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Abstract. Let g̃ be an affine Lie algebra of the type A
(1)
` . Suppose we are

given a Z-gradation of the corresponding simple finite-dimensional Lie algebra

g = g−1 ⊕ g0 ⊕ g1; then we also have the induced Z-gradation of the affine Lie

algebra
g̃ = g̃−1 ⊕ g̃0 ⊕ g̃1.

Let L(Λ) be a standard module of level 1. Feigin-Stoyanovsky’s type sub-

space W (Λ) is the g̃1-submodule of L(Λ) generated by the highest-weight vec-

tor vΛ,
W (Λ) = U(g̃1) · vΛ ⊂ L(Λ).

We find a combinatorial basis of W (Λ) given in terms of difference and initial

conditions.

1. Introduction

Let g be a simple complex Lie algebra, h ⊂ g its Cartan subalgebra, R the
corresponding root system. Then one has a root decomposition g = h +

∑
α∈R gα.

Fix root vectors xα ∈ gα. Let

(1) g = g−1 ⊕ g0 ⊕ g1

be a Z-gradation of g, where h ⊂ g0. Denote by Γ ⊂ R the set of roots such that
g1 =

∑
α∈Γ gα.

The affine Lie algebra associated with g is g̃ = g⊗C[t, t−1]⊕Cc⊕Cd, where c is
the canonical central element, and d the degree operator. Elements xα(n) = xα⊗tn

are fixed real root vectors. The Z-gradation of g induces the Z-gradation of g̃:

g̃ = g̃−1 ⊕ g̃0 ⊕ g̃1,

where g̃1 = g1 ⊗ C[t, t−1] is a commutative Lie subalgebra with basis

{xγ(j) | j ∈ Z, γ ∈ Γ}.
Let L(Λ) be a standard g̃-module of level k = Λ(c), with a fixed highest weight

vector vΛ. A Feigin-Stoyanovsky’s type subspace is a g̃1-submodule of L(Λ) gener-
ated by vΛ,

W (Λ) = U(g̃1) · vΛ ⊂ L(Λ).
We find a monomial basis of W (Λ), i.e. a basis consisting of vectors x(π)vΛ, where
x(π) are monomials in basis elements {xγ(−j) | j ∈ N, γ ∈ Γ}.

The problem of finding monomial bases is a part of Lepowsky-Wilson’s pro-
gram to study representations of affine Lie algebras by means of vertex operators
and to obtain Rogers-Ramanujan-type combinatorial bases of these representations
(Lepowsky and Wilson (1984), Lepowsky and Primc (1985), Meurman and Primc
(1999)).
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The notion of Feigin-Stoyanovsky’s type subspaces is similar to the notion of
principal subspaces of standard ĝ-modules, introduced by B. Feigin and A. Stoy-
anovsky (1994). These subspaces are generated by the affinization of the nilpotent
subalgebra n+ of g coming from the triangular decomposition g = n− ⊕ h ⊕ n+;
in the case of sl(2, C), definitions of principal subspaces and Feigin-Stoyanovsky’s
type subspaces are equivalent. Feigin and Stoyanovsky described the dual space of
the principal subspace for sl(2, C) and sl(3, C) in terms of symmetric polynomial
forms satisfying certain conditions, and calculated its character. In the sl(2, C)-
case, they also described the dual in a geometric way, recovering in this way the
Rogers-Ramanujan and Gordon identities. Furthermore, by representing the whole
standard module L(Λ) as an inductive limit of Weyl-group translates of the principal
subspace, they constructed a basis of L(Λ) consisting of semi-infinite monomials.

Principal subspaces were studied further by G. Georgiev in (1996). He con-
structed combinatorial bases and calculated characters of principal subspaces for
certain representations of sl(`+1, C). In the proof of linear independence, Georgiev
used intertwining operators from Dong and Lepowsky (1993).

Also by using intertwining operators, S. Capparelli, J. Lepowsky and A. Milas in
(2003, 2006) obtained Rogers-Ramanujan and Rogers-Selberg recursions for char-
acters of principal subspaces for sl(2, C). As a continuation of this program, C.
Calinescu obtained systems of recursions for characters of principal subspaces of
level 1 standard modules for sl(` + 1, C) in Calinescu (2008) and of certain higher-
level standard modules for sl(3, C) in Calinescu (2007). By solving these recursions
they also established formulas for the characters of these subspaces. Furthermore,
in Calinescu, Lepowsky and Milas (2008a,b) new proofs of presentation theorems
for principal subspaces for sl(2, C) were provided.

Feigin-Stoyanovsky’s type subspace W (Λ) was implicitly studied by M. Primc
(1994, 2000), who constructed a combinatorial basis of this subspace, and, in a
similar way to which it is done in Feigin and Stoyanovsky (1994), obtained a basis
of the whole L(Λ). This was done in Primc (1994) for sl(` + 1, C) and a particular
choice of gradation (1), and for any dominant integral weight Λ. For any classi-
cal simple Lie algebra and any possible gradation (1), combinatorial bases were
constructed in Primc (2000), but only for basic modules L(Λ0).

In the particular sl(` + 1, C) case studied in Primc (1994), the basis of W (Λ) is
parameterized by combinatorial objects called (k, ` + 1)-admissible configurations.
These objects were introduced and further studied by Feigin, Jimbo, Loktev, Miwa
and Mukhin (2003) and Feigin, Jimbo, Miwa, Mukhin and Takeyama (2004a,b),
where different formulas for the character of W (Λ) were obtained. Also, by using
combinatorial bases and certain coefficients of intertwining operators, M. Jerković
(2009) obtained exact sequences of Feigin-Stoyanovsky’s type subspaces at fixed
level k, which led to systems of recurrence relations for formal characters of those
subspaces.

The hardest part of constructing a combinatorial basis of W (Λ) is a proof of linear
independence of a reduced spanning set. This was proved in Primc (1994) by using
Schur functions, while in Primc (2000) this was proved by using the crystal base
character formula of Kang, Kashiwara, Misra, Miwa, Nakashima and Nakayashiki
(1992). In Primc (2007) the Capparelli-Lepowsky-Milas’ approach via intertwining
operators and the description of the basis from Feigin, Jimbo, Loktev, Miwa and
Mukhin (2003) were used to give a simpler proof of linear independence of the basis
of W (Λ) constructed in Primc (1994). It seems that this should be the way to
obtain a proof in other cases as well.

In this paper we extend these results to any possible Z-gradation of g = sl(` +
1, C) and all level 1 standard modules. In Trupčević (2009) we further extend this to
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standard modules of any higher level, obtaining a combinatorial basis parameterized
by a certain generalization of (k, ` + 1)-admissible configurations.

Let Π = {α1, . . . , α`} be a basis of the root system R for g = sl(` + 1, C), and
{ω1, . . . , ω`} the corresponding set of fundamental weights. We identify h and h∗

via the invariant bilinear form 〈x, y〉 = tr xy and fix a fundamental weight ω = ωm.
Set

Γ = {γ ∈ R | 〈γ, ω〉 = 1} = {γij | i = 1, . . . ,m; j = m, . . . , `},
where

γij = αi + · · ·+ αm + · · ·+ αj .

The Z-gradation of g is given by

g±1 =
∑

α∈±Γ

gα, g0 = h⊕
∑

〈α,ω〉=0

gα.

The set Γ is called the set of colors. For γ ∈ Γ, we say that a fixed basis element
xγ ∈ gγ is of the color γ. The set of colors Γ can be pictured as a rectangle with
row indices 1, . . . ,m and column indices m, . . . , ` (see figure 1).

Figure 1. The set of colors Γ

1

2

m

m m+1 `

i

j

γij

Fix a fundamental weight Λi, i = 0, . . . , ` of g̃. Let L(Λi) be the standard module
with highest weight Λi, and vi the highest weight vector of L(Λi).

We find a basis of the Feigin-Stoyanovsky’s type subspace W (Λi) consisting of
monomial vectors

{xγ1(−n1) · · ·xγt
(−nt)vi | t ∈ Z+; γj ∈ Γ, nj ∈ N}

whose monomial parts

(2) xγ1(−n1) · · ·xγt
(−nt)

satisfy certain combinatorial conditions, called difference and initial conditions. We
say that the monomial (2) satisfies difference conditions if the colors of its elements
of degree −j and −j − 1 lie on diagonal paths in Γ, as pictured in figure 2.

So, if a monomial (2) has elements of degrees−j and−j−1 of colors γr1s1 , . . . , γrtst

and γr′1s′1
, . . . , γr′

t′s
′
t′
, respectively, then

r1 < r2 < · · · < rt and s1 > s2 > · · · > st,

and, similarly,
r′1 < r′2 < · · · < r′t′ and s′1 > s′2 > · · · > s′t′ .

Moreover,
rt < r′1 or st > s′1.
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Figure 2. Difference conditions

1

2

m

m `

•��
•

•��
•

���(−j)

◦
◦

◦

◦

����
��

�
��

(−j−1)

Initial conditions on the monomial (2) require that the diagonal path of colors
of elements of degree −1 lie below the i-th row, in the case 1 ≤ i ≤ m, or on the
left of the i-th column, in the case of m ≤ i ≤ `, as pictured in figure 3.

Figure 3. Initial conditions
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Difference conditions are obtained by observing relations between fields xγ(z), γ ∈
Γ on L(Λi), while initial conditions follow from the obvious requirement that ele-
ments of degree −1 do not annihilate the highest weight vector vi.

By observing configurations of colors of elements of degrees −1 and −2, one is
able to construct coefficients of suitable intertwining operators between standard
modules that send some basis elements of one module to basis elements of another
module, and annihilate the rest of the basis elements. These operators are then
used for the inductive proof of linear independence.

Thus we are able to prove the main result of this paper

Theorem 6 Let L(Λi) be a standard module of level 1. Then the set of monomial
vectors xγ1(−n1) · · ·xγt

(−nt)vi whose monomial part satisfies difference and initial
conditions, is a basis of W (Λi).

2. Affine Lie algebras

For ` ∈ N, let
g = sl(` + 1, C),
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a simple Lie algebra of the type A`. Let h ⊂ g be a Cartan subalgebra of g and R
the corresponding root system. Fix a basis Π = {α1, . . . , α`} of R. We have the
triangular decomposition g = n− ⊕ h⊕ n+. Denote by R+ and R− sets of positive
and negative roots, and by θ the maximal root. Let 〈x, y〉 = tr xy be a normalized
invariant bilinear form on g; via 〈·, ·〉 we have an identification ν : h → h∗. For each
root α fix a root vector xα ∈ gα.

Let {ω1, . . . , ω`} be the set of fundamental weights of g, 〈ωi, αj〉 = δij , i, j =
1, . . . , `. Denote by Q =

∑`
i=1 Zαi the root lattice, and by P =

∑`
i=1 Zωi the

weight lattice of g.
Denote by g̃ the associated affine Lie algebra

g̃ = g⊗ C[t, t−1]⊕ Cc⊕ Cd

(cf. Kac (1990)). Set x(j) = x ⊗ tj for x ∈ g, j ∈ Z. Commutation relations are
given by

[c, g̃] = 0,

[d, x(j)] = jx(j),
[x(i), y(j)] = [x, y](i + j) + i〈x, y〉δi+j,0c.

Set he = h⊕Cc⊕Cd, ñ± = g⊗ t±1C[t±1]⊕n±. Then we also have the triangular
decomposition g̃ = ñ− ⊕ he ⊕ ñ+.

Let Π̂ = {α0, α1, . . . , α`} ⊂ (he)∗ be the set of simple roots of g̃. The usual
extensions of bilinear forms 〈·, ·〉 onto he and (he)∗ are denoted by the same symbols
(we take 〈c, d〉 = 1). Define fundamental weights Λi ∈ (he)∗ by 〈Λi, αj〉 = δij and
Λi(d) = 0, i, j = 0, . . . , `.

Let V be a highest weight module for the affine Lie algebra g̃ with the highest
weight Λ ∈ (he)∗. Then V is generated by a highest weight vector vΛ such that

h · vΛ = Λ(h)vΛ, for h ∈ he,

x · vΛ = 0, for x ∈ ñ+.

The module V is a direct sum of weight subspaces Vµ = {v ∈ V |h·v = µ(h)v for h ∈
he}, µ ∈ (he)∗.

Standard (i.e. integrable highest weight) g̃-module L(Λ) is an irreducible highest
weight module, with the highest weight Λ being dominant integral, i.e.

Λ = k0Λ0 + k1Λ1 + · · ·+ k`Λ`,

where ki ∈ Z+, i = 0, . . . , `. The central element c acts on L(Λ) as multiplication
by the scalar

k = Λ(c) = k0 + k1 + · · ·+ k`,

which is called the level of the module L(Λ).

3. Feigin-Stoyanovsky’s type subspace

Vector v ∈ h is said to be cominuscule if

{α(v) |α ∈ R} ∈ {−1, 0, 1}.

Similarly, weight ω ∈ P is said to be minuscule if

{〈ω, α〉 |α ∈ R} ∈ {−1, 0, 1}.

One immediately sees that a dominant integral weight ω ∈ P+ is minuscule if
and only if 〈ω, θ〉 = 1. So, there exists a finite number of minuscule weights.
Furthermore, a vector v ∈ h is cominuscule if and only if it is dual to some minuscule
fundamental weight ω, in the sense that v = ν−1(ω), for some choice of positive
roots.
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Fix a cominuscule vector v ∈ h. In the case of g = sl(` + 1, C), all fundamental
weights are minuscule. Then we can assume that the cominuscule vector v is dual
to a fundamental weight

ω = ωm,

for some m ∈ {1, . . . , `}. Set

Γ = {α ∈ R | α(v) = 1} = {α ∈ R | 〈ω, α〉 = 1}.
Then we have the induced Z-gradation of g:

(3) g = g−1 ⊕ g0 ⊕ g1,

where

g0 = h⊕
∑

α(v)=0

gα

g±1 =
∑

α∈±Γ

gα.

Subalgebras g1 and g−1 are commutative, and g0 acts on them by adjoint action.
The subalgebra g0 is reductive with semisimple part l0 = [g0, g0] of the type Am−1×
A`−m; as a root basis one can take {α1, . . . , αm−1}∪{αm+1, . . . , α`}, and the center
is equal to Cv.

We illustrate decomposition (3) on the picture 4, which corresponds to the usual
realization of g as matrices of trace 0. In this case the subalgebra g0 consists of
block-diagonal matrices, while g1 and g−1 consist of matrices with non-zero entries
only in the upper right or lower-left block, respectively.

Figure 4. Z-gradation of g

g:

g0

g0g−1

g1

The set Γ is called the set of colors; it is equal to

Γ = {γij | i = 1, . . . ,m; j = m, . . . , `}
where

(4) γij = αi + · · ·+ αm + · · ·+ αj

(see figure 1). The maximal root θ is equal to γ1`.
Similarly, one also has the induced Z-gradation of the affine Lie algebra g̃:

g̃0 = g0 ⊗ C[t, t−1]⊕ Cc⊕ Cd,

g̃±1 = g±1 ⊗ C[t, t−1],
g̃ = g̃−1 + g̃0 + g̃1.

As above, g̃−1 and g̃1 are commutative subalgebras, and g̃1 is a g̃0-module.
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For a dominant integral weight Λ, we define a Feigin-Stoyanovsky’s type subspace

W (Λ) = U(g̃1) · vΛ ⊂ L(Λ).

Our objective is to find a combinatorial basis of W (Λ). Set

g̃+
1 = g̃1 ∩ ñ+, g̃−1 = g̃1 ∩ ñ−.

Then we have
W (Λ) = U(g̃−1 ) · vΛ.

By Poincaré-Birkhoff-Witt theorem, we have a spanning set of W (Λ) consisting of
monomial vectors

(5) {xγ1(−n1)xγ2(−n2) · · ·xγr
(−nr)vΛ | r ∈ Z+; γj ∈ Γ, nj ∈ N}.

Elements of the spanning set (5) can be identified with monomials from U(g̃1) =
S(g̃1). With this in mind, we often refer to elements xγ(−j), γ ∈ Γ, j ∈ Z as
variables, elements or factors of monomials.

We can also identify monomials from S(g̃1) with colored partitions. From the be-
ginnings of the representation-theoretic approach to Rogers-Ramanujan identities,
combinatorial basis of certain representations were parameterized by partitions sat-
isfying certain conditions (cf. Lepowsky and Wilson (1984), Lepowsky and Primc
(1985)). Let π : {xγ(−j) | γ ∈ Γ, j ∈ Z} → Z+ be a colored partition (cf. Primc
(1994), section 3). The corresponding monomial x(π) ∈ S(g̃1) is

x(π) = xγ1(−j1)π(xγ1 (−j1)) · · ·xγt(−jt)π(xγt (−jt)).

From this identification we take the notation x(π) for the monomials from S(g̃1).
Sometimes, it will be convenient to define monomials by using this identification.
Also, our combinatorial conditions for the basis elements can be written in terms
of the exponents π(xγ(−j)), which gives a parametrization of the basis by a gen-
eralization of the notion of (k, ` + 1)-admissible configurations from Feigin, Jimbo,
Loktev, Miwa and Mukhin (2003). This will be useful in the higher-level case (cf.
Trupčević (2009)).

4. Order on the set of monomials

We introduce a linear order on the set of monomials.
On the weight and root lattice, we have the usual partial order: for µ, ν ∈ P

set µ ≺ ν if µ − ν is a nonnegative integral linear combination of simple roots αi,
i = 1, . . . , `.

Next, we define a linear order < on the set of colors Γ which is an extension of
the order ≺. For elements of Γ, γi′j′ ≺ γij is equivalent to saying that i′ ≥ i and
j′ ≤ j. The order < on Γ is defined in the following way:

γi′j′ < γij if
{

i′ > i
i′ = i, j′ < j.

It is clear that this is a linear order on the set of colors.
On the set of variables {xγ(−n) | γ ∈ Γ, n ∈ Z} ⊂ g̃1 we define a linear order <

by comparing first the degrees, and then the colors of variables:

xα(−i) < xβ(−j) if
{
−i < −j,
i = j and α < β.

Since the algebra g̃1 is commutative, we can assume that the variables in mono-
mials from S(g̃1) are sorted ascendingly from left to right. The order < on the
set of monomials is defined as a lexicographic order, where we compare variables
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from right to left (from the greatest to the lowest one). If x(π) and x(π′) are two
monomials,

x(π) = xγr (−nr)xγr−1(−nr−1) · · ·xγ2(−n2)xγ1(−n1),

x(π′) = xγ′s(−n′s)xγ′s−1
(−n′s−1) · · ·xγ′2

(−n′2)xγ′1
(−n′1),

then x(π) < x(π′) if there exists i0 ∈ N such that xγi
(−ni) = xγ′i

(−n′i) holds for
all i < i0, and either i0 = r + 1 ≤ s or xγi0

(−ni0) < xγ′i0
(−n′i0).

This monomial order is compatible with multiplication:

Proposition 1. Let

x(π1) ≤ x(µ1) and x(π2) ≤ x(µ2).

Then

x(π1)x(π2) ≤ x(µ1)x(µ2),

with the last inequality being strict if any of the first two inequalities is strict.

Proof: By the definition of the order <, we compare two monomials so by com-
paring their greatest elements first. Let xα1(−j1), xα2(−j2), xβ1(−i1), xβ2(−i2) be
the greatest variables in x(π1), x(π2), x(µ1), x(µ2) respectively. Then xα1(−j1) ≤
xβ1(−i1) and xα2(−j2) ≤ xβ2(−i2). The greatest element in x(π) is the greater of
the two xα1(−j1) and xα2(−j2); one can assume it to be xα1(−j1). Similarly, the
greatest element in x(µ) is the greater of the two xβ1(−i1) and xβ2(−i2). There
are two possibilities:

(i) the greatest element of x(µ) is strictly greater than the greatest element of
x(π). In that case x(π) < x(µ).

(ii) the greatest element of x(µ) is equal to the greatest element of x(π). Then
xα1(−j1) = xβ1(−i1), and we can take xβ1(−i1) for the greatest element of
x(µ). We proceed by induction: let x(π′1) and x(µ′1) be monomials obtained
from x(π1) and x(µ1), respectively, by omitting xα1(−j1) = xβ1(−i1). Then
x(π′1) ≤ x(µ′1), and we can continue to apply the same procedure to mono-
mials x(π′1), x(π2), x(µ′1) and x(µ2). After a finite number of steps either
the case (i) will occur, or we exhaust monomials x(π1) and x(π2). Both
these cases imply x(π) ≤ x(µ), and the equality occurs only if both initial
inequalities were in fact equalities.

�
A degree of a monomial is the sum of degrees of its variables,

deg(xγr (−nr)xγr−1(−nr−1) · · ·xγ2(−n2)xγ1(−n1)) = −n1 − n2 − · · · − nr.

A shape of a monomial is obtained from its colored partition by forgetting colors
and considering only the degrees of factors. More precisely, for a monomial x(π),
the corresponding shape is

sπ : Z → Z+, sπ(j) =
∑
γ∈Γ

π(xγ(−j)).

A linear order can also be defined on the set of shapes; we say that sπ < sπ′ if there
exists j0 ∈ Z such that sπ(j) = sπ′(j) for j < j0.

In the end, for the sake of simplicity, we introduce the following notation:

xrs(−j) = xγrs(−j),

for γrs ∈ Γ.
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5. Vertex operator construction of level 1 modules

We use the vertex operator algebra construction of the basic g̃-modules (i.e. the
standard g̃-modules of level 1) (cf. Frenkel and Kac (1980), Segal (1981)). In this
section we present only a sketch of the construction, with details to be found in
Frenkel, Lepowsky and Meurman (1988), Dong and Lepowsky (1993) or Lepowsky
and Lie (2004).

Let P̂ be a central extension of P by the finite cyclic group 〈eπi/(`+1)2〉 of order
2(` + 1)2,

1 −→ 〈eπi/(`+1)2〉 −→ P̂ −→ P −→ 1.

By restriction, one gets a central extension Q̂ of Q. Central extension can be chosen
such that the corresponding 2-cocycle

ε : P × P → 〈eπi/(`+1)2〉
satisfies

ε(α, β)/ε(β, α) = (−1)〈α,β〉 for α, β ∈ Q.

Let
c(λ, µ) = ε(λ, µ)/ε(µ, λ) for λ, µ ∈ P

be the corresponding bimultiplicative, alternating commutator map (cf. Frenkel,
Lepowsky and Meurman (1988)).

Inside g̃ there is a Heisenberg subalgebra

ĥZ =
∑

n∈Z\{0}

h⊗ tn ⊕ Cc.

We also introduce subalgebras

ĥ = h⊗ C[t, t−1]⊕ Cc,

ĥ± = h⊗ t±1C[t±1],

and by C[P ] and C[Q] we denote group algebras of weight and root lattices, respec-
tively. Bases of C[P ] and C[Q] are {eλ |λ ∈ P} and {eα |α ∈ Q}, respectively.

Consider the induced ĥZ-module

M(1) = U(ĥZ)⊗ĥ+⊕Cc C,

where h⊗C[t] acts trivially on C, and c acts as 1. The module M(1) is irreducible;
as a vector space, M(1) is naturally isomorphic to the symmetric algebra S(ĥ−)
(cf. Frenkel, Lepowsky and Meurman (1988)).

Consider the following tensor products

VP = M(1)⊗ C[P ],
VQ = M(1)⊗ C[Q];

there is a natural inclusion VQ ⊂ VP . For simplicity, we often write eλ instead of
1⊗ eλ, and 1 instead of 1⊗ 1.

Space VP carries a ĥ-module structure: ĥZ acts as ĥZ⊗1 and h⊗ t0 acts as 1⊗h.
The operators h(0), h ∈ h on C[P ] are defined by

h(0) · eλ = 〈h, λ〉eλ

for λ ∈ P . On VP we also have the action of C[P ]:

eλ = 1⊗ eλ, λ ∈ P,

where the latter operator eλ is a multiplication in C[P ]. It will be clear from the
context when eλ denotes a multiplication operator, and when an element of VP .
Define also operators ελ by

ελ · eµ = ε(λ, µ)eµ,
9



for λ, µ ∈ P .
For an element v = h1(−n1) · · ·hr(−nr)⊗ eλ of VP we define a degree by

deg(v) = −n1 − n2 − · · · − nr −
1
2
〈λ, λ〉.

This gives a grading on VP that is bounded from above.
We use independent commuting formal variables z, z0, z1, z2, . . . . For a vector

space V , denote by V [[z]] the space of formal series of nonnegative integral powers
of z with coefficients in V . Similarly, denote by V [[z, z−1]] the space of formal
Laurent series, and by V {z} the space of formal series of rational powers of z with
coefficients in V .

Define also one more family of operators zh ∈ (EndVP ){z} by

zh · eλ = eλz〈h,λ〉,

for h ∈ h, λ ∈ P .
Space VQ has a structure of vertex operator algebra and VP is a module for this

algebra (cf. Frenkel, Lepowsky and Meurman (1988), Dong and Lepowsky (1993)).
Before we define a vertex operator algebra structure on VQ, define operators

h(z) =
∑
j∈Z

h(j)z−j−1,

E±(h, z) = exp

∑
m≥1

h(±m)
z∓m

±m

 ,

for h ∈ h. We define vertex operators for all the elements of VP , rather than just
for the elements of VQ. For the lattice elements, i.e. for the elements 1⊗ eλ = eλ,
set:

(6) Y (eλ, z) = E−(−λ, z)E+(−λ, z)⊗ eλzλελ.

Generally, for a homogenous vector v ∈ VP

v = h1(−n1) · · ·hr(−nr)⊗ eλ,

n1, . . . , nr ≥ 1, set

Y (v, z) = ◦
◦

(
∂n1−1

z

(n1 − 1)!
h1(z)

)
· · ·

(
∂nr−1

z

(nr − 1)!
hr(z)

)
Y (eλ, z)◦◦,

where ◦
◦ · ◦◦ is a normal ordering procedure (cf. Frenkel, Lepowsky and Meurman

(1988)), meaning that coefficients in the enclosed expression should be rearranged
in a way that in each product all the operators h(m), h ∈ h,m < 0 are placed to
the left of the operators h(m), h ∈ h,m ≥ 0. This way we get a well defined linear
map

Y : VP → (EndVP ){z},
v 7→ Y (v, z).

By using vertex operators, we can define a structure of g̃-module on VP . For
α ∈ R set

xα(z) =
∑
j∈Z

xα(j)z−j−1 = Y (eα, z),

for a properly chosen root vectors xα. Actions of h(j) and c have already been
defined, and d acts as a degree operator. Then the cosets VQ and VQeωj , j = 1, . . . , `
become standard g̃-modules of level 1 with the highest weight vectors v0 = 1 and
vj = eωj , j = 1, . . . , `, respectively (cf. Frenkel, Lepowsky and Meurman (1988),
Dong and Lepowsky (1993)). Moreover,

L(Λ0) ∼= VQ, L(Λj) ∼= VQeωj for j = 1, . . . , `
10



and

VP
∼= L(Λ0)⊕ L(Λ1)⊕ · · · ⊕ L(Λ`).

Vertex operators Y (v, z) and Y (u, z), u, v ∈ VP , satisfy the (generalized) Jacobi
identity (cf. Dong and Lepowsky (1993)). It will be of importance to us a variant of
that identity in the case when u = u∗ ⊗ eλ, v = v∗ ⊗ eµ, for λ ∈ Q, µ ∈ P, u∗, v∗ ∈
M(1). Then one has

z−1
0 δ

(
z1−z2

z0

)
Y (u, z1)Y (v, z2)−(−1)〈λ,µ〉c(λ, µ)z−1

0 δ
(

z2−z1
−z0

)
Y (v, z2)Y (u, z1) =

= z−1
2 δ

(
z1−z0

z2

)
Y (Y (u, z0)v, z2),

where δ(z) =
∑

n∈Z zn is a formal delta-function (cf. Frenkel, Lepowsky and Meur-
man (1988), Lepowsky and Li (2004)), and binomial expressions that appear in
expansions of delta-functions are understood to be expanded in nonnegative pow-
ers of the second variable.

Next, we introduce intertwining operators Y: for µ ∈ P, v = v∗ ⊗ eµ define

Y(v, z) = Y (v, z)eiπµc(·, µ).

In this way we obtain a map

Y : VP → (EndVP ){z},
v 7→ Y(v, z).

Then we have the (ordinary) Jacobi identity

z−1
0 δ

(
z1−z2

z0

)
Y (u, z1)Y(v, z2) − z−1

0 δ
(

z2−z1
−z0

)
Y(v, z2)Y (u, z1) =

= z−1
2 δ

(
z1−z0

z2

)
Y(Y (u, z0)v, z2).

For µ ∈ Q, operators Y(v, z) are equal to vertex operators Y (v, z). Restrictions of
Y(v, z) are in fact maps

(7) Y(v, z) : L(Λi) → L(Λj){z},

if µ + ωi ≡ ωj mod Q. Therefore restrictions of Y define intertwining operators
between standard modules of level 1 (Dong and Lepowsky (1993)).

Consider now the special case when v = eµ. We are interested in the operators
Y(eµ, z2) from (7) which commute with the action of g̃1, i.e. for which

[Y (eγ , z1),Y(eµ, z2)] = 0, for all γ ∈ Γ.

By the commutator formula for intertwining operators (Dong and Lepowsky (1993))
this is equivalent to

Y (eγ , z0)eµ ∈ VP [[z0]],

for all γ ∈ Γ. From (6) one gets

(8) Y (eγ , z0)eν = Ceγ+νz
〈γ,ν〉
0 + . . .︸ ︷︷ ︸

higher power terms

∈ z
〈γ,ν〉
0 VP [[z0]],

for some C ∈ C×. Therefore, an operator Y(eµ, z2) commute with g̃1 if and only if

〈γ, µ〉 ≥ 0, for all γ ∈ Γ.

In section 8, we describe all µ ∈ P that satisfy this relation.
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6. Operator e(ω)

For λ ∈ P , eλ denotes the multiplication operator 1⊗ eλ in VP = M(1)⊗ C[P ].
Set

e(λ) = eλε(·, λ), e(λ) : VP → VP .

Clearly, e(λ) is a linear bijection. Its restrictions on standard modules are bijections
from one fundamental module L(Λi) onto another fundamental module L(Λi′).
From the definition of vertex operators (6), one gets the following commutation
relation

Y (eα, z)e(λ) = e(λ)z〈λ,α〉Y (eα, z),

for α ∈ R. In terms of the components, we have

(9) xα(n)e(λ) = e(λ)xα(n + 〈λ, α〉), n ∈ Z.

For λ = ω and γ ∈ Γ, the relation (9) becomes

xγ(n)e(ω) = e(ω)xγ(n + 1).

More generally, for a monomial x(π) ∈ S(g̃1), denote by x(π+) ∈ S(g̃1) the
monomial corresponding to the partition π+ defined by π+(xγ(n + 1)) = π(xγ(n)).
We can say that x(π+) is obtained from x(π) by raising the degrees of all of its
factors by 1. Then

x(π)e(ω) = e(ω)x(π+).

7. Difference and initial conditions

Initial conditions for the level 1 standard module L(Λi) are consequence of a sim-
ple observation that monomials from the monomial basis cannot contain elements
of degree −1 that act as zero on the highest weight vector vi of L(Λi). So, we have
to establish for which γ ∈ Γ, elements xγ(−1) annihilate vi. Then we can exclude
from the spanning set (5) all monomials x(π) that contain such factors.

Since vi = eωi , for i = 1, . . . , `, and v0 = 1 = e0, relation (8) gives

(10) xγ(z)vi =

∑
j∈Z

xγ(−j)zj−1

 vi ∈ z〈γ,ωi〉(viVQ)[[z]],

and

(11) xγ(z)vi =

∑
j∈Z

xγ(−j)zj−1

 vi ∈ z〈γ,ωi〉(viVQ)[[z]],

for i = 1, . . . , `. Since by (4), 〈γrs, ωi〉 = 1 if r ≤ i ≤ s, and zero otherwise, by
comparing constant terms in (10) and (11), we get

(12) xγrs(−1)vi =

 0, r ≤ i ≤ s,
Ceγrs , C ∈ C×, i = 0,
Ceγrs+ωi , C ∈ C×, otherwise.

For a monomial x(π) ∈ S(g̃−1 ) we say that it satisfies initial conditions for L(Λi)
if it does not contain factors of degree −1 that annihilate vi. We often abbreviate
this by saying that x(π) satisfies IC for L(Λi). From (12) we see that x(π) satisfies
initial conditions for L(Λi) if the colors of elements of degree −1 lie below the i-th
row (in the case i ≤ m), or, to the left of the i-th column (for i ≥ m).

Difference conditions will be consequences of relations between operators xγ(z).
To obtain these, consider the basic module L(Λ0) with highest weight vector v0 =
1 = e0 (cf. section 5). This is a vertex operator algebra, with 1 as the vacuum

12



element, and L(Λi) is a module for this algebra. We are looking for relations
between vectors of the type

xγ(−1)xγ′(−1)1, γ, γ′ ∈ Γ.

These will in turn induce relations between the corresponding vertex operators on
L(Λi).

From (10) we have
xγ(−1)xγ′(−1)1 = xγ(−1)eγ′ .

Since

〈γ, γ′〉 =

 2, γ = γ′,
1, γ and γ′ lie in the same row or column,
0, otherwise,

relation (8) implies

xγ(−1)xγ′(−1)1 =

 0, γ and γ′ lie in the same
row or column,

Ceγ+γ′ , C ∈ C×, otherwise.

Fix two rows r1 < r2 and two columns s2 < s1. Note that

γr1s1 + γr2s2 = γr1s2 + γr2s1 .

This gives us

xr2s2(−1)xr1s1(−1)1 = C · xr2s1(−1)xr1s2(−1)1,

for some C ∈ C×.
We have obtained two types of relations:

xγ(−1)xγ′(−1)1 = 0,

if γ and γ′ lie in the same row/column, and

xγ(−1)xγ′(−1)1 = C · xγ1(−1)xγ′1
(−1)1,

if γ, γ1, γ′ and γ′1 are vertices of a rectangle in Γ, as in figure 5.

Figure 5. Colors of operators in relations for L(Λi)

1

2

m

m `

r2

r1

s2 s1

•γ •γ1

•γ′1 •γ′

Since the algebra g̃1 is commutative, vertex operators Y (xγ(−1)xγ′(−1)1, z) are
equal to ordinary products of xγ(z) and xγ′(z) as Laurent series (cf. Dong and
Lepowsky (1993), Lepowsky and Li (2004)). This way we get relations between
vertex operators on level 1 modules:

xγ(z)xγ′(z) = 0,(13)
xγ(z)xγ′(z) = C · xγ1(z)xγ′1

(z).(14)
13



Fix n ∈ N and consider the coefficients of zn−2 in (13) and (14). From the first
relation we have

0 =
∑

i+j=n

xγ(−i)xγ′(−j).

In each such sum we identify the minimal monomial with regard to the order-
ing <, which is then called the leading term of the relation. This monomial can be
expressed in terms of other monomials in the sum, so we can exclude from the span-
ning set (5) all monomials that contain the leading terms (cf. Primc (1994,2000)).
Since all the monomials appearing in the sum are of the same length and of the
same degree, the minimal among them has to be of the minimal shape, i.e. its
factors have to be either of the same degree (for n even), or degrees have to differ
only by 1 (for n odd). In the case of n even, there is only one monomial of the
minimal shape,

(15) xγ(−j)xγ′(−j),

and that is the leading term of the sum above. For n odd, there are two monomials
of the minimal shape,

xγ′(−j − 1)xγ(−j), xγ(−j − 1)xγ′(−j).

Following the definition of the order <, we next compare the colors of elements.
First compare the colors of elements of degree −j, and then of elements of degree
−j − 1. Assuming γ < γ′, then the leading term will be

(16) xγ′(−j − 1)xγ(−j).

Analogously, consider relation (14); we get

0 =
∑

i+j=n

xγ(−i)xγ′(−j)− Cxγ1(−i)xγ′1
(−j).

Assume γ < γ1 < γ′1 < γ′, as in figure 5. For n even, there are two monomials of
the minimal shape:

xγ(−j)xγ′(−j), xγ1(−j)xγ′1
(−j),

and for n odd, there are four of them:

xγ′(−j − 1)xγ(−j), xγ(−j − 1)xγ′(−j),
xγ′1

(−j − 1)xγ1(−j), xγ1(−j − 1)xγ′1
(−j).

The leading terms are

(17) xγ1(−j)xγ′1
(−j)

for n even, and

(18) xγ′(−j − 1)xγ(−j)

for n odd.
We say that a monomial x(π) ∈ S(g̃−1 ) satisfies difference conditions, DC for

short, if it does not contain any of the leading terms (15)–(18).
Then, by using Proposition 1, we get the following result (cf. Lemma 9.4 in

Primc (1994) or Theorem 5.3 in Primc (2000))

Proposition 2. The set

(19) {x(π)vi |x(π) satisfies IC and DC for L(Λi)}

spans W (Λi).
14



Finally, let’s have a closer look at the structure of monomials that satisfy differ-
ence and initial conditions for the standard module L(Λi) of level 1. Assume that
a monomial x(π) contains elements xrs(−j) and xr′s′(−j), and γr′s′ ≤ γrs. Then
by (15), γr′s′ and γrs cannot lie in the same column or row, because otherwise x(π)
would contain a leading term. Hence γr′s′ and γrs are the opposite vertices of a
rectangle in Γ. By (17), they have to be upper-right and lower-left vertices of this
rectangle, otherwise x(π) would again contain a leading term. Since γr′s′ ≤ γrs, we
conclude that r′ > r and s′ < s, i.e. γr′s′ must lie in the shaded area of figure 6.

Figure 6. Difference conditions: the colors of elements of the
same degree

1

2

m

m `

•γrsr

s

γr′s′

Next, assume that a monomial x(π) contains elements xrs(−j) and xr′s′(−j − 1).
Then, by a similar argument as above, one concludes that r′ > r or s′ < s, which
is illustrated in figure 7.

Figure 7. Difference conditions: the colors of elements of degrees
−j and −j − 1

1

2

m

m `

•γrsr

s

γr′s′

From these observations we conclude that the colors of elements of the same
degree −j inside x(π) make a descending sequence as pictured in figure 2; the
appropriate row-indices strictly increase, while the column-indices strictly decrease.
The colors of elements of degree −j−1 also form a decreasing sequence placed below
or on the left of the minimal color of elements of degree −j.

Initial conditions for W (Λi) imply that the sequence of colors of elements of
degree −1 lies below the i-th row (if 0 ≤ i ≤ m), or on the left of the i-th column
(for m ≤ i ≤ `) (see figure 3).

These considerations also imply the following
15



Proposition 3. If xγ(−j) < xγ′(−j′) < xγ′′(−j′′) are such that monomials
xγ(−j)xγ′(−j′) and xγ′(−j′)xγ′′(−j′′) satisfy difference conditions, then so does
xγ(−j)xγ′′(−j′′), and consequently xγ(−j)xγ′(−j′)xγ′′(−j′′).

Hence, under the assumption that factors in monomials are sorted descendingly
from right to left, to see if a monomial satisfies difference conditions, it is enough
to check difference conditions on all pairs of successive factors in it.

8. Intertwining operators

As we have already seen in Section 5, operators

Y(eλ, z) : L(Λi) → L(Λi′){z},

commute with the action of g̃1 if and only if

(20) 〈λ, γ〉 ≥ 0,

for all γ ∈ Γ.
Define the “minimal” weights that satisfy (20):

(21)

λ1 = ω1, λ′m = ωm − ωm+1,
λ2 = ω2 − ω1, λ′m+1 = ωm+1 − ωm+2,

λ3 = ω3 − ω2,
...

... λ′`−1 = ω`−1 − ω`,
λm = ωm − ωm−1, λ′` = ω`.

Then relation (4) gives

(22)
〈λr, γ〉 =

{
1, if γ lies in the r-th row,
0, otherwise,

〈λ′s, γ〉 =
{

1, if γ lies in the s-th column,
0, otherwise.

It is obvious that every nonnegative Z-linear combination λ ∈ P of these weights
also satisfies condition (20) and, consequently, the appropriate intertwining opera-
tor Y(eλ, z) commutes with g̃1. It can easily be shown that a weight λ ∈ P satisfies
(20) if and only if λ can be written in this way, for example

ω3 = λ1 + λ2 + λ3,

ωr = λr + λr−1 + · · ·+ λ1, for r ≤ m,

ωs = λ′s + λ′j+1 + · · ·+ λ′`, for s ≥ m,

ωm = λm + λm−1 + · · ·+ λ1 = λ′m + λ′m+1 + · · ·+ λ′`.(23)

In the next section we need the following lemma

Lemma 4. Let γrs ∈ Γ. Then

(24) γrs = λr + λ′s.

Proof: By the Cartan matrix of g, we have

α1 = 2ω1 − ω2,

αj = −ωj−1 + 2ωj − ωj+1; j = 2, . . . , `− 1
α` = −ω`−1 + 2ω`.

The claim now follows from (4) and (21). �
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9. Proof of linear independence

Write a monomial x(π) ∈ S(g̃−1 ) as a product x(π) = x(π2)x(π1), where x(π1)
consists of the elements of degree −1, and x(π2) consists of the elements of lower
degree. The main technical tool in the proof of linear independence is the following
proposition:

Proposition 5. Suppose that a monomial x(π) satisfies difference and initial con-
ditions for a level 1 standard module L(Λi). Then there exists a coefficient w(µ) of
an intertwining operator Y(eµ, z)

w(µ) : L(Λi) → L(Λi′)

for some i′ ∈ {0, . . . , `}, such that:
• w(µ) commutes with g̃1,
• w(µ)x(π1)vi = Ce(ω)vi′ , for some C ∈ C×,
• x(π+

2 ) satisfies initial and difference conditions for L(Λi′),
• x(π1) is maximal for w(µ), i.e. all the monomials x(π′) that satisfy initial

and difference conditions for L(Λi) and such that w(µ)x(π′)vi 6= 0, have
their (−1)-part x(π′1) smaller or equal to x(π1).

Proof: Assume i = 0; Λi = Λ0, and v0 = 1 = e0 is the highest weight vector of
L(Λ0). Let

x(π1) = xrtst
(−1) · · ·xr2s2(−1)xr1s1(−1),

where 1 ≤ r1 < r2 < · · · < rt ≤ m, ` ≥ s1 > s2 > · · · > st ≥ m. Then the colors
of elements of degree −2 lie either below the rt-th row, or left of the st-th column
(see figure 2). Suppose that they lie below the rt-th row. Since 〈γrpsp

, γrqsq
〉 = 0

for 1 ≤ p < q ≤ t, by (8) one has

x(π1)v0 = xrtst
(−1) · · ·xr1s1(−1)1 = C1 · eγr1s1+···+γrtst ,

for some C1 ∈ C×. By Lemma 4, we have

x(π1)v0 = C1 · eλr1+···+λrt+λ′st
+···+λ′s1 .

Set

µ =
∑

1≤r<rt

r/∈{r1,...,rt}

λr +
∑

`≥s>st

s/∈{s1,...,st}

λ′s +
st−1∑
s=m

λ′s.

Weight µ is the sum of all λr’s, 1 ≤ r < rt, and all λ′s’s, ` ≥ s ≥ m, such that
in the appropriate rows and columns, respectively, there does not lie any color of
elements of x(π1). Let w(µ) be the coefficient of z0 = z〈µ,0〉 in Y(eµ, z). For γ ∈ Γ,
w(µ)eγ 6= 0 if and only if 〈µ, γ〉 = 0, by (8). Because of (22), for a monomial
x(π′1) consisting of elements of degree −1 and satisfying difference conditions for
L(Λ0), vector x(π′1)v0 will not be annihilated by w(µ) if and only if colors of x(π′1)
lie in the intersection of the rows {r1, . . . , rt} ∪ {rt + 1, . . . ,m} and the columns
{s1, . . . , st}. Clearly, x(π1) is the maximal one among such, so if w(µ)x(π′1)v0 6= 0
then x(π′1) ≤ x(π1).

Note that

µ + λr1 + · · ·+ λrt
+ λ′st

+ · · ·+ λ′s1
=

rt∑
r=1

λr +
∑̀
s=m

λ′s = ωrt
+ ω.

Hence
w(µ)x(π1)v0 = C2e

ωrt+ω = Ce(ω)vrt
,

for some C2, C ∈ C×. Since the colors of elements of degree −2 lie below the rt-
th row, the monomial x(π+

2 ) satisfies difference and initial conditions for W (Λrt).
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Hence the operator w(µ) : L(Λ0) → L(Λrt
) satisfies the statement of the proposi-

tion.
If the colors of elements of x(π) of degree −2 lie on the left of the st-th row

instead of below the rt-th row, then, when constructing µ, one will replace λ′s’s,
for m ≤ s < st, with λr’s, for st < s ≤ m. That way, we get an operator
w(µ) : L(Λ0) → L(Λst

).
Finally, assume 1 ≤ i ≤ `; vi = eωi is the highest weight vector of L(Λi). The

colors of elements of x(π1) lie either below the i-th row, or on the left of i-th column
(see figure 3). Then one constructs µ ∈ P similarly as before, with an exception
that if i ≤ m, one will not take λr’s for r ≤ i, and if i ≥ m one will not take λ′s’s
for s ≥ i. For instance, if i ≤ m and the colors of elements of degree −2 in x(π)
are on the left of the st-th column, we will set

µ =
∑

i<r<rt

r/∈{r1,...,rt}

λr +
∑

`≤s>st

s/∈{s1,...,st}

λ′s +
m∑

r=rt+1

λr.

For the operator w(µ) we take the coefficient of z〈µ,ωi〉 in Y(eµ, z). Since ωi =
λ1 + · · ·+ λi, we have

µ + γr1s1 + · · ·+ γrtst + ωi = ω + ωst .

Hence

w(µ)x(π1)vi = Ce(ω)vst ,

as desired. �
Proposition 5 enables us to prove linear independence of the set

{x(π)vi |x(π) satisfies IC and DC for L(Λi)}.

We prove this by induction on degree and on order of monomials. The proof is
carried out simultaneously for all level 1 standard modules by using the coefficients
of intertwining operators.

Assume

(25)
∑

cπx(π)vi = 0,

where all the monomials x(π) satisfy difference and initial conditions for L(Λi) and
are of degree greater or equal to some −n ∈ Z. Fix a monomial x(π) in (25) and
suppose that

cπ′ = 0 for all x(π′) < x(π).

We are going to show that cπ = 0.
By Proposition 5, there exists an operator w(µ) such that

• w(µ) commutes with g̃1,
• w(µ)x(π1)vi = Ce(ω)vi′ , C ∈ C×,
• x(π+

2 ) satisfies IC and DC for L(Λi′),
• w(µ)x(π′)vi = 0 if x(π′1) > x(π1),

where Λi′ is another fundamental weight for g̃. Applying the operator w(µ) to (25)
gives

0 = w(µ)
∑

cπ′x(π′)vi

= w(µ)
∑

π′1>π1

cπ′x(π′)vi + w(µ)
∑

π′1<π1

cπ′x(π′)vi + w(µ)
∑

π′1=π1

cπ′x(π′)vi.
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The first sum becomes 0 after the application of w(µ), and the second sum also
equals to 0 by the induction hypothesis. What is left is

0 = w(µ)
∑

π′1=π1

cπ′x(π′)vi =
∑

π′1=π1

cπ′x(π′2)Ce(ω)vi′ = Ce(ω)
∑

π′1=π1

cπ′x(π′+2 )vi′ .

Since e(ω) is an injection, it follows that∑
π′1=π1

cπ′x(π′+2 )vi′ = 0.

All monomials x(π′+2 ) satisfy difference conditions because x(π′) do. If some of
them do not satisfy initial conditions for L(Λi′), then the corresponding monomial
vectors x(π′+2 )vi′ will be equal to 0. Certainly, x(π+

2 ) is not among those. We have
ended up with a relation of linear dependence on the standard module L(Λi′) in
which all the monomials are of degree greater or equal to −n+1. By the induction
hypothesis they are linearly independent, and, in particular, cπ = 0. We have
proved

Theorem 6. The set

{x(π)vi |x(π) satisfies IC and DC for L(Λi)}
is a basis of W (Λi).

10. Bases of standard modules

We follow here the approach of Primc (1994, 2000) to obtain a basis of a standard
level 1 module L(Λi), i = 0, . . . , `, for any choice of Z-gradation (1).

Set
e =

∏
γ∈Γ

eγ = e
∑

γ∈Γ γ .

From Lemma 4 and (23), we have

(26) e = em
∑m

j=1 λj+(`−m+1)
∑`

j=m λ′j = e(`+1)ω.

The following proposition was proven by Primc (cf. Theorem 8.2. in Primc (1994)
or Proposition 5.2. in Primc (2000))

Proposition 7. Let L(Λi)µ be a weight subspace of L(Λi). Then there exists an
integer n0 such that for any fixed n ≤ n0 the set of vectors

enxγ1(j1) · · ·xγs(js)vi ∈ L(Λi)µ,

where s ≥ 0, γ1, . . . , γs ∈ Γ, j1, . . . , js ∈ Z, is a spanning set of L(Λi)µ. In partic-
ular,

L(Λi) = 〈e〉U(g̃1)vi.

Theorem 8. Let L(Λi)µ be a weight subspace of a standard level 1 g̃-module L(Λi).
Then there exists n0 ∈ Z such that for any fixed n ≤ n0 the set of vectors

{enx(π)vi ∈ L(Λi)µ, x(π) satisfies IC and DC for W (Λi)}
is a basis of L(Λi)µ. Moreover, for two choices of n1, n2 ≤ n0, the corresponding
bases are connected by a diagonal matrix.

Proof: From Proposition 7 and Theorem 6 it follows that the set above indeed is
a basis of L(Λi)µ. It is left to prove the second part of the theorem.

In order to see this, we find a monomial x(µ) ∈ U(g̃−1 ) and f ∈ N such that the
following holds:

(i) e(ω)fvi = Cx(µ)vi, for some C ∈ N
(ii) f divides ` + 1,
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(iii) x(µ) satisfies difference and initial conditions for W (Λi),
(iv) if a monomial x(π) satisfies difference and initial conditions for W (Λi),

then so does a monomial x(π−f )x(µ), where π−f is a partition defined by
π−f (xγ(−n− f)) = π(xγ(−n)), γ ∈ Γ, n ∈ Z.

Then we have

e(ω)fx(π)vi = x(π−f )e(ω)fvi = Cx(π−f )x(µ)vi.

Since eωx(π)vi and e(ω)x(π)vi are proportional, the second part of the theorem
follows.

Let x(µ) ∈ U(g̃−1 ) be the maximal monomial satisfying difference and initial
conditions for W (Λi) such that its factors are of degree greater or equal to −f ; we
determine the exact value of f later. Let

x(µ) = xpr,qr
(−nr)xpr−1,qr−1(−nr−1) . . . xp2,q2(−n2)xp1,q1(−n1),

where factors are decreasing from right to left. Initial conditions imply

xp1,q1(−n1) =


x1,`(−1), if i = 0,
x1,`(−2), if i = m,
xi+1,`(−1), if 0 < i < m,
x1,i−1(−1), if m < i ≤ `.

Difference conditions give

xpt,qt(−nt) =


xpt−1+1,qt−1−1(−nt−1), if 1 ≤ pt−1 < m < qt−1 ≤ `,
x1,qt−1−1(−nt−1 − 1), if pt−1 = m < qt−1 ≤ `,
xpt−1+1,`(−nt−1 − 1), if 1 ≤ pt−1 < m = qt−1,
x1,`(−nt−1 − 2), if pt−1 = m = qt−1.

for 1 < t ≤ r.
Degrees of elements of x(µ) are −1,−2, . . . ,−f , respectively from right to left.

Of course, some of the successive elements may have the same degree, and elements
of a certain degree may not occur; according to the initial and difference conditions.

From the above observation we also see that the row-indices of colors of elements
are going cyclicly over the set

(1, 2, . . . ,m),
and the column-indices are going cyclicly over the set

(`, `− 1, . . . ,m).

We choose f so that we stop when we make a “full circle” over both sets of indices.
More precisely, we choose f so that the last element xpr,qr

(−nr) of x(µ) is

(27)

xm,m(−f + 1), if i = 0,
xm,m(−f), if i = m,
xm,i(−f), if i > m,
xi,m(−f), if 0 < i < m.

Then r is equal to the smallest common multiple of m and ` −m + 1. From (27)
and Proposition 3, it is clear that a monomial x(π) satisfies difference and initial
conditions for W (Λi) if and only if x(π−f )x(µ) satisfies them.

Denote by x(µj) the (−j)-part of x(µ) if there are elements of degree −j in
x(µ), and put x(µj) = 1 otherwise. Suppose that x(µj) 6= 1. Let γj be the color
of the smallest element of x(µj). Then at least one of the indices of γj is equal to
m. Denote by ij the other index of γj (of course, ij = m if γj = γm,m). In case
x(µj) = 1 set ij = 0. From (27) it is obvious that if = i. The same calculation as
in the proof of Proposition 5 shows that

x(µ1)vi = C1e(ω)vi1 ,
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and
x(µ+j−1

j )vij−1 = Cje(ω)vij
,

for some C1, . . . , Cf ∈ C×. Hence

x(µ)vi = x(µf ) · · ·x(µ1)vi

= x(µf ) · · ·x(µ2)C1e(ω)vi1

= C ′
1e(ω)x(µ+

f ) · · ·x(µ+
2 )vi1 = · · · =

= Ce(ω)fvi,

for some C,C1, C
′
1 ∈ C×.

It remains to determine f . If x(µj) 6= 1 then x(µj) contains exactly one element
with one of its indices equal to m. If x(µj) = 1 then x(µj−1) contains xm,m(−j+1).
Hence number f counts how many times we have crossed over m while cyclicly
moving over the sets of indices (1, 2, . . . ,m) and (`, `− 1, . . . ,m), i.e. f is equal to
the total number of cycles we have made (over both sets of indices). Therefore

f =
r

m
+

r

`−m + 1
= r

` + 1
m(`−m + 1)

=
` + 1

r′
,

where r′ = m(`−m+1)
r ∈ N. In particular, f divides ` + 1. �

As an illustration, we can take a closer look at the case m = 1 which was studied
in Primc (1994). In this case, Γ is a rectangle with one row and ` columns, consisting
of elements γ11, . . . , γ1`. Fix a fundamental weight Λi. A monomial x(π) satisfies
initial conditions for L(Λi) if it does not contain elements x1i(−1), . . . , x1`(−1). If
we assume that elements of x(π) are decreasing from right to left, then we can say
that x(π) satisfies difference conditions on W (Λi) if for any two successive factors
x1s(−j)x1s′(−j′) of x(π) we either have j ≥ j′ + 2, or j = j′ + 1 and s < s′. If we
wrote these conditions in terms of exponentials π(xγ(−j)), γ ∈ Γ, j ∈ N, we would
obtain a special case of (k, ` + 1)-admissible configurations, for k = 1 (cf. Feigin,
Jimbo, Loktev, Miwa and Mukhin (2003), Trupčević (2009)).

We construct a periodic tail x(µ) as in the proof of Theorem 8. We obtain

x(µ) =

 x1,1(−`) · · ·x1,`−1(−2)x1,`(−1), if i = 0,
x1,1(−`− 1) · · ·x1,`−1(−3)x1,`(−2), if i = 1,
x1,i(−`− 1) · · ·x1,`(−i− 1)x1,1(−i + 1) · · ·x1,i−1(−1), if 2 ≤ i ≤ `.

which is the maximal monomial that satisfies initial and difference conditions for
L(Λi) and has elements of degree greater or equal to −`− 1. Since

x1,`(−1)v0 = C0e(ω)v`,

x1,j−1(−1)vj = Cje(ω)vj−1, j = 2, . . . , `,

v1 = C1e(ω)v0,

for some C0, . . . , C` ∈ C×, we see that

x(µ)vi = Ce(ω)`+1vi,

for some C ∈ C×.
Also, it is clear that a monomial x(π) satisfies initial and difference conditions

for L(Λi) if and only if x(π−`−1)x(µ) satisfies initial and difference conditions for
L(Λi).
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