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Abstract – A meta-modeling of complex calculation procedures 

(static systems) is investigated with the aim to create the low 

complexity surrogate models applicable in low computing power 

real-time measurement systems. Unlike the single parameter 

error criteria and MDL measure, the proposed compound 

squared relative error measure forces the GMDH algorithm to 

prefer the models having the smallest compound deviation of the 

accuracy and the execution time from the given thresholds and 

thus generally leads to more favorable models with respect to 

both conditions. The approximation errors, the execution speed 

and the applicability of derived GMDH models in real-time flow-

rate measurements of natural gas are discussed and compared 

with the corresponding models derived by ANN and SVR. 

 
Index Terms - approximation methods, GMDH, real-time 

systems, modeling, embedded systems  
 

 

I.   INTRODUCTION 

 

In measurements that involve complex numerical 

procedures for the reconstruction of physical quantities from 

measured data in Real-Time (RT) the required computing 

power of the embedded system might be a limiting factor for 

the implementation. This can lead to a situation where the 

implementation of the procedures based on “first principles” is 

unrealistic in economic terms. In these cases it is reasonable to 

construct and to implement the meta-models [1] accurate 

enough not to deteriorate significantly the overall 

measurement accuracy and simple enough to be applicable in 

Low-Computing-Power (LCP) systems. Meta-modeling [1] is 

a procedure for deriving an acceptable low-complexity 

surrogate of a complex model. The overview of the 

approximation methods and meta-modeling techniques used in 

system engineering and simulations is given in [2]. Here we 

focus on modeling the nonlinear static systems by an algebraic 

equation. 
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The use of artificial neural networks (ANNs) for the 

approximation of multidimensional nonlinear functions is 

analyzed in [3] where the authors conclude that ANN training 

is straightforward and in certain cases can be superior to the 

contemporary optimization techniques with respect to the 

execution speeds and the generalization properties. Most 

recent advances in training Arbitrarily Connected Neurons 

(ACNs) [4] show that fully connected networks need even 

smaller number of neurons than standard multilayer 

perceptrons to fulfill the same task. An ANN is usually 

programmed using fast digital signal processors thus enabling 

RT applications such as precise measurement [5], intelligent 

control [6] or accurate modeling [7] of nonlinear structures.  

 

ACRONYMS 

 

ACN Arbitrarily Connected Neurons 

ANN Artificial Neural Network 

CE Compound Error 

ET Execution Time 

FC Flow Computer 

FP Floating Point 

GMDH Group Method of Data Handling 

JT Joule-Thomson 

LCP Low-Computing-Power 

MDL Minimum Description Length 

MLP Multi-Layer Perceptron 

MPU Microprocessor Unit 

RAE Relative Absolute Error 

RBF Radial Basis Function 

RMSE Root Mean Squared Error 

RRSE Root Relative Squared Error 

RS Reduced Set 

RT Real Time 

SV Support Vector 

SVR Support Vector Regression 

 

Also, the analysis of the Support Vector Regression (SVR) 

[8], using various error measures, shows its efficiency in 

approximation of complex systems and in meta-modeling of 

complex engineering analyses. The SVR produces more 

accurate and more robust models when compared to other 

meta-modeling techniques [8]. But, in spite of high 

approximation accuracy, the embedding of nonlinear 

activation or kernel functions in software and the associated 

computational burden for the microprocessor unit (MPU) 

might become unacceptable when considering an 



implementation of ANN or SVR models for RT calculations 

on LCP measurement systems.  

Approximation of complex systems by heuristic self-

organizing polynomials, known as Group Method of Data 

Handling (GMDH), was introduced by A.G. Ivakhnenko [9]. 

The GMDH is essentially a self-organizing data mining 

technique based on the automatic generation of multilayer 

polynomial structures from low-order two-dimensional 

polynomials, which are combined automatically to produce 

the optimum network structure using the principles of 

evolution (inheritance and selection). The obtained models are 

easy to embed in digital computers by implementing only the 

Floating Point (FP) addition and FP multiplication. The 

approximation accuracy can be increased when combining the 

method with genetic programming and backpropagation [10], 

or with sigmoid functions and feedback loop [11]. When 

applied to RT compensation of nonlinear behavior [12], the 

self-organizing nature of GMDH may eliminate the 

complicated structural modeling and parameterization, 

common to conventional modeling strategies.  

The GMDH model performances are typically evaluated by 

the single parameter measures [13], mostly by the sum of 

squared errors, which minimizes the approximation error 

rather than the complexity of the model. The Minimum 

Description Length (MDL) performance measure [14] 

provides a tradeoff between the accuracy and the complexity 

but is not particularly useful when customizing the models for 

RT calculations. Here we propose a simple and intuitive 

Compound Error (CE) measure, which proves to be more 

effective than the MDL and the single parameter measures 

when training the GMDH models for time-constrained 

applications. 

In the following section a brief overview of the GMDH 

algorithm is given including the proposed CE measure for 

model selection. Section III describes the preparation of 

training and validation examples of thermodynamic properties 

of natural gas using complex calculation procedures. The 

analysis of GMDH surrogate models obtained with different 

performance measures and an example of application in RT 

flow-rate measurements is given in Section IV. Finally, in 

Section V, the GMDH is compared to ANN and SVR with 

respect to both the accuracy and the computational cost of the 

models. 

 

II.   GMDH ALGORITHM 
 

The algorithm [9] combines the variables (attributes) from 

lower layers in order to derive the approximation polynomials 

at the current layer. A simple example of a polynomial 

network, generated by the GMDH algorithm, is illustrated in 

Fig. 1 where x1,...,x4 denote the input variables and p1,...,p5 are 

the network nodes, each representing the corresponding low-

order two-dimensional polynomial. Each layer λ=1,...,L may 

contain up to Pλ nodes. The derived polynomial functions 

belong to the class of Kolmogorov-Gabor polynomials 
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Fig. 1. Illustration of a polynomial model generated by the GMDH algorithm 

 

where P represents the model of a multidimensional system, x 

represents the input variable and a denotes the coefficient. To 

simplify the representation, we write down the models in a 

recursive form, e.g. the polynomial model p4 from Fig. 1 can 

be written as: ( )( )43,2244 , xxxppp = . The polynomials are 

derived by a multivariate regression using a training data set 

and evaluated on a validation data set. 

 

A. Polynomial regression 

The regression problem can be formulated in the following 

way. Given a training data set 
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tix R∈ , and the 

corresponding dependent variable R∈tiy , find the best 

function model )(xfy =  which on average converges to the 

true unknown mapping 
~

)(xf  [10]. Consider, for example, a 

two-dimensional second-order polynomial pk to be a basic 

GMDH building block: 
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where k identifies the polynomial within all aggregated 

polynomials, with the corresponding input variables 1kz  and 

2kz  and the coefficients ak0,...,ak5  obtained by a linear 

regression with the least-squares estimator. Note that, similar 

to ACNs [4], the variables 1kz  and 2kz  in (3) can be the 

output from any network node from lower layers including the 

initial variables x from ‘Layer 0’ (see Fig. 1). In order to 

calculate the coefficients, ak0,...,ak5, of the polynomial (3), a 

set of 6 simultaneous linear equations 
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must be solved, where M is a total number of training samples 
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and tiy  is the i-th value of dependent variable from the 

training set. From (3) and (4) one can obtain the matrix form 

Zay =  for a least squares fit, which, after pre-multiplying by 

the matrix transpose Z
T
 to get the matrix equation 

ZaZyZ TT = , can be solved by obtaining the coefficient 

vector ( ) yZZZa T1T −
= , where 
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In our implementation of the GMDH algorithm the above set 

of linear equations (4) is solved by using Gauss elimination 

method with forward elimination, back substitution, and 

pivoting [15]. 

 

B. Model selection 

The total number of possible GMDH models is increasing 

exponentially by increasing the number of layers. To make the 

search feasible, a beam search is typically used in the GMDH 

algorithm. Keeping the algorithm tractable by such a 

constraint causes it to perform sub-optimally, but often a 

satisfactory suboptimal solution suffices. The model selection 

can be formulated in the following way. Given a validation 

data set 
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of data vectors ( )
Kvivivivi xxx ,...,,

21
=x , K

vix R∈ , and the 

corresponding output values R∈viy , evaluate the derived 

model p(x) by using the performance measure ( )( )xpEE =  

and align it accordingly. A maximum of Pλ best qualified 

models are selected and retained at each layer. In this way the 

models on the next layer combine only the best models from 

the previous layers. 

Single Parameter Performance Measures: Different single 

parameter performance measures [13] can be used when 

selecting the models with best prediction. A GMDH algorithm 

typically selects the model based on the least squares estimate 

e.g. Root Mean Squared Error (RMSE) 
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where viy  denotes the i
th

  instance of dependent variable from 

the validation data set and vip  is its approximation calculated 

by the corresponding polynomial model using the validation 

data set (5). While the mean squared error magnifies the effect 

of outliers, the Relative Absolute Error (RAE) measure 
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treats all sizes of error evenly according to their magnitude, 

where ∑ =
=

N

i viv y
N

y
1

1  denotes the mean value of the 

dependent variable from the validation data set. 

The Root Relative Squared Error (RRSE) takes the total 

squared error and divides it by the squared error of the average 

of the actual values from the validation data set i.e.: 
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The RRSE measure is equivalent to RMSE since it can be 

obtained by multiplying the RMSE by a constant i.e. 

∑ =
−⋅=
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2)( . The RRSE shows how 

close the model approximates the real system regardless of the 

dynamic range of the output function. The single parameter 

measures (6)-(8) optimize only the corresponding error 

performances taking no care of the complexity, i.e. the 

Execution Time (ET) of the model. This can lead to complex 

models with low approximation error having unacceptably 

long ET. 

MDL Measure: Minimum Description Length (MDL) [14] 

is a well known principle which provides a tradeoff between 

the accuracy and the complexity of the model. According to 

[16], the MDL for linear polynomial regression consists of 

two terms: 
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where N denotes the number of observations (validation data 

vectors) and k is the number of parameters (coefficients) in the 

model. The first term in (9) can be interpreted as the number 

of bits necessary to encode the observations while the second 

term can be understood as the number of bits necessary to 

encode the parameters of the model. The model achieving the 

lowest MDL is encoding the observations the most efficiently 

but the most efficient encoding does not always lead to the 

best solution to a particular modeling problem. Next we 

introduce a simple Compound-squared-relative-Error (CE) 

measure of model performances, which forces the algorithm to 

build more appropriate models for RT execution than the 

MDL and the single parameter measures. 

CE Measure: In RT measurements the calculation 

procedures must end within the specified time intervals. In 

cases when the computing power of the embedded system 

does not guarantee the execution of the procedures in RT it 

may be necessary to construct simplified surrogates with as 

low degradation of the approximation accuracy as possible. 

Here we propose a simple and intuitive two-parameter 

Compound squared relative Error (CE) measure for model 

selection i.e. 
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where Texe denotes the ET of the model, Errs0 and Texe0 



represent the corresponding thresholds for the RRSE and ET, 

while cw (0≤cw≤1) denotes the weighting coefficient. The CE 

measure (10) consists of two normalized error terms weighing 

up the RRSE and the ET (complexity) of the model. We 

employed the RRSE instead of RMSE in (10) since the 

relative error is more frequently used for the characterization 

of the measurement system accuracy than the absolute error. 

The use of RRSE instead of RMSE in (10) has the same effect 

on model selection since it can be concluded from (6) and (8) 

that: rmsormsrrsorrs EEEE = . Normalization by the 

corresponding thresholds (Errs0 and Texe0) makes the 

approximation error and the ET (complexity) of the model 

commensurable since they become dimensionless. The 

weighting coefficient specifies the contribution of each term. 

For cw=1 the CE measure (10) reduces to RRSE term only and 

for cw=0 to ET term only. 

The GMDH algorithm is greedy and there is no guarantee 

that the satisfactory model is going to be found with respect to 

both constraints regardless of the applied performance 

measure. Unlike MDL and single parameter measures the CE 

measure controls the way the selected models approach to 

RRSE and ET thresholds and thus increases the probability to 

discover the satisfactory model. The weighting coefficients 

larger than 0.5 are enhancing the constraint on RRSE while 

relaxing the control of the ET. The coefficients lower than 0.5 

have opposite effect. The optimal value of the weighting 

coefficient for a problem is not known beforehand and it has 

to be found experimentally. For a suboptimal coefficient, the 

algorithm may fail to find a model that conforms to given 

constraints. 

 

Execution Time of the Model: In order to be applicable to 

RT measurement systems the surrogate model of the complex 

calculation procedure must satisfy the requirements regarding 

the accuracy and the ET, the most critical parameters in RT 

measurements: 
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The ET of the polynomial model can be estimated in the 

following way: 
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where Nx denotes the total number of basic second-order two-

dimensional polynomials (3) in the model to be calculated, 

Nadd and Nmul is the corresponding total number of FP 

additions and FP multiplications in the basic polynomial, 

while Tadd,  and Tmul denote the average execution time of 

software routines implementing the FP addition and the FP 

multiplication, respectively. If we rewrite the basic 

polynomial (3), its calculation is reduced to Nadd=5 FP 

additions and Nmul=5 FP multiplications i.e. 
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III.   TRAINING AND VALIDATION SAMPLES OF 

THERMODYNAMIC PROPERTIES OF NATURAL GAS 

 

A necessary precondition for accurate flow measurements 

of natural gas is the compensation of the adiabatic expansion 

effects based on the precise calculation of natural gas 

properties. The procedures for the calculation of 

thermodynamic properties of a real gas [17]-[19] need 

substantial computing power in order to be repeatedly 

executed in RT. It may be necessary to embed into the Flow-

Computer (FC) hardware a high speed MPU or math 

coprocessor or both in order to ensure completion of the 

calculations in RT. That would increase both the power 

consumption and the price of a FC. 

The flow measurement standards [20][21] allow the use of 

properties of an ideal instead of a real gas only in low pressure 

applications. At higher pressures it may cause a significant 

error in flow-rate measurements, especially at low 

temperatures and at high differential pressures [17]. In order to 

preserve as high accuracy as possible and to ensure the 

completion of the calculations in RT, we aim to build a low 

complexity GMDH surrogate of complex original procedures 

optimized with respect to both the approximation error and the 

execution time. The approach will be verified on the models 

of natural gas thermodynamic properties. Particularly we will 

emphasize the effect of the Joule-Thomson (JT) expansion on 

the accuracy of measurements of the flow-rate and 

demonstrate its compensation by the corresponding GMDH 

polynomial model tailored for RT execution. 

The measurement of the fluid flow-rate by means of 

differential pressure devices is specified by the corresponding 

measurement standards [20][21]. The calculation of pressure-, 

temperature- and composition-dependent properties of natural 

gas for industrial measurements is detailed in [22]-[24]. The 

procedure for the calculation of compression factor and 

density of a natural gas mixture using AGA-8 detail 

characterization method [22][23] is based on 23 input 

parameters specified in Appendix I. The compression factor, 

density, etc. can be also calculated from physical properties of 

a natural gas using SGERG-88 equation [24] where the 

corresponding iterative calculation is based on 6 input 

parameters detailed in Appendix II. Compared to [23], the 

procedure in [24] is considerably faster but, unfortunately, 

there is no procedure available in literature for the calculation 

of thermodynamic properties of a natural gas, based on 

parameters given in Appendix II. 

Hence, we aim to map the complex 23-dimensional models 

[19] into the corresponding 6-dimensional space [24]. To 

accomplish this, the corresponding 23-dimensional training 

and validation data vectors are randomly generated, by 

satisfying the range limits given in Appendix I, and the 

corresponding thermodynamic properties (JT coefficient, 

molar heat capacity, and isentropic exponent) [19] are 

calculated. The 23-dimensional data sets are then mapped into 

the 6-dimensional space by satisfying the operating ranges 

given in Appendix II, where the values of only two variables 

(HS and d) need to be calculated in accordance with [25], 



while the remaining four variables are identical in both spaces. 

Finally, the following 6-dimensional random data sets are 

obtained: 
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where the subscript ‘t’ stands for the training and the subscript 

‘v’ for the validation samples while M=20000 and N=20000 

denote the total number of training and validation samples, 

respectively. Each sample in (14) and (15) consists of 6 input 

variables (Appendix II) and the corresponding relation 

(thermodynamic property) y. The polynomial models of the 

relation y are generated from data sets (14) and (15) using the 

GMDH algorithm and the corresponding error criterion (6)-

(10). 

 

IV.   EXPERIMENTAL RESULTS 

 

A.  Modeling the Joule-Thomson Coefficient of Natural Gas 

The GMDH polynomial models are tailored for our FC 

based on LCP MPU (Z84C15, 8-bit/16-MHz) with embedded 

FP subroutines for single precision addition and multiplication 

having the average execution time approximately equal to 50 

µs and 150 µs, respectively. The models are learned offline by 

using training (14) and validation (15) samples. Different 

results have been obtained by varying the error thresholds 

(11), the error criteria (6)-(10) and the maximum total number 

of the best models that can be retained per each layer.  

RRSE, RMSE and RAE Performance Measures: Fig. 2 

illustrates how the RRSE criterion (8) forces the algorithm to 

decrease the RRSE error of the ‘best’ JT coefficient 

polynomial models when increasing the number of layers, but 

allows the ET of the models to grow uncontrolled. Fig. 2 

shows the normalized ET (dotted lines) and RRSE (solid 

lines) in a logarithmic scale for the best 10 models per each 

layer. From Fig. 2 it can be seen that all ET lines exceeded the 

threshold (normalized error = 1) before any of the RRSE lines 

goes below it and the algorithm fails to find the satisfactory 

model. The identical results are obtained when using RMSE 

(6) instead of RRSE (8) and very similar algorithm behavior 

for RAE (7) measure. 

MDL Performance Measure: Fig. 3 illustrates how the MDL 

criterion (9) forces the algorithm to build the models with 

minimum description length but fails to find any model 

satisfying both conditions (RRSE and ET thresholds). 

 CE Performance Measure: Fig. 4 demonstrates how the CE 

performance measure (10) forces the algorithm to search for 

the satisfactory model of the JT coefficient by decreasing the 

RRSE while controlling the increase of the ET. From Fig. 4 it 

can be seen that the RRSE of at least one model (solid lines) 

drops below the threshold before any of the ET (dotted lines) 

exceeds it and the algorithm finds the first satisfactory model 

at layer 13. By increasing the number of layers the RRSE of 

the models is further decreased but the ET slightly increases 

and at layer 22 exceeds the threshold. The results in Fig. 4 

have been obtained for the weighting coefficient cw=0.6. 

Similar patterns have been also obtained for different training 

and validation data sets. 
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Fig. 2. Illustration of the GMDH algorithm with RRSE criterion (8) failing to 

find a satisfactory model for the JT coefficient. The RRSE (solid lines) and 

the ET (dotted lines) are normalized to their respective thresholds. 
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Fig. 3. Illustration of the GMDH algorithm with MDL criterion (9) failing to 

find a satisfactory model for the JT coefficient. The RRSE (solid lines) and 

the ET (dotted lines) are normalized to their respective thresholds. 

 

0.01

0.10

1.00

10.00

100.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Layer

N
o

rm
a
li

z
e
d

 i
n

d
ic

a
to

rs
 o

f 
m

o
d

e
l 

a
c
c

e
p

ta
b

il
it

y
 f

o
r 

C
E

 m
e
a

s
u

re

Threshold level

Errs/Errs0 

Texe/Texe0

CE measure: c w =0.6 M = 20000

N = 20000

L = 24

Pλ = 50

Errs0 = 2.5 %

Texe0 = 50 ms

 
Fig. 4. Illustration of the GMDH algorithm approaching the error thresholds 

(11) for JT coefficient by using the CE criterion (10). The RRSE (solid 

lines) and the ET (dotted lines) are normalized to their respective 

thresholds. 

 

Fig. 5 illustrates the effect of the weighting coefficient cw in 



CE measure on the RRSE and ET, where the average 

normalized RRSE and ET are shown for the best 10 models 

obtained at layer 15. From Fig. 5 it can be seen that, in this 

particular case, the RRSE is decreasing and the ET is 

increasing with the increase of the weighting coefficient and 

in the interval 7.05.0 ≤≤ wc  both parameters are below the 

given thresholds where the satisfactory models have been 

found. The best models with almost identical performances 

have been found for cw=0.5 and cw=0.6. 

GMDH Model: The computer generated graph of the best 

model of a JT coefficient, obtained at layer 13 by applying 
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Fig. 5. Illustration of the effect of the weighting coefficient in the CE 

performance measure on the RRSE and ET of the models. The average 

results for the 10 best models obtained at layer 15 are shown. 

 

minimum CE criterion (10) with cw=0.5, which satisfies the 

RRSE and ET requirements, is shown in Fig. 6 and the 

corresponding polynomial in recursive form is given by 

 

)))()(())))

()))())))())((

())())()((((((

))()))()(())()

)))())((())())(

)(((((((((((((

2121302022215

014110252335456

7523501310248911

52354553121341102

523354567523501

31024891114151617181923

,xx,P,xxP,P,x,xx

,x,P,xx,P,x,xx,P,x,xxPP

,P,xx,P,xx,P,xxPPPPPP

,,xx,P,xx,P,xxP,P,xx,Px

,,xx,P,x,xxPP,P,xx,P,xxP

,,xxPPPPPPPPPPPPPy =

.(16) 

 

Due to space limitations the regression coefficients of the 

polynomials (P0,...,P23) from (16) are not shown. The 

threshold levels (5) were set to Errs0=2.5% and Texe0=50 ms 

and the maximum number of qualified polynomial models per 

each layer, λ=1,...,13, to Pλ=50. The input parameters 

(variables) in Fig. 6 are denoted by ‘X0’ to ‘X5’ and are 

described in Appendix II. The layers in Fig. 6 are denoted by 

‘L00’ to ‘L13’ and the polynomials by ‘Pm(n)’ where ‘m’ 

indicates the order in which the corresponding polynomial is 

calculated and ‘n’ denotes the total number of the basic 

polynomial (13) computations when the polynomial function 

is calculated recursively, e.g. (16).  

The calculated RRSE (2.498 %) and the ET (41 ms) are 

both below the threshold levels. Fig. 6 illustrates how the 

algorithm, at upper layers, almost regularly combines the high 

order model with the corresponding low order one trying to 

improve the accuracy of the resulting model as much as 

possible with the lowest possible increase of its complexity. 

The estimated ET of the polynomial model (41 ms) 

corresponds to the computation of the recursive relation ‘y’ 

given in (16), where 41 basic polynomial calculations need to 

be executed. Note that the ET can be also estimated by the 

straightforward calculation of the polynomial tree (24 

polynomials; P0 to P23) instead of the recursive relation (41 

polynomials) but for the simplicity of the implementation we 

estimate here the execution time of the recursive equation. The 
L=13, D=0, Ecomp=8.333E-1, Ermsq=1.983E-2, Emax=-0.1969, Errs=2.493%, Era=2.144%, Texe=41.000ms
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Fig. 6. The GMDH polynomial model of a JT coefficient, obtained at layer 13 

using the CE criterion (10) with cw=0.5. 

 

calculation of the polynomial model needs only the software 

routines for FP addition and FP multiplication that can be 

easily incorporated into the FC software. For the calculation of 

the original JT coefficient model [19] a complete FP package 

is necessary. 

When simulating the execution in the FC with the integrated 

FP software package instead of the math coprocessor, the 

average calculation time of the original JT calculation 

procedure [19] takes roughly 1500 ms on average. The 

average execution time of the recursive equation of the best 

polynomial model (16) is more than 36 times shorter than the 

original procedure what makes the polynomial model suitable 

for implementation in RT measurements particularly in LCP 

systems. It is obvious that the same GMDH approach could be 

used for high computing power systems, only the execution 

times and the corresponding thresholds must be properly 

adjusted. 

   

B. JT Coefficient Calculation Example 

The accuracy and the precision of the JT coefficient model 

from Fig. 6 was tested on 10 randomly generated validation 

data sets each consisting of 20000 samples. The standard 

deviation of RMSE equals approximately 1% of the average 

value for any given validation set and we may conclude that 

the initial model is well represented by the derived surrogate. 

Fig. 7 shows an example of relative error (JTgmdh-JTiso)/JTiso of 

the JT coefficient calculated by the best GMDH polynomial 

model (JTgmdh) obtained at layer 13 (16) and the complex 

accurate procedure (JTiso) detailed in [19].  The error is given 

for a JT coefficient of a natural gas mixture specified in [19] 



(“Gas3” from Table G.1) which exhibits the worst GMDH 

polynomial approximation of all six mixtures given for 

validation purposes. From Fig. 7 it can be seen that the 

relative absolute error never exceeds 4.00 % for temperatures 

above 273 K. For temperatures below 273 K the relative 

absolute error increases especially at higher pressures and 

goes up to 7.0% at 12 MPa and 263 K. Useful surrogates are 

also derived for the molar heat capacity and the isentropic 

exponent of a natural gas by applying the CE measure but, due 

to space limitations, only the results obtained for the JT 

coefficient model are included in the paper. 
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Fig. 7. Illustration of a relative error of the JT coefficient calculated by the 

corresponding polynomial model (16) instead of the complex accurate 

procedure detailed in [19]. 

 

 

C. Compensation for the JT Effect in the Flow-Rate 

Measurements by the GMDH Polynomial Model 

The temperature of a gas flowing through a constriction 

(orifice) is changing and thus affects the flow-rate 

measurement accuracy. The effect is known as JT expansion 

and can be compensated by the JT coefficient. In order to 

illustrate the JT effect and its compensation we simulated the 

measurement of the flow-rate by means of square-edged 

orifice plate with corner taps [20], with the orifice diameter of 

120 mm, the pipe diameter of 200 mm, the differential 

pressure of 200 kPa, the dynamic viscosity of 0.000012 Pa·s 

and by assuming the temperature sensor locating downstream 

of the orifice. Again, the natural gas mixture ‘Gas 3’ is 

selected from Table G.1 in [19]. Fig. 8 illustrates the results 
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Fig. 8. Illustration of a relative error in a measurement of a natural gas flow-

rate when ignoring the temperature drop due to the JT expansion effect. 

 

of the simulation of the error (Qu-Qiso)/Qiso in the measurement 

of the natural gas flow-rate when ignoring the temperature 

drop due to the JT expansion effect (Qu), instead of  its precise 

correction (Qiso) in accordance with [19]. The relative flow-

rate error increases when decreasing the temperature and 

almost reaches 0.40 % at 263 K and 8.5 MPa. 

Fig. 9 illustrates the results of the simulation of relative 

error (Qgmdh-Qiso)/Qiso) in the flow-rate (Qgmdh) obtained when 

using the GMDH polynomial model (16) and the flow-rate 

(Qiso) obtained when using accurate but complex procedure 

detailed in [19] for the calculation of the JT coefficient and the 

corresponding compensation of the temperature drop [17]. 

From Fig. 8 and 9 it can be seen that the compensation for the 

effect of temperature change, by using the JT coefficient 
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Fig. 9. Illustration of a relative error in a measurement of a natural gas flow-

rate after using the corresponding polynomial model of the JT coefficient 

(16) for the correction of a temperature drop instead of the complex 

accurate procedure detailed in [17]. 

 

model (16), decreases the relative error of the uncorrected 

flow-rate at least by the order of magnitude whilst the 

maximum relative error is decreased more than 20 times. 

The CE measure proved to be very useful in tailoring a 

suitable multilayer polynomial model of a complex calculation 

procedure for the application in RT embedded systems since it 

optimizes concurrently the accuracy and the complexity of the 

model. We have generated different models of the JT 

coefficient and other natural gas properties by using different 

training and validation data sets and by varying the thresholds, 

the maximum total number of models per layer, etc. and we 

found out that in the ET-critical applications the CE measure 

(10) generally leads to the most favorable solution. 

 

V.   COMPARISON TO OTHER METHODS 

 

In this section experiments are described that include SVR 

formulations [26] and multilayered perceptrons in an attempt 

to compare them to the GMDH that uses different selection 

measures in terms of approximation error with an explicit ET 

constraint. What is needed first is to estimate ET for each 

family of models we consider, to make them comparable; this 

will be done in subsection A. ETs of the GMDH models are 

estimated according to (12). In the  subsection B, each family 

of regression algorithms will be addressed separately, 

presenting experimental setup followed by results, 

comparisons and observations. 

 

A. Estimation of the Computational Cost of the Models 

In this work we restricted our attention to the 



implementations of the models in LCP microcomputers 

having no math coprocessor. As we mentioned in Section IV 

the execution time for single precision FP addition in our FC 

is Tadd=50 µs and for FP multiplication Tmul=150 µs. The ET of 

the GMDH model can be roughly estimated by (12). 

The embedding of the multilayer perceptron (MLP) with 

sigmoid activation functions ( ) 1
1

−−+ x
e  into our FC implies 

the implementation of the exponential function (e
x
) in FP 

software. According to [27] the exponential function (e
x
) can 

be approximated by the 7
th

 order polynomial 

( )1
7

0

≤≈∑
=

xxae
k

k

k

x
 with the approximation error 

7102 −⋅=ε . Since the above equation approximates the e
x
 in 

the range |x|≤1 each result must be properly scaled to fit the 

range of x for each real exponent falling outside this interval 

what increases the computational time. To complete the 

calculation of the sigmoid function one FP division is needed 

additionally. Hence, the ET of the calculation procedure 

implemented in our FC software for the simple fully 

connected MLP with N inputs, 1 output neuron with linear 

activation function and 1 hidden layer consisting of M neurons 

with sigmoid activation functions can be roughly estimated 

by: 

 

( )( ) ( )divaddmuladdmlp TTTMTTNMT +++++≈ exp1 , (17) 

 

where Texp, and Tdiv denote the execution time for the FP 

exponential function and FP division, respectively. The 

average ETs for the above FP operations in our FC are: 

Texp=3470 µs and Tdiv=430 µs. 

Support vector machines model [26] can be written in the 

following form: ( ) 01
)( αα +⋅=∑ =

x,xx i

M

i i kf , where )( x,x ik  

is the kernel, αi and α0 are the coefficients and M is the total 

number of support vectors (SV). The polynomial kernel [28] 

has the following form ( ) ( )K
k 021, γγ +⋅= xxx,x 21 , where γ 

and γ0 are the constants and K is a positive integer denoting 

the degree of the polynomial. The radial basis function (RBF) 

kernel [28] has the following form: ( )
2

21 xx

21 x,x
−−

=
γ

ek , 

where γ is a coefficient. The ET of the calculation procedure 

implemented in our FC software for the SVR with polynomial 

kernel and with M N-dimensional SVs is estimated by: 

 

( )( )( )exp_ 2 imuladdpsvm TTTNMT +++≈ , (18) 

 

where Tiexp denotes the ET for positive integer exponentiation, 

which depends on the binary representation of the exponent. 

The integer exponentiation can be easily implemented in 

software by saving the intermediate results. Thus the ET of x
K
 

for the exponent K=2 (x
2
) is Tiexp≈Tmul for K=3 (x

2
·x) and K=4 

((x
2
)

2
) Tiexp≈2·Tmul, for K=5 ((x

2
)

2
·x), K=6 ((x

2
)

2
· x

2
) and K=8 

(((x
2
)

2
)

2
) Tiexp≈3·Tmul, for K=7 ((x

2
)

2
· x

2
· x) Tiexp≈4·Tmul, etc. 

The corresponding ET for the RBF kernel is estimated by: 

 

( )( )addmuladdmulsubrsvm TTTTTTNMT +++++≈ 2exp_  (19) 

 

where Tsub=50 µs denotes the average ET for FP subtraction. 

From (17)-(19) one can calculate the maximum allowed 

number of neurons in a hidden layer and SVs for the 

predefined ET of the model. As can be seen from Fig. 6, the 

GMDH model consists of 24 polynomial nodes and the 

execution time (12), when calculating all 24 basic polynomials 

successively, is Tgmdh≈24(5Tadd+5Tmul)=24 ms. Now we can 

use the equations (17-19) to estimate the corresponding 

number of neurons and SVs in MLP and SVR models having 

similar computational complexity (ET≈24 ms). In case of 

MLP with sigmoid activation function the total number of 

neurons in a hidden layer, calculated by (17), is M≈4.486 and 

we fixed the number of neurons to M=4 with Tmlp≈21.400 ms. 

In case of SVR the total number of SVs for RBF kernel, 

calculated by (19), is M≈4.511 and we fixed the number of 

SVs to M=5 with Tsvr≈26.600 ms, respectively. The maximum 

allowable number of SVs for the polynomial kernel depends 

on the degree of the polynomial. Table I shows the estimated 

and the maximum allowable number of SVs with the 

corresponding execution time for the polynomial degree 

varying in the range 1 to 10. 

 

TABLE I 
EXECUTION TIMES OF THE SVR MODEL WITH POLYNOMIAL KERNEL WITH RESPECT 

TO POLYNOMIAL DEGREE AND THE TOTAL NUMBER OF SELECTED SVs 

 

Polynomial 

degree 

Estimated 

number of SVs 

for ET=24 ms 

The maximum allowed 

number of SVs 

Execution 

time in ms 

1 15 15 24.000 

2 13.714 14 24.500 

3 12.632 13 24.700 

4 12.632 13 24.700 

5 11.707 12 24.600 

6 11.707 12 24.600 

7 10.909 11 24.200 

8 11.707 12 24.600 

9 10.909 11 24.200 

10 10.909 11 24.200 

 

B.  Experiments 

GMDH with other measures: The conducted experiments have 

been described in Section IV. For the sake of completeness of 

this chapter, we will retrospect and summarize the 

observations once more. Changes in behavior of the GMDH 

using the proposed CE measure, the RRSE norm, and the 

MDL based measure as selection criteria have been examined 

and their performances evaluated and listed in the Table II 

below. Using our dataset, it has been shown how different 

criteria consider different kinds of models as building blocks 

for future models. 

It can be noticed that the RRSE guided GMDH is 

characterized by the quickest convergence of error, but has 

absolutely no preference over models of smaller complexities. 

When selection is performed according to the MDL measure, 



model complexities are penalized, but the algorithm still fails 

to find a satisfactory solution. The CE offers a variable ratio of 

weights for error and complexity penalties, making it suitable 

for controlling model complexities while increasing 

accuracies, as has been shown in Section IV. 

Note that the MDL principle, seen as a mathematical 

formulation of the Occam's razor, outside the GMDH context, 

inherently tends to prevent overfitting by penalizing model 

complexity. But the GMDH has no need for an overfitting-

preventing selection criterion because model performances are 

calculated on a validation set, different from the training set. 

So a different complexity-penalizing criterion may be more 

useful here; although similar to the MDL-measure in 

formulation, the CE measure has been derived heuristically 

with the goal to serve application-specific requirements. 

Support Vector Regression Variants: The following 

experiments explore support vector regression formulations in 

a prediction-time-constrained context and effects of such 

constraints on model performance. Although SVMs are known 

to yield sparse solutions, their sparsity is often not of 

sufficiently low order for real-time applications, as will be 

shown later on our case. Learning schemes bound to boost 

model sparsity that we consider here are ε-SVR [26] with RBF 

kernel followed by Reduced Set (RS) postprocessing [29] and 

ν-SVR [26] with RBF and polynomial kernels. Experiments 

were run in MATLAB, using LIBSVM [30] and Statistical 

Pattern Recognition Toolbox [28]. 

For all SVR variants used, experiments have been 

performed as follows. Each attribute has been scaled to [0, 1], 

for all training instances. To optimize model parameters, an 

appropriate logarithmic/linear grid search has been performed, 

using 5-fold crossvalidation to evaluate performance of each 

parameter set. Typically, a finer search in the parameter space 

would follow, based on the same performance criterion. 

Finally, a model with the best found set of parameters has 

been built on the entire training set, with its performance 

evaluated on the independent testing set.  Attributes in the 

testing set had beforehand been scaled by the same factors as 

with the training set. 

As a starting point, performance of ε-SVR on our dataset is 

first examined in terms of the RRSE only, disregarding 

prediction time. For off-the-shelf ε-SVR usages, one can find 

recommendations to use some sensible prefixed ε depending 

on the estimated noise level, while optimizing only the C and 

kernel parameters. Indeed, in case of noisy datasets, models 

obtained in such manner may have generalization properties 

that are both good in performance and robust to changes in ε. 

However, what is specific to our dataset is that  it contains no 

additive noise (other than noise due to quantization) and is 

assumed to have had captured all the nonlinearities that 

characterize the underlying, sampled function; in our case it is 

more a matter of interpolating the function value rather than 

generalizing from noisy observations. With that in mind, 

optimal values for ε are expected to fall close to zero (with a 

potentially large C), but should not be made too small in order 

to pave way for some harmless bias in our models. 

Using RBF kernels, our search resulted in a model with 

RRSE = 1.179%, with parameters (ε, C, γ) = (0.01, 30, 1), 

having as much as 4491 SVs - it would take 23892.12 

milliseconds to calculate a single output on our platform. It is 

this large prediction time that makes it inapplicable, for the 

model simply isn't sparse enough. 

To reduce the number of vectors that characterize the 

previously found model,  effect of running RS algorithm on it 

has been measured, with number of vectors limited to 5, 

according to subsection A. The best result it offered is listed in 

Table II, having an unacceptable RRSE = 93.880%. Note that 

we performed an extreme reduction of vectors here, which 

may account for overly-sized approximation error. Indeed, a 

more intelligent strategy might be to process models that are 

less successful but have significantly less SVs, but for 

demonstration purposes this approach suffices. 

The following experiments focus on reducing prediction 

times of SV models more directly, via learning parameters. To 

tweak the number of SVs in the cost-function optimization 

stage, rather than specifying the desired accuracy via ε in ε-

SVR, using ν-SVR is more appropriate. According to [26], ν is 

an upper bound on the fraction of errors and a lower bound on 

the fraction of SVs, which makes a strategy of choosing ν 

closer to zero likely to result in models with fewer support 

vectors. 

Prediction-time-constraint translates to a maximum of five 

SVs in the case of RBF kernel (see subsection A.). In the case 

of polynomial kernel, roughly speaking, maximal number of 

SVs varies between eleven and fourteen for integer degree 

increasing from two to ten (Table I.). Performance of the best 

models we managed to obtain in this manner, with both RBF 

and polynomial kernels, are included in Table II, The best 

model obtained with polynomial kernel has 11 SVs. 

 

TABLE II 
COMPARISON OF THE EXECUTION TIMES AND THE ROOT RELATIVE SQUARED 

ERRORS OF THE MODELS OBTAINED BY USING DIFFERENT TECHNIQUES 

 

Method Parameters ET in ms %RRSE 

GMDH-CE (layerWidth, cw) = (50,  0.5) 24.000 2.493 

GMDH-RRSE layerWidth = 50 24.000 3.495 

GMDH-MDL layerWidth = 50 24.000 3.495 

RS ε –SVR, RBF 

kernel 

(ε, C, γ, reducedTo) = (0.01, 

30, 1, 5 ) 
26.600 93.880 

ν-SVR, RBF kernel 
(ν, C, γ) = (0.0001, 100.0, 

0.0625) 
26.600 34.653 

ν-SVR, polynomial 

kernel 

(ν, C, γ, γ0, K) = (0.00001, 

8, 5, 1, 4)    
20.900 39.780 

MLP, trained by 

gradient descent 
learningRate = 0.001 21.400 12.139 

MLP, trained by 

LM 
learningRate = 0.001 21.400 1.536 

 

 Optimization is performed fast in case of models with few 

support vectors, but the downside is that performances in 

terms of error on the testing set are sensitive to small changes 

in learning and kernel parameters, still making it hard to 

perform a solid parameter search. Although both models 

obtained in this way are better than the one using RS 

postprocessing, probably due to the fact that selection of the 



SV takes place in the optimization rather than postprocessing 

stage, their approximation performance is not admirable. 

Multilayered Perceptrons: For the MLP experiments, 

MATLAB Neural Network Toolbox [31] has been used, with 

data preprocessing similar as with previous experiments. With 

the MLPs it is possible to limit model complexity a priori. We 

considered a fully connected MLP limited in size to fit the 

imposed time-constraint (Subsection A), consisting of four 

sigmoid input neurons and one linear output neuron trained by 

the gradient descent and with the LM algorithms, respectively. 

Results are shown in Table II. 

Gradient descent is known to get stuck in local minima for 

many problems [32][33], however, MLP trained by LM 

managed to outperform proposed method in terms of accuracy 

in a complexity-restrained scenario. Recalling the way 

optimization is preformed with the GMDH may offer an 

explanation: once calculated, parameters of the GMDH model 

are fixed, and models get refined by building more complex 

ones based on precalculated ones with greedily determined 

parameters, while in the case of the MLP all model parameters 

are subject to optimization simultaneously. 

 

VI.   CONCLUSION 

 

Modeling the complex calculation procedure by self-

organizing polynomial networks, with respect to the accuracy 

and the execution time, offers the possibilities of their efficient 

customization for RT applications. The complexity of the 

model can be decreased extremely as well as the execution 

time but the accuracy of the surrogate is somewhat degraded 

when compared to referent physical model. This algorithmic 

trade-off between the accuracy and the complexity proves to 

be a favorable approach for LCP embedded systems since the 

referent physical models are sometimes too complex to be 

executed in RT.  

The CE measure of model efficiency generally discovers 

more favorable GMDH surrogates with respect to the 

execution time and the accuracy then the single error criteria 

or MDL measure. It was also demonstrated how the 

implementation of the derived polynomial model of the JT 

coefficient into the FC enables the compensation for the 

adiabatic expansion effect in RT and considerably improves 

the accuracy of the flow-rate measurements. 

Comparison with commonly used regression methods 

shows superiority of the MLP with respect to both the 

approximation accuracy and the computational cost. Still, a 

high approximation accuracy, low ET and fairly simple coding 

of the GMDH-CE model make it quite suitable for the 

implementation in LCP systems with limited resources. To 

increase descriptive power of the GMDH while retaining the 

same model complexity, backward parameter tuning methods 

similar to [10] in conjunction with the proposed CE 

complexity-penalizing measure seem to point in a promising 

direction. 

 

APPENDIX I 
RANGES OF INPUT PARAMETERS FOR THE CALCULATION OF THERMODYNAMIC 

PROPERTIES OF A NATURAL GAS IN ACCORDANCE WITH [19] AND [23] 

 

Index Parameter description Range of application 

0 nitrogen 0 ≤ xN2 ≤ 0.20 

1 carbon dioxide 0 ≤ xCO2 ≤ 0.20 

2 methane 0.7 ≤ xCH4 ≤ 1.00 

3 ethane 0 ≤ xC2H6 ≤ 0.10 

4 propane 0 ≤ xC3H8 ≤ 0.035 

5 n-butane 

6 iso-butane 

n-butane+iso-butane 

0 ≤ xC4H10 ≤ 0.015 

7 n-pentane 

8 iso-pentane 

n-pentane+iso-pentane 

0 ≤ xC5H12 ≤ 0.005 

9 n-hexane 0 ≤ xC6H14 ≤ 0.001 

10 n-heptane 0 ≤ xC7H16 ≤ 0.0005 

11 n-octane 

12 n-nonane 

13 n-decane 

n-octane+n-nonane+n-decane 

0 ≤ xC8H18+ xC9H20+ xC10H22 ≤ 

0.0005 

14 hydrogen 0 ≤ xH2 ≤ 0.10 

15 carbon monoxide 0 ≤ xCO ≤ 0.03 

16 water 0 ≤ xH2O ≤ 0.00015 

17 helium 0 ≤ xHe ≤ 0.005 

18 oxygen 0 ≤ xO2 ≤ 0.0002 

19 hydrogen sulfide 0 ≤ xH2S ≤ 0.0002 
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21 Absolute pressure in MPa 0 < p ≤ 12 

22 Temperature in K 263 ≤ T ≤ 368 

 

APPENDIX II 

RANGES OF INPUT PARAMETERS FOR THE CALCULATION OF COMPRESSION FACTOR 

OF A NATURAL GAS IN ACCORDANCE WITH [24] 

 

Index Parameter description Range of application 

0 xCO2 - mole fraction of carbon dioxide 0 ≤ xCO2 ≤ 0.20 

1 xH2 - mole fraction of hydrogen 0 ≤ xH2 ≤ 0.10 

2 p - absolute pressure in MPa 0 < p ≤ 12 

3 T - temperature in K 263 ≤ T ≤ 368 

4 d - relative density 0.55 ≤ d ≤ 0.80 

5 HS - superior calorific value in MJ/m3 30 ≤ HS ≤ 45 
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