-
ternal’’ ensemble differences, we again consider two
ensembles { } and { } from the third and fourth col-1 2e ei i

umns (respectively) of Table 2. For a given difference
field, and jth element from1 2 1e 2 e (ith element from Ei j

E2), we calculate N 3 N21 correlation coefficients be-
tween this field and all possible pairs of difference fields,

where k, l 5 1, N. This calculation is performed1 2e 2e ,k l

N 3 N times for all different correlations ,1 2C(e 2 ei j

). For nine-member ensembles, we obtain 80 31 2e 2ek l

81 correlation coefficients. As for the skill scores, cor-
relation coefficients measuring consistency have been
calculated for the 500-mb height in the extratropical
regions and for the 200-mb zonal wind in the Tropics.
The distribution of relative frequencies of correlation

coefficients is estimated, as with skill scores, by binning
into equal categories of 0.2.

Although not shown, in strong ENSO-index years, the
consistency between ensembles is very high in the Trop-
ics, regardless of season. Generally speaking, values are
strongly peaked in the highest correlation category. In
the extratropics, the distributions are much broader. Fig-
ure 7 shows the distributions for the Northern Hemi-
sphere regions for all four seasons. (The meaning of the
graph axes is the same as in Figs. 3–6.) Interestingly, it
can be seen that for all regions MAM has the highest
consistency. We noted above that MAM was the most
skillful for NH1 and NH3. For the Atlantic sector (NH3),
both MAM and JJA are more consistent than DJF.

For the weak ENSO-index years (Fig. 8), there is a
clear shift toward positive correlation values; however,
the overall distributions are much broader than for the
strong ENSO-index years. The DJF season shows a
stronger signal than JJA and SON, and in the NH2 area
the shift toward positive values is stronger than in the
other Northern Hemisphere regions.

If we compare consistency distributions with skill
score distributions, it can be seen that there are some
clear similarities. For example, both sets of distributions
are broader for the weak ENSO-index years. Moreover,
the NH2 has the tightest distributions for both consistency
and skill. In general, the MAM season is seen as the most
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FIG. 7. Distributions of relative frequencies (%) of the 500-mb height consistency correlation coefficients
over the Northern Hemisphere regions (NH1, NH2, NH3) for the strong ENSO-index DJF (top row panels),
MAM (second row), JJA (third row), and SON (bottom row) seasons.

consistent and most skillful season at least for the strong
ENSO-index years. In NH3, both MAM and JJA are
consistent and skillful for strong ENSO-index years.

4. Potential predictability and ensemble size

In this section we focus on confidence values asso-
ciated with the SST forcing of precipitation and near-
surface temperature (2-m postprocessed temperature) as
a function of ensemble size. These estimates are made
for a number of prespecified land subregions, shown in
Fig. 1 as shaded squares. (These have been chosen as
representative examples from a much larger set of
regions for which calculations have been made.) The
chosen regions include some tropical areas where pre-
dictability may be expected to be high, together with
extratropical areas where internal atmospheric variabil-
ity may be expected to obscure, at least partially, the
influence of lower boundary forcing.

The method of analysis is as follows. For each en-
semble, there is a unique nine-member ensemble-mean

value for the regionally averaged precipitation or 2-m
temperature. On the other hand, there are 84 possible
values for a three-member subensemble-mean of the
same precipitation or 2-m temperature from the original
nine-member ensemble (corresponding to the number
of ways of choosing a three-member subset from a nine-
member set). The number of possible values for a 4-,
5-, 6-, 7- or 8-member subensemble is 126, 126, 84,
36, and 9, respectively. For each n-member subensemble
(3 # n # 9), we calculate the subensemble-mean dif-
ference between years in the third and fourth columns
in Table 2, and the corresponding t statistic based on
the null hypothesis H0 that the subensembles are not
significantly different. We then calculate a mean t sta-
tistic by averaging over all possible subensemble t val-
ues. In performing this averaging, the sign of the t vari-
able is ignored, because the sense of the interannual
variation has no relevance to the discussion here.

For reference, in Figs. 9–11 the t value corresponding
to the rejection of H0 at the 90% and 99% confidence
levels is shown. We comment on the minimum ensemble
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FIG. 8. Same as Fig. 7 but for the weak ENSO-index DJF, MAM, JJA, and SON seasons.

sizes required to exceed these t values, for different
seasons, regions, and magnitude of the ENSO index. To
aid the discussion below, we have also remarked on
likely t values for hypothetical larger ensembles based
on an extrapolation of the computed values. In all di-
agrams we note an almost linear relationship between
ensemble size and the t value. This is due to a linear
increase in the number of degrees of freedom in cal-
culating t values as the size of the ensemble increases.

a. Extratropics

1) EUROPE

Figures 9a–d show the t values for 2-m temperature
in the northern and southern European regions. For
strong ENSO-index years (Figs. 9a,b), it can be seen
that MAM and JJA are the most predictable seasons.
These results are broadly in agreement with the NH3
500-mb height consistency distributions discussed in the
previous section. For MAM, it appears that only four-
member ensembles are required to reject H0 with 99%
confidence level. For SON and DJF, large ensemble sizes
appear necessary to distinguish the two years.

In the weak ENSO-index years (Figs. 9c,d), only the
MAM season in northern Europe seems to become pre-
dictable when the ensemble size increases significantly
over nine members (again in agreement with NH3 height
consistency diagrams). For this season and region, H0

would appear to be rejected with 90% confidence, with
approximately 20-member ensemble.

Figures 9e,f show the t values for rainfall for the
northern and southern European regions for strong
ENSO-index years. Consistent with the 2-m temperature
results, MAM and JJA show evidence of potential pre-
dictability. However, for this variable, larger ensembles
are required to reject H0 with 99% confidence (in excess
of 16 members for the northern Europe spring rainfall).
The t values for weak ENSO-index rainfall are not
shown but are generally smaller than those found in the
strong ENSO-index years.

2) USA

For reason of space, predictability estimates for the
USA are shown in Fig. 10 for the strong ENSO-index
years only. The near-surface temperature appears to be
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FIG. 9. The dependence of t values on ensemble size over northern Europe (left) and southern Europe (right). (a) and (b) Two-meter temper-
ature, strong ENSO-index years; (c) and (d) 2-m temperature, weak ENSO-index years; (e) and (f) rainfall, strong ENSO-index years.

fairly predictable in general (Figs. 10a,b). Apart from
JJA in the western United States, all seasons reach 90%
confidence level of predictability with nine-member en-
sembles.

By contrast, during the weak ENSO-index years (not
shown), significant predictability of 2-m temperature is
found for the western United States only in summer,
and in the eastern USA for winter.

For both the western and eastern United States rainfall
(Figs. 10c,d), there is a dramatic seasonal cycle effect
for the strong ENSO-index years, with spring (MAM)

showing much more significant values than for other
seasons. For other seasons, there is relatively little dif-
ference between strong and weak ENSO-index years
(not shown).

b. Tropics

To assess the relationship between predictability and
ensemble size in the Tropics, we discuss the t value
for the rainfall in four different regions (Sahel, India,
Brazilian Nordeste, and northern Australia; see Fig. 1
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FIG. 10. Same as Fig. 9 but for the western United States (left) and eastern United States (right) and for the strong ENSO-index years
only. (a) and (b) Two-meter temperature, (c) and (d) rainfall.

for the regions’ boundaries) during the strong ENSO-
index years (Fig. 11). As discussed by Charney and
Shukla (1981), tropical rainfall should be intrinsically
more predictable than extratropical rainfall. Clearly, as
inferred from Fig. 11, in the Tropics relatively small-
size ensembles are required to reach significant levels
of predictability. Note the variable range of t values
on the ordinate axes in Fig. 11. (In the Sahel during
DJF there was no rainfall, hence all t values are zero.)
The high level of skill over the Sahel for JJA and over
the Nordeste for MAM is consistent with results from
earlier studies (e.g., Rowell et al. 1995; Ward and Fol-
land 1991). The Indian region has the highest propor-
tion of t values below the 99% (and 90%) confidence
level, indicating relatively lower predictability than in
the other tropical regions shown. This could be asso-
ciated with a model tendency to underestimate the
overall level of the Indian rainfall, as shown in Bran-
ković and Palmer (1994), or with the influence of qua-
si-chaotic intraseasonal monsoon variations (Palmer
1994).

For the weak ENSO-index years (not shown), it can
be noted that rather high levels of predictability were
found for Nordeste and north Australian rainfall, while
for the Sahel and India a noticeable deterioration in
predictability for most seasons was found.

c. Summary for all regions

We have summarized the results for all seasons in
Table 3. This shows the number of regions in the Tropics
or the extratropics for which the rainfall or the near-
surface temperature differences are statistically signif-
icant (i.e., H0 is rejected) at the 90% confidence level,
as a function of ensemble size. The regions in question
are shown as shaded areas in Fig. 1. There are six
regions in the extratropics (northern Europe, southern
Europe, western United States, eastern United States,
northeast China, and central China) and 6 in the Tropics
(the Sahel, east Africa, northern Kalahari, India, north-
ern Australia, and the Brazilian Nordeste). Table 3a is
for the strong ENSO-index years; Table 3b is for the
weak ENSO-index years.

In the strong ENSO-index years (Table 3a), only 9
out of 48 possible regionally averaged extratropical rain-
fall or temperature values are significant with 3-member
ensembles.1 This increases to 22 with a 9-member en-
semble and a projected 32 (out of 48) with a 16-member

1 The number 48 is obtained when the total number of extratropical
regions considered (6) is multiplied by the number of seasons (4)
and by the number of variables (2). The same is valid for the Tropics.
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FIG. 11. Same as Fig. 9 but for selected tropical regions, rainfall, and strong ENSO-index years only.

ensemble. Hence, for extratropical prediction, the use
of relatively large ensembles can be justified. For the
tropical regions, the number of significant values in-
creases from 31 to 40 to a projected 42 (out of 48) as
the ensemble size increases from 3 to 9 to 16.

On the other hand, for the weak ENSO-index years
(Table 3b), even tropical predictions appear to benefit
from large ensembles, where the number of significant
values increases from 15 to 24 to a projected 32 as the
ensemble size increases from 3 to 9 to 16. For these
weak ENSO-index years, a large ensemble benefits de-
tection of extratropical predictability as well.

Although this information is not shown in Table 3,
the greatest benefit from having a 16-member ensemble
comes from detecting rainfall predictability in extra-
tropical regions [for strong ENSO-index years from 5
to 12 to a projected 22 (out of 24) significant values
with 3-, 9-, and 16-member ensembles, respectively].

5. Probability forecasts

As discussed in the introduction, the underlying SST
fields can be thought of as influencing the geometry of
the atmospheric attractor. We can represent this influ-
ence through changes in the PDF of atmospheric states.
By focusing on changes to the PDF of specific weather

variables, such as rainfall, the discussion is relevant to
the practice of operational seasonal weather prediction.

Figure 12 depicts the distribution of rainfall amounts
over southern Europe and the Sahel for all individual
integrations of the (strong ENSO-index) JJA 1987 (left-
hand bars) and JJA 1988 (right-hand bars) ensembles.
The experiment number on the x axis depicts individual
members of ensembles with respect to their (ascending)
initial dates shown in Table 1. For example, experiments
denoted by the number 6 were initiated on 2 May of
1987 and 1988, respectively. The rainfall is averaged
over land grid points only (the regions’ boundaries are
shown in Fig. 1). The variation of regional rainfall
amounts within ensembles is seen in both diagrams,
though the response of the model to the same SST forc-
ing is much more stable in the Sahel. From such dis-
tributions we can estimate changes to rainfall PDFs.

It is interesting to note from Fig. 12a that a three-
member subensemble {2, 7, 8} would actually give the
opposite sign of the rainfall difference than other com-
binations of a three-member subensemble. However, for
most of the three-member combinations in Fig. 12a, the
average rainfall difference between JJA 1987 and JJA
1988 would be of the same sign and opposite to that
for the {2, 7, 8} subensemble. This is why the value
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TABLE 3a. Number of regions in the Tropics and extratropics (de-
picted as shaded areas in Fig. 1) for which interannual differences
for either rainfall or 2-m temperature are statistically significant at
90% confidence level. Strong ENSO-index years.

Regions located at

Ensemble size

3 9 16

Extratropics 9 22 32
Tropics 31 40 42

FIG. 12. Distribution of seasonally averaged rainfall (mm day21)
in the JJA 1987 (left-hand, solid bars) and JJA 1988 (right-hand,
hatched bars) ensembles for (a) southern Europe and (b) Sahel.

TABLE 3b. Same as Table 3a but for the weak ENSO-index years.

Regions located at

Ensemble size

3 9 16

Extratropics 2 10 15
Tropics 15 24 32

for the JJA three-member ensemble shown in Fig. 9f
reached a relatively high confidence level.

Figure 13a shows an example for the strong ENSO-
index years over the African and south Asian region.
From the incidence of both positive and negative rainfall
differences, a gridpoint probability (or proportion of
positive and negative differences) is assigned. For each
grid point, the value obtained is an estimate of the prob-
ability that, for JJA, the El Niño year 1987 was wetter
or drier than the La Niña year 1988. Probabilities for
both positive and negative differences are then com-
bined into one map with the discriminating contour of
60%.

Over the Sahel, the probability of negative rainfall
difference (light stipple) is high, exceeding 90% over
much of the region. This result implies that for most of
the 81 differences, the ensemble simulations of JJA
1987 were drier than JJA 1988. This is in good agree-
ment with verification differences for the two summers
(Fig. 13b) obtained from the Global Precipitation Cli-
mate Centre (GPCC; Huffman et al. 1995).

Over much of India, the probability of negative dif-
ferences is in excess of 60%, and more than 90% in the
north and in the south. Generally smaller probability
estimates over India imply lower predictability for that
region than for the Sahel. This is associated with a rel-
atively larger internal ensemble variability over the In-
dian subcontinent than over the Sahel and is consistent
with estimates of the t variable shown in Fig. 11.

The GPCC rainfall verification data were available
for years 1987 and 1988 only and at this stage it is
difficult to validate precipitation forecasts in general;
the production of global precipitation datasets is an on-
going effort. Hence, in order to validate such probability
forecasts, we have created fields giving the probability
that the local 500-mb geopotential height difference is
either positive or negative. We would expect that for
grid points enclosed by a given probability contour (here
we choose the 60% probability contour), at least 60%
of these grid points would validate correctly.

Table 4 shows a set of validations for the nine regions
that span the globe (Fig. 1). For each region, and each
season from the strong ENSO-index years, we create a
2 3 2 table. The two diagonal elements of each table
show the percentage of points where (a) the probability
of a positive difference exceeded 60%, and a positive
difference occurred (top left element of the table), and
(b) the probability of a negative difference exceeded
60%, and a negative difference occurred (bottom right
element). These two diagonal elements essentially show
the degree of agreement between the probability fore-
casts and verifying analyses. The off-diagonal elements
correspond to forecasts that did not verify.

As an example, in Table 4 we show results for the
strong ENSO-index MAM season. The best agreement
between the model probabilistic fields and observed dif-
ferences is found in the tropical Atlantic (TR3). In the
Northern Hemisphere, this verification method gives
satisfactory results for all three regions, whereas in the
Southern Hemisphere, results are poor for SH1.

In JJA (and also in SON), the agreement in the three
Northern Hemisphere regions is generally lower than in
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FIG. 13. (a) Probability of rainfall differences, JJA 1987 minus JJA 1988. Light stipple probability of negative
differences, dense stipple probability of positive differences. Contours 60% and 90% for both probabilities. (b) The
GPCC rainfall differences JJA 1987 minus JJA 1988. Contours are 60.3, 62, 64, 68, 616 mm day21.

the boreal cold seasons, DJF and MAM (not shown).
In the Tropics, negative differences are entirely accu-
rately predicted by the model, and in the Southern Hemi-
sphere they are better predicted than positive differ-
ences.

6. Summary and conclusions

Results from a large set of 120-day, nine-member
ensemble integrations of a T63L19 version of the
ECMWF model have been presented. Individual ensem-
ble members were initiated from consecutive opera-
tional ECMWF analyses, separated by 24 h. Integrations
were made using specified observed SST, updated in the
model every 5 days. The last three months of each in-
dividual integration, corresponding to conventional cal-
endar seasons, were analyzed. This set of ensembles is

an extension of the three-member ensembles reported
by Branković et al. (1994; BPF).

We focus on the ability of the model to simulate in-
terannual atmospheric variations on seasonal timescales
over the 5-yr period 1986–90. This period was char-
acterized by significant variability in the El Niño–
Southern Oscillation (ENSO). Based on ENSO, an index
was defined that varied from large positive values in the
first part of the 5-yr period to large negative values in
the middle of the period with weak negative and weak
positive values toward the end of the period. As in BPF,
difference fields were computed from seasons when the
ENSO index was large and opposite, and weak and op-
posite.

The skill of the model was first discussed in terms of
anomaly correlation coefficients (ACCs). The ACCs
have been derived with respect to the two different ref-
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TABLE 4. Percentage of grid points for nine ‘‘global’’ regions (Fig.
1) for which probability of positive (top row) and negative (bottom
row) 500-mb height difference exceeds 60%. Strong ENSO-index,
MAM season.

Region Anal diff . 0 Anal diff , 0

NH1
Prob(1) . 60% 66% 34%
Prob(2) . 60% 21 79

NH2
Prob(1) . 60% 59 41
Prob(2) . 60% 17 83

NH3
Prob(1) . 60% 89 11
Prob(2) . 60% 25 75

TR1
Prob(1) . 60% 97 3
Prob(2) . 60% — —

TR2
Prob(1) . 60% 97 3
Prob(2) . 60% 33 67

TR3
Prob(1) . 60% 95 5
Prob(2) . 60% 0 100

SH1
Prob(1) . 60% 45 55
Prob(2) . 60% 88 12

SH2
Prob(1) . 60% 84 16
Prob(2) . 60% 17 83

SH3
Prob(1) . 60% 57 43
Prob(2) . 60% 37 63

erence fields (used in the computation of model anom-
alies). The first reference field was the observed climate,
the second reference field was the model climate. It was
shown that the model skill scores depend strongly on
the choice of a reference climate. Therefore, in our anal-
ysis of skill scores we focus on difference fields between
pairs of years with the opposite index of ENSO.

Distributions of ensemble skill scores for difference
fields were calculated for nine regions over the globe.
During strong ENSO-index years, the highest and most
sharply peaked distribution of skill in the northern ex-
tratropics was found for the northern Pacific–North
American region for the winter (DJF) season. Over the
northern Atlantic–European region, the ensemble skill
is highest and most sharply peaked in spring (MAM).
This may have some important implications for the ap-
plication of seasonal predictions in the growing season
in Europe. In the tropical regions, skill is generally high
with very sharply peaked distributions. In DJF and
MAM, the highest skill is found in the tropical Pacific
region, and in JJA and SON in the tropical Atlantic and
tropical Indian Ocean regions.

For weak ENSO-index years, the distributions of skill
are found to be generally broader than for the strong

ENSO-index years. However, for many regions there is
a tendency of skill distributions to be skewed toward
positive values. A shift toward negative correlation co-
efficients in the Southern Hemisphere may be associated
with nonnegligible model systematic errors. For a given
season, estimates of consistency for all possible differ-
ences between members of two ensembles were also
made. These distributions can be thought of as giving
some measure of intra-ensemble (‘‘internal’’) variabil-
ity. For strong ENSO-index years, consistency distri-
butions in the tropical regions are peaked at high pos-
itive values. In the Northern Hemisphere, spring has the
highest consistency between ensembles, similar to dis-
tributions of ensemble skill. For weak ENSO-index
years the consistency distributions are generally broad,
though clearly shifted toward positive correlations.

The above conclusions are generally consistent with
those from BPF for three-member ensembles. However,
some differences that may exist between the two papers
could be attributed to a much poorer sampling in our
earlier work. In BPF, for example, for the northern At-
lantic–European area the model skill for both winter
and spring seasons was found to be relatively high and
almost identical. The increase in ensemble size as well
as the analysis of skill distribution performed in this
paper help to better discriminate between those two sea-
sons.

Based on the above ensemble skill and consistency
estimates, we can distinguish between the regions of the
globe and seasons with relatively good prospects for
seasonal prediction. Apart from the tropical regions in
general, the northern Pacific–North American region in
winter and the northern Atlantic–European region in
spring appear to have such a potential during ENSO
years. These results are not inconsistent with observa-
tional and empirical seasonal predictability studies (e.g.,
Halpert and Ropelewski 1992; Livezey 1990; Barnston
1994).

In this paper, an estimate, based on the t statistic, is
given of the minimum size of an ensemble required to
simulate with confidence the impact of the underlying
SST anomalies on the probability distribution of at-
mospheric states. These t values were derived as a func-
tion of ensemble size, when the latter increases from
three to nine members. In addition, an extrapolation of
the t statistic for larger ensembles is discussed. This
evaluation is performed for 2-m temperature and pre-
cipitation over a number of predefined regions in both
extratropics and Tropics.

In general, relative large ($20 member) ensembles
may be needed for extratropical seasonal prediction of
regional weather, even in the presence of a relatively
strong tropical signal. On the other hand, in the Tropics
during strong ENSO events, the same level of confi-
dence can be attained with much smaller ensembles.
However, these estimates may vary widely, depending
on the region and season considered. For example,
whereas the JJA rainfall prediction for the Sahel may
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require only a two- to three-member ensemble, for India
at least nine- or ten-member ensembles would be de-
sirable. In weak ENSO years, a relatively large ensemble
would be needed even for tropical regions.

Some examples of probability fields were shown, fo-
cusing on monsoon rainfall probability. An objective
verification of such probabilities was given indicating
good agreement between observed differences and prob-
abilities inferred from model difference fields.

An extensive set of multimodel ensembles, based on
a research project made jointly with the United Kingdom
Meteorological Office, Météo France, and the French
Electricity Board, currently in progress, will allow more
conclusive investigation on the role of model formu-
lation on seasonal predictability estimates.
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