Anisotropic transport properties of single-crystalline d-Al- Ni-Co decagonal quasicrystal

P. Popčević^a, J. Ivkov^a, D. Stanić^{a,b}, K. Velebit^a, D. Cmrk^a, J. Dolinšek^c, P. Gille^d, and A. Smontara^{a,*}

^a Institute of Physics, Laboratory for the Physics of Transport Phenomena, Bijenička 46, P.O.Box 304, HR-10000 Zagreb, Hrvatska (Croatia)

^bPhysics Department, Josip Juraj Strossmayer University in Osijek, Trg Ljudevita Gaja 6, HR-31000 Osijek, Hrvatska (Croatia)

^cJ. Stefan Institute, University of Ljubljana, Jamova 39, SI-1000 Ljubljana, Slovenia ^dDepartment of Earth and Enviromental Sciences, Crystallography Section, Ludwig-Maximilians-Universität München, Theresienstrasse 41, D-80333 München, Germany

Keywords: d-Al-Ni-Co, electrical resistivity, thermopower, Hall coefficient, thermal conductivity, anisotropy

The crystallographic-direction-dependent transport measurements were performed on large single crystals [1] of d-Al-Ni-Co with the exact composition Al_{69} ₇Co_{10.0}Ni_{20.3}. The measurements were performed along three orthogonal directions which are: [00001] direction (periodic one, and that of the 10-fold axis of d-phase), and [10-00] and [10000] directions which are the of two different 2-fold axes in the quasiperiodic plane. Anisotropic electrical resistivity, ρ , thermopower, S, and thermal conductivity, κ , were measured from 2 to 300 K and the Hall coefficient, $R_{\rm H}$, was measure from 90 to 379 K. As expected, the anisotropy of the electrical resistivity, thermopower and thermal conductivity measured along 2-fold axes is small or negligible, and the anisotropy of $R_{\rm H}$ for magnetic field, B, along 2-fold axes is within the experimental error. At the same time there is a significant anisotropy in ρ , S, and κ values obtained for 2-fold axes and those measured for the periodic [00001] direction. In the Hall effect this anisotropy corresponds to the anisotropy of $R_{\rm H}$ for *B* parallel to [00001] ($R_{\rm H} < 0$) and for *B* parallel to 2-fold axes ($R_{\rm H} > 0$). The results agree well with the previous results for d-QCs [2-4] which are either performed on samples of the lesser quality or are incomplete in the sense that are not performed for the two distinct 2-fold axes. Also, there is correlation of the anisotropy in the transport properties of d-OCs and the anisotropy in $Al_{13}TM_4$ class of the approximants to decagonal quasicrystals [5-7].

References:

- [1] B. Bauer, et al., Phil. Mag. 86 (2006) 317-322.
- [2] S. Martin, et. al., Phys. Rev. Lett. 67 (1991) 719.
- [3] Y.P. Wang et al., Phys. Rev. B 48 (1993) 10542-10545.
- [4] A.D.Bianchi et al., Phys. Rev. B 58 (1998) 3046-3056.
- [5] A. Smontara, et al., Phys. Rev. B, 78 (2008) 104204.
- [6] J. Dolinšek, et al., Phys. Rev. B, 79 (2009) 184201.
- [7] P. Popčević, et al., Phys. Rev. B, 81 (2010) 184203.

^{*} Corresponding author. E-mail address: ana@ifs.hr