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Abstract. We consider a radio network consisting of n stations represented as the complete
graph on a set of n points in the Euclidean plane with edge weights ω(p, q) = |pq|δ +Cp, for
some constant δ > 1 and nonnegative offset costs Cp. Our goal is to find paths of minimal
energy cost between any pair of points that do not use more than some given number k of
hops.
We present an exact algorithm for the important case when δ = 2, which requiresO(kn logn)
time per query pair (p, q). For the case of an unrestricted number of hops we describe a family
of algorithms with query time O(n1+α), where α > 0 can be chosen arbitrarily. If we relax
the exactness requirement, we can find an approximate (1 + ϵ) solution in constant time by
querying a data structure which has linear size and which can be build in O(n logn) time.
The dependence on ϵ is polynomial in 1/ϵ.
One tool we employ might be of independent interest: For any pair of points (p, q) ∈ (P ×P )
we can report in constant time the cluster pair (A,B) representing (p, q) in a well-separated
pair decomposition of P .

1 Introduction

The shortest-path problem is one of the fundamental problems which has been studied for a long
time. In this work, the following variant is examined: Given a set P of n points in R2 we consider
the complete directed graph G = (P, P × P ) with edge weights

ω(p, q) = |pq|δ + Cp, (1)

where δ > 1 is a constant, Cp is a node-dependent offset cost and |pq| denotes the Euclidean
distance between p and q. For every path π, let ω(π) denote the length of π with respect to the
length function. We say that a path π(p, q) from p to q is a t-approximate shortest path if and
only if ω(π(p, q)) ≤ ω(π′(p, q)) · t, for any other path π′(p, q) from p to q. For every integer k ≥ 1,
a k-hop shortest p-q-path is a shortest path from p to q that uses at most k edges.

Motivation

The original motivation for our problem stems from applications in wireless networking. In recent
years wireless network technology has gained tremendous importance. It not only opens new
dimensions in the availability of high-bandwidth connections in particular for mobile applications,
but also more and more replaces so far wired network installations. While the spatial aspect was
already of interest in the wired network world due to cable costs etc., it has far more influence
on the design and operation of wireless networks. The power required to transmit information
via radio waves is heavily dependent on the Euclidean distance between sender and receivers and
in fact depends superlinearly on this distance. Unfortunately, when measuring distances between
radio stations in terms of the power required to communicate, we lose the nice properties of metric
spaces where the triangle inequality holds, and many problems that are simple in a metric space
become quite challenging.

⋆ Preliminary versions of parts of the results described here were already published in the proceeding of
11th Annual European Symposium on Algorithms (see [FMS03]) and the proceeding of 29th Interna-
tional Colloquium on Automata, Languages and Programming (see [BSS02]).



Fig. 1. A radio network with 9, 4, 2-hop paths from P to Q with costs 9, 36, 50.

Picture the following scenario: during a long summer drought, wild fires have started in a
large region of a remote nature preserve that is hardly accessible by ground transportation. To
be able to continuously assess the situation and plan appropriate countermeasures, airplanes are
sent out to deploy thousands of sensor nodes which are to gather, aggregate and transfer data to
mission control. Naturally the lack of any established communication infrastructure within in such
a nature preserve makes wireless communication the only possible way to interconnect the sensor
nodes and enable them to report their sensed data. Apart from their sensing devices, each sensor
node consists of a radio unit for transmitting/receiving messages via radio waves and a power
supply (e.g. battery or solar panel). Communication takes place by a station transmitting a signal
of a certain strength. Any other station being sufficiently close – as modelled by Equation (1) –
can receive this message. The exponent δ is typically between 2 and 6; for δ = 2 the edge weights
reflect the exact energy requirement for free space communication. For larger values of δ we get a
popular heuristic model for absorption effects [Rap96,Pat00]. The offset cost Cp accounts for the
distance independent energy consumption of the wireless stations (e.g. the energy consumption
of signal processing during sending and receiving). Communication between two stations that are
not within their respective ranges can be achieved by multi-hop transmission, where intermediate
stations serve as relays to forward the message. Even when two stations are within communication
range, they still might prefer to use a multi-hop transmission in order to minimize the overall energy
needed (see Figure 1). In fact, in our idealistic model we are going to assume that every station
is within communication range of all others and will be mainly concerned with using the least
possible energy needed to transmit messages between two different stations. Solely optimizing for
energy consumption typically leads to multi-hop paths with many relay stations, which increases
both latency as well as the probability of one of the many relay stations failing. Limiting the
number of retransmissions to some fixed number k is a natural way to avoid such issues.

Related Work

The first attempt, to our knowledge, to cope with Dijkstra’s quadratic complexity of the exact
shortest path problem in a complete geometric graph with a superlinear distance function like
ω(p, q) = f(|pq|δ) is by Chan, Efrat, and Har-Peled [EH98,CE01], modelling the fuel consumption
of airplanes routed between a set P of airports. They observe that for ω(p, q) and δ ≥ 2, exact
geometric shortest paths are equivalent to shortest paths in the Delaunay triangulation of P ,
i.e., optimal paths can be computed in time O(n log n). This is rather easy to see since a non-
Delaunay edge e on a shortest path contains points inside the smallest circle enclosing the edge
(replacing e by two edges going via such a point will yield a smaller cost for δ ≥ 2). Note that this



approach completely collapses for k-hop paths because most Delaunay edges are very short. The
main contribution of Chan et al. is a sophisticated O(n4/3+γ) time algorithm for computing exact
geometric shortest paths for monotone cost functions ω(p, q) = f(|pq|) where γ is any positive
constant.

Not insisting on the exact shortest path/distance computation has allowed for drastic improve-
ment in the running time. For example, Goel et al. [GIV01] used the idea of reducing the geometric
shortest path problem to a small number of calls to a data structure for (1+ϵ)-approximate nearest
neighbors. For general undirected graphs and for any integer r ≥ 1, Thorup and Zwick [TZ01]
show how to construct a distance oracle which answers (2r− 1)-approximate queries in O(r) time
using a data structure that takes O(rmn1/r) (expected) construction time and essentially optimal
O(rn1+1/r) space. They also show that the (2r − 1)-approximate paths can be produced in con-
stant time per edge. Since the query time is essentially bounded by a constant (if r is constant),
Thorup and Zwick also refer to their queries as approximate distance oracles. Their algorithms
are also simple and easy to implement efficiently.

Our results

We consider the following problem: Given a set P of n points in R2 and some constant k, report
for a given query pair of points p, q ∈ P , a path π = π(p, q) = v0v1v2 . . . vl, with vertices vi ∈ P
and v0 = p, vl = q which consists of at most k segments, i.e. l ≤ k, such that its weight ω(π) =∑

0≤i<l ω(vi, vi+1) is minimized. By πopt = πopt(p, q) we denote an optimal path from p to q under
this criterion.

In Section 2 we present exact algorithms for the above problem. We start with a very simple
algorithm for the special case δ = 2 based on Voronoi diagrams that finds optimal 2-hop paths
for uniform offset costs in time O(log n) after a preprocessing time of O(n log n) and space O(n).
Using dynamic programming this can easily be extended to an O(n log n) algorithm for optimal
paths with at most four hops. We then give a very general algorithm for finding optimal routes
with up to k hops and arbitrary weight function which essentially has O(kn2) running time for
complete graphs. We show that in the special case δ = 2 such a naive algorithm can be speeded
up by reducing it to a special case of the 3D nearest neighbor problem which can be solved
efficiently. The improved algorithm has running time O(kn log n) and uses O(n) space. All the
above algorithms are quite practical.

In Section 3 we construct approximate algorithms for the k-hop shortest path in radio networks.
Our main result is a data structure that uses linear space and can be built in time O(n log n) for
any constants k, δ > 1, and ϵ > 0. In constant time it allows to compute k-hop paths between
arbitrary query points that are within a factor (1+ϵ) from optimal. When k, δ, and ϵ are considered
variables, the query time remains constant and the preprocessing time is bounded by a polynomial
in k, δ, and 1/ϵ.

The algorithm has two main ingredients that are of independent interest. The first part, dis-
cussed in Section 3.2, is based on the observation that for approximately optimal paths it suffices to
compute a shortest path using a constant-size subset of the points — one point for each square cell
in some grid that depends on the query points. This subset can be computed in time O(log n) us-
ing well known data structures supporting (approximate) quadratic range queries [BKOS,AM00].
These data structures and in particular their space requirement are independent of k, δ, and ϵ.
Some variants even allow insertion and deletion of points in O(log n) time. Section 3.3 discusses
the second ingredient. Well separated pair decompositions [CK92] allow us to answer arbitrary
approximate path queries by precomputing a linear number of queries. We develop a way to access
these precomputed paths in constant time using hashing. This technique is independent of path
queries and can be used for retrieving any kind of information stored in well separated pair decom-
positions. Since the query time is bounded by a constant, our result can be seen as an approximate
path oracle for the radio networks.

Finally Section 4 gives a more theoretical solution for finding an exact shortest path for the
case of δ = 2 and an unlimited number of hops with running time and space O(n1+ϵ) for any
constant ϵ > 0. The solution is based on 3D closest bichromatic pair queries [Epp95] similar to



the general algorithm in [CE01]. We mainly improve the nearest neighbor queries involved to take
advantage of the special structure of the problem.

All algorithms we give here are sequential centralized algorithms. Although in wireless net-
works, distributed algorithms are in principle more desirable, we believe that centralized algo-
rithms are a necessary starting point. In particular, it seems that many distributed algorithms
conceivable for the stated problems would be more expensive than just maintaining the network
description at selected (possibly redundant) server nodes which handle routing requests by the
other nodes. Query costs can often be amortized over many messages exchanged along the com-
puted route. Such a client-server setting also takes into account that many wireless networks have
some nodes that have higher computational capabilities and more ample power (e.g. in cars or
buildings). Even if at the end fully distributed algorithms are preferred, centralized algorithms
are a good reference point to analyze the tradeoff between computation cost and quality of the
solutions.

2 Computing Optimal k-hop Paths

In the following we will begin with a simple algorithm for computing optimal k-hop shortest paths
which works for arbitrary connected graphs (not necessary geometric ones) and an arbitrary weight
function. Perhaps more interestingly, for δ = 2, the problem has a special geometric structure that
we can exploit for efficient solutions.

2.1 Dynamic programming approach

In this section we describe a dynamic programming algorithm for computing k-hop shortest path.
It can be seen as a variant of the Bellmann/Ford algorithm⋆ ⋆ ⋆ that executes only k instead of
n−1 iterations and exploits geometry in order to speed up the relaxation of edges in each iteration.

For any s ∈ P , let µk(s) denote the cost of a k-hop shortest path from the source node p to
s. Clearly, µ1(s) = Cp + |ps|δ, for all s ∈ P\{p} and µ0(p) = 0. For i ≥ 2 the Bellmann/Ford
recurrence yields

µi(s) = min{µi−1(s),min
r∈P
{µi−1(r) + Cr + |ps|δ}}. (2)

A naive implementation yields an algorithm with running time Θ(kn2): We start by computing
the function µ1 and iteratively determine µi for all i ∈ {2, . . . , k} by applying equation 2. For the
important case of δ = 2 we can exploit the geometric structure of the problem, and reduce the
running time of each iteration from O(n2) to O(n logn).

Theorem 1. In a radio network with edge weights Cp + |pq|2, the single source shortest path
problem restricted to paths with at most k-hops can be solved in time O(kn log n) using space
O(n).

Proof. The problem of finding r ∈ P that minimizes µi−1(r)+Cr+ |rs|2 on the right hand side of
equation (2) can be reduced to a 3D nearest neighbor query. The idea is to embed the point set P
into R3 and use the additional dimension to encode the cost of a shortest i-hop path from p to r as
well as the offset cost Cr. Define, for 1 ≤ i ≤ k, fi : P → R3; fi(r) = (xr, yr,

√
µi(r) + Cr), where

r = (xr, yr). The embedding of the original “unlifted” points are given by f0 : P → R3; f0(r) =
(xr, yr, 0). For each pair of points (r, s) we see

|fi(r)f0(s)|2 = |rs|2 +
(√

µi(r) + Cr

)2
= µi(r) + Cr + |rs|2 . (3)

Hence, for any s ∈ P , finding r ∈ P that minimizes µi(r) + Cr + |rs|2 is equivalent to finding the
closest point to f0(s) among all points in {fi(r) | r ∈ P, r ̸= s}.

⋆ ⋆ ⋆ For the original method of what is nowadays known as Bellman/Ford algorithm see Bellmann [Bel57]
and Ford [For56].



Notice, that equation (3) corresponds to the power function of a 2D-power diagram for sites P ,
where site r ∈ P has weight −

√
µi(r) + Cr. Therefore, nearest neighbor queries can be answered in

time O(log n) after O(n log n) preprocessing [Aur87]. Each phase takes O(n log n) time for building
the power diagram and O(n logn) time for n nearest neighbor queries. Hence, the overall running
time is O(kn log n). ⊓⊔

For a practical implementation of the above algorithm, one can exploit the fact that all n
nearest neighbor queries in one iteration are independent of each other. Hence, it suffices to
implement a batched nearest neighbor algorithm that runs in time O(n logn). We expect that
this is a significant constant factor faster than answering n subsequent nearest neighbor queries
that have to traverse some complicated nearest neighbor data structure. For example, one can
build a Power diagram without the point location data structure and then perform the batched
point location using a simple sweep line algorithm. One can even design a sweep line algorithm
for batched nearest neighbor queries without constructing a Power diagram. This might further
speed up the search and decreases the memory requirements of the algorithm.

2.2 Two-hop queries in logarithmic time

By using the same idea of encoding additional costs for each relay station by lifting up the points
in the third dimension, we can answer queries for the shortest two-hop path in logarithmic time.

p q

w

M

h r
a b

c

d=|pq|

Fig. 2. 2-hop path between source p and target q. Illustration of the proof of Theorem 2.

Theorem 2. Given an arbitrary source and destination p and q in a radio network with edge
weights Cp + |pq|2, we can find a radio station w minimizing d(p, w) + d(w, q) in time O(log n)
after preprocessing time O(n log n) using O(n) space.

Proof. Given source p and target q, we can express the cost c(w) of the 2-hop path (p, w, q) as a
function of d = |pq|, Cw and r, the distance between the point w and the midpoint M of the line
segment pq (see Figure 2):

h2 = r2 − (d/2− c)2 = r2 − d2/4− c2 + dc

a2 + b2 = c2 + h2 + (d− c)2 + h2 = d2 + 2c2 − 2dc+ 2h2 = d2/2 + 2r2

c(w) = Cp + a2 + Cw + b2 = Cp + d2/2 + 2(r2 + Cw/2)

Hence, we need to pick the relay station w that minimizes r2+Cw/2. This is equivalent to finding
the point from {(xw, yw,

√
Cw/2) | w ∈ P} which is closest to the midpoint M . Again, we can use

a power diagram and a point location data structure to find such a w in logarithmic time. ⊓⊔

3 Approximate k-hop Path Queries

In this section we are concerned with computation of a k-hop shortest path that is “almost”
optimal. Namely, for a given pair of query points p, q and an arbitrarily small constant ϵ > 0 our
primary objective will be to output a path π(p, q) such that its weight is at most (1 + ϵ) · ω(πopt).

In the following we assume that the weight function ω is of the form ω(p, q) = |pq|δ +Cp with
δ > 1 (the case δ ≤ 1 is trivial as we just need to connect p and q directly by one hop).



3.1 Preliminaries

Before we introduce our procedure for reporting approximate k-hop paths, we need to refer to some
standard data structures from Computational Geometry which will be used in our algorithm.

Theorem 3 (Exact Range Query). Given a set P of n points in R2 one can build a data
structure of size O(n log n) in time O(n log n) which for a given axis aligned query rectangle R =
[xl, xu] × [yl, yu] reports in O(log n) time that R either contains no point or outputs a point p ∈
P ∩R.

The data structure can be maintained dynamically such that points can be inserted and deleted
in O(log n log log n) amortized time. The preprocessing time then increases to O(n log n log log n)
and the query time to O(log n log log n). All the log log n factors can be removed if only either
insertions or deletions are allowed.

Proof. We use the standard 2-level range-tree construction. From the resulting O(log2 n) query
time we can get rid of one log n by fractional cascading, see [BKOS]. The whole construction can
be maintained dynamically allowing insertions and deletions using the results in [MN90]. ⊓⊔

In fact, the algorithm we will present will also work with an approximate range reporting data
structure such as the one presented in [AM00,AM98]. The part of their result relevant for us can
be stated in the following theorem:

Theorem 4 (Approximate Range Query). Given a set P of n points in R2 one can build
a data structure of size O(n) in time O(n log n) which for a given axis aligned query rectangle
R = [xl, xu] × [yl, yu] with diagonal ω and any α > 0 reports in O(log n + 1

α ) time that the
rectangle R′ = [xl + αω, xu + αω]× [yl + αω, yu + αω] either contains no point or outputs a point
p ∈ P ∩R′.

The data structure can be maintained dynamically such that points can be inserted and deleted
in O(log n) time.

Basically this approximate range searching data structure works well if the query rectangle
is fat; and since our algorithm we present in the next section will only query square rectangular
regions, all the results in [AM00] and [AM98] apply. In fact we do not even need α to be very
small, α = 1 turns out to be good enough as we will see later on. So the use of an approximate
range searching data structure helps us to get rid of the logn factor in space and some log log n
factors for the dynamic version. But to keep presentation simple we will assume for the rest of this
section that we have an exact range searching data structure at hand. Furthermore, let us briefly
cite two well known inequalities that turn out to be of use in the incoming analysis.
Minkowski’s inequality For every δ > 1 and ai, bi > 0, Minkowski’s sum inequality states that( k∑

i=1

(ai + bi)
δ

) 1
δ

≤
( k∑
i=1

aδi

) 1
δ

+

( k∑
i=1

bδi

) 1
δ

.

Equality holds iff the sequences a1, a2, . . . and b1, b2, . . . are proportional.
Hölder’s inequality Let

1

p
+

1

q
= 1

with p, q > 1. Then, for every ai, bi > 0 Hölder’s inequality for sums states that

k∑
i=1

aibi ≤
( k∑
i=1

api

) 1
p
( k∑
i=1

bqi

) 1
q

.

Equality holds when bi = cap−1
i , for some c > 0.



3.2 Computing Approximate k-hop Paths

We will now focus on how to process a k-hop path query for a pair of points p and q assuming
that we have already constructed the data structure for orthogonal range queries (which can be
done in time O(n log n)).

Lemma 1. For the optimal path πopt connecting p and q we have |pq|δ
kδ−1 +Cp ≤ |πopt| ≤ |pq|δ+Cp.

Proof. As we can connect p and q directly using one hop, the upper bound follows immediately.
For the lower bound observe that the cheapest way to connect p and q is to divide the segment pq
into k subsegments of equal length, which yields the lower bound. ⊓⊔

Definition 1. We define the axis-aligned square of side-length l centered at the midpoint of a
segment pq as the frame of p and q, F(pq, l).

Lemma 2. The optimal path πopt connecting p and q lies within the frame F(pq, k(δ−1)/δ|pq|) of
p and q.

Proof. Assume that the optimal path visits some point r outside the frame F . Note that such a
path has Euclidean length at least |pr|+ |rq| > k(δ−1)/δ|pq| and therefore the cost is lower bounded

by (|pr|+|rq|)δ
kδ−1 + Cp >

(k(δ−1)/δ|pq|)δ
kδ−1 + Cp = |pq|δ + Cp which in turn implies that doing one direct

hop from p to q is even better. ⊓⊔

We are now armed to state our algorithm to compute a k-hop path which, as we will later
show, is a (1 + ϵ) approximation to the optimal k-hop path from p to q.

k-hop-Query(p, q, ϵ)

1. Put a grid of cell-width α · |pq|/k on the frame F(pq, k(δ−1)/δ|pq|) with α = ln(2)

2
√
2
· ϵδ .

2. For each grid cell C perform an orthogonal range query to either certify that the cell is empty
or report a point with smallest offset cost† which will serve as a representative for C.

3. Compute the optimal k-hop path π(p, q) with respect to all representatives and {p, q}.
4. Return π(p, q)

Please look at Figure 3 for a schematic drawing of how the algorithm computes the approximate
k-hop path. It remains to argue about correctness and running time of our algorithm. Let us first
consider its running time.

Lemma 3. k-hop-Query(p, q, ϵ) can be implemented to return a result in time O( δ
2·k(4δ−2)/δ

ϵ2 ·
TR(n) + Tk,δ(

δ2·k(4δ−2)/δ

ϵ2 )), where TR(n) denotes the time for one 2-dimensional range query on
the original set of n points and Tk,δ(x) denotes the time for the exact computation of a minimal
k-hop path for one pair amongst x points under the weight function ω(pq) = |pq|δ + Cp.

Proof. By the choice of frame and cell width, it is easy to see that in the first step of our algorithm

we generate a grid of O(( δ·k
(2δ−1)/δ

ϵ )2) many different cells which is O( δ
2·k(4δ−2)/δ

ϵ2 ). For each of
the cells we perform an orthogonal range query each of which takes TR(n) time. For all the
representatives which we have found, we run an exact minimum k-hop path algorithm which takes

Tk,δ(
δ2·k(4δ−2)/δ

ϵ2 ). ⊓⊔

Let us now turn to the correctness of our algorithm, i.e. for any given positive ϵ, we want to
show that our algorithm returns a k-hop path of weight at most (1 + ϵ) times the weight of the
optimal path. We will show that using only representatives of grid cells there exists a path of at
most this weight. In the following we assume that the optimal path πopt consists of a sequence of
points p0p1 . . . pj , j ≤ k and li = |pi−1pi|.

Before we get to the actual proof of this claim, we need to state a small technical lemma.

† This can be easily incorporated into the standard geometric range query data structures.
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Fig. 3. 3-hop-query for P and Q: representatives for each cell are denoted as solid points, the optimal path
is drawn dotted, the path computed by the algorithm is drawn solid

Lemma 4. For any δ > 1 and li, ξ > 0 the following inequality holds∑k
i=1(li + ξ)δ∑k

i=1 l
δ
i

≤

(∑k
i=1(li + ξ)∑k

i=1 li

)δ
Proof. Note that Minkowski’s inequality directly implies( k∑

i=1

(li + ξ)δ
) 1

δ

≤
( k∑
i=1

lδi

) 1
δ

+

( k∑
i=1

ξδ
) 1

δ

=

( k∑
i=1

lδi

) 1
δ

+ k
1
δ · ξ

which in turn gives (∑k
i=1(li + ξ)δ∑k

i=1 l
δ
i

) 1
δ

≤ 1 +
k

1
δ · ξ

(
∑k
i=1 l

δ
i )

1
δ

.

Moreover, note that Hölder’s inequality implies(∑k
i=1 l

δ
i

k

) 1
δ

≥
∑k
i=1 li
k

for bi = 1, i = 1, . . . , k, p = δ and q = δ
δ−1 , which completes the proof. ⊓⊔

Lemma 5. k-hop-Query(p, q, ϵ) computes a k-hop path from p to q of weight at most (1 +
ϵ)ω(πopt(p, q)) for 0 < ϵ ≤ 1.

Proof. In order to prove the claim, we will compare the actual optimum path πopt with the path
using the representatives of the grid cells containing the points of πopt. Note, however, that this
is not necessarily the path returned by the algorithm since it might find a better path using
representatives of other cells.



Let ξ denote the possible error incurred by taking the respective representative edge. Using
Lemma 4, it is sufficient to show that(∑k

i=1(li + ξ)∑k
i=1 li

)δ
≤ 1 + ϵ.

Knowing that the absolute “detour”‡ incurred by replacing its endpoints by the respective repre-
sentatives in their grid cell is bounded by ξ ≤ 2

√
2α dk we have(

1 +
k · 2
√
2α dk∑k

i=1 li

)δ
≤ 1 + ϵ.

Thus, observing that (
∑k
i=1 li)/d is at least 1, we get the following bound on α

α ≤ (1 + ϵ)1/δ − 1

2
√
2

.

For any positive α less then the above upper bound claim of the lemma holds. However, we would
like to have α as large as possible in a given bound but also a little bit more nicely formulated.
Hence, using the well known fact that (1 + 1/x)x ≤ e for any x > 0, we get

(1 + ϵ) = eln(1+ϵ) ≥
((

1 +
ln(1 + ϵ)

δ

) δ
ln(1+ϵ)

)ln(1+ϵ)

which easily reduces to
δ ·
(
(1 + ϵ)1/δ − 1

)
≥ ln(1 + ϵ).

Furthermore, ln(1 + ϵ) ≥ ln(2) · ϵ for any 0 < ϵ ≤ 1 and therefore it suffice to choose

α =
ln(2)

2
√
2
· ϵ
δ
.

⊓⊔

Summary

In our approximation algorithm we reduced the problem of computing an approximate k-hop path
from p to q to one exact k-hop path computation of a small, i.e. constant number of points (only
depending on k, δ and ϵ). Using the naive dynamic programming algorithm from Section 2.1 for
computing optimal k-hop shortest paths, we get the following theorem (we give the bound for the
case where an approximate range query data structure as mentioned in Theorem 4 is used).

Theorem 5. We can construct a dynamic data structure allowing insertions and deletions with
O(n) space and O(n logn) preprocessing time such that (1 + ϵ) approximate minimum k-hop path

queries in radio networks can be answered in time O( δ
2·k(4δ−2)/δ

ϵ2 · log n+ δ4·k(7δ−2)/δ

ϵ4 ).

The query time does not change when using exact range query data structures, only space,
preprocessing and update times get slightly worse (see Theorem 3).

In Theorem 1 we presented an algorithm which for the special case δ = 2 computes the optimal
k-hop path in time O(kn log n). Applied to our problem we get the following corollary:

Corollary 1. The subroutine of our algorithm to solve the exact k-hop shortest path problem given

the set of O(k
3

ϵ2 ) representative points can be solved in time O(k
5

ϵ2 · log
k
ϵ ) if δ = 2.

‡ Here the analysis has to be changed slightly when using approximate range reporting data structures:
for α = 1 we might get twice the “detour” assumed here.



3.3 The Approximate Path Oracle

In the previous section we have seen how to answer a (p, q) query inO(log n) time (considering k, δ, ϵ
as constants). Standard range query data structures were the only precomputed data structures
used. Now we explain how additional precomputation can further reduce the query time. We show
how to precompute a linear number of k-hop paths using the well-separated pair decomposition
(WSPD), such that for every (p, q) pair, a slight modification of one of these precomputed paths is
a (1+ ϵ)(1+2ψ)2 approximate k-hop path and such a path can be accessed in constant time. Here
ψ > 0 is the error incurred by the use of these precomputed paths and can be chosen arbitrarily
small (the size of the WSPD then grows, though).

The Well-Separated Pair Decomposition We will first briefly introduce the so-called well-
separated pair decomposition due to Callahan and Kosaraju ([CK92]).

Minimum enclosing rectangler r
A Bd > s � r

Fig. 4. Clusters A and B are “well-separated” if d > s · r (left). Example of split tree with additional blue
edges (right).

The split-tree of a set P of points in R2 is the tree constructed by the following recursive
algorithm:

SplitTree(P )

1. if size(P )=1 then return leaf(P )
2. partition P into sets P1 and P2 by halving its minimum enclosing axis-aligned rectangle R(P )

along its longest dimension
3. return a node with children (SplitTree(P1), SplitTree(P2))

Although such a tree might have linear depth and therefore a naive construction as above takes
quadratic time, Callahan and Kosaraju in [CK92] have shown how to construct such a binary tree
in O(n log n) time. With every node of that tree we can conceptually associate the set A of all
points contained in its subtree as well as their minimum enclosing rectangle R(A). By r(A) we
denote the radius of the minimum enclosing disk of R(A), by center(R(A)) the center of the
minimum enclosing disk of R(A). We will also use A to denote the node associated with the set
A if we know that such a node exists.

For two sets A and B associated with two nodes of a split tree, d(A,B) denotes the distance
between the centers of the minimum enclosing balls of R(A) and R(B) respectively. A and B are
said to be well-separated if d(A,B) > s · r, where r denotes the radius of the larger of the two
minimum enclosing balls of R(A) and R(B) respectively (see Fig. 4). s is called the separation
constant.

In [CK92], Callahan and Kosaraju present an algorithm which, given a split tree of a point set
P with |P | = n and a separation constant s, computes in time O(n(s2 + log n)) a set of O(n · s2)
additional blue edges for the split tree, such that



– the point sets associated with the endpoints of a blue edge are well-separated with separation
constant s.

– for any pair of leaves (a, b), there exists exactly one blue edge that connects two nodes on the
paths from a and b to their lowest common ancestor lca(a, b) in the split tree

The split tree together with its additional blue edges is called the well-separated pair decomposition
(WSPD).

Using the WSPD for Precomputing Path Templates In fact the WSPD is exactly what
we need to efficiently precompute k-hop paths for all possible Θ(n2) path queries. So we will use
the following preprocessing algorithm:

1. compute a well-separated pair decomposition of the point set with the separation constant
s = k(δ−1)/δ · 8δ · 1

ψ

2. for each blue edge compute a (1 + ϵ)-approximation to the lightest k-hop path between the
centers of the associated bounding rectangles.

With the above algorithm, we have precomputed an approximate k-hop path between center
points of each well-separated cluster pair. Note that center points of associated bounding rectangles
are not necessarily in P . Without loss of generality, we assume that the center point a of some
cluster A has the largest offset cost in A, say Ca = Cmax

A := max{Ca′ , a′ ∈ P ∩A}.
At query time, for a given query pair (p, q), it remains to find the unique blue edge (A,B)

which links a node of the path from p to lca(p, q) to a node of the path from q to lca(p, q). We
take the precomputed k-hop path associated with this blue edge, replace its first and last node by
p and q respectively and return this modified path (see Figure 5).

A
B

Fig. 5. Example of the blue-edge connecting well-separated sets A and B and the template path (thick
dashed line) saved with it.

In the following we will show that the returned path is indeed a (1+ ϵ)(1+2ψ)2 approximation
of the lightest k-hop path from p to q. Later we will also show that this path can be found in
constant time. For the remainder of this section let πPopt(x, y) denote the optimal k-hop path
between two points x, y not necessarily in P such that all hops have starting and end point in
P (except for the first and last hop). We first start with a lemma which formalizes the intuition
that the length of an optimal k-hop path does not change much when perturbing the query points
slightly.

Lemma 6. Given a set of points P and two pairs of points (a, b) and (a′, b′) with d(a, b) = d and
d(a, a′) ≤ c, d(b, b′) ≤ c with c ≤ ψd

k(δ−1)/δ·4δ , then we have ω(πPopt(a
′, b′)) ≤ (1 + 2ψ)ω(πPopt(a, b)).

Proof. Consider the path πPopt(a, b) = v0v1 . . . vk with v0 = a, vk = b and consider its modification
π′ = a′v1 . . . vk−1b

′. For the analysis we will distinguish between the cases where the edge (a, v1)
((vk−1,b) respectively) is “long” or “short”. If (c+ |av1|)δ ≤ (1 + ψ)|av1|δ, we are safe and this is



the case when |av1| is long edge, namely |av1| ≥ c
(1+ψ)1/δ−1

. So let us now consider the case that

(a, v1) is short. Clearly an upper bound on the cost of πPopt(a
′, b′) is given by:

ω(πPopt(a
′, b′)) ≤ ω(π′) = ω(πPopt(a, b))− (|av1|δ + Cmax

A ) + |a′v1|δ + Ca′−
− (|bvk−1|δ − Cvk−1

) + |b′vk−1|δ + Cvk−1

≤ ω(πPopt(a, b))− |av1|δ + (|av1|+ c)δ − |bvk−1|δ + (|bvk−1|+ c)δ

And since for 0 ≤ x < y, δ ≥ 1 we have (c+ x)δ − xδ ≤ (c+ y)δ − yδ and the respective edges are
short, we can continue with

≤ ω(πPopt(a, b)) + 2 · (( c

(1 + ψ)1/δ − 1
+ c)δ − (

c

(1 + ψ)1/δ − 1
)δ)

= ω(πPopt(a, b)) + 2cδ · (( (1 + ψ)1/δ

(1 + ψ)1/δ − 1
)δ − (

1

(1 + ψ)1/δ − 1
)δ)

= ω(πPopt(a, b)) + 2cδ · ψ

((1 + ψ)1/δ − 1)δ

≤ ω(πPopt(a, b)) + 2cδψ · (2δ
ψ
)δ

≤ ω(πPopt(a, b))(1 + 2cδψ · (2δ
ψ
)δ · k

δ−1

dδ
)

So finally it just remains to choose c such that 2 · ( 2δcd )δ · k
δ−1

ψδ−1 ≤ ψ which is certainly true for

c ≤ ψd
k(δ−1)/δ·4δ ⊓⊔

The following corollary of the above Lemma will be used later in the proof:

Corollary 2. Given a set of points P and two pairs of points (a, b) and (a′, b′) with d(a, b) = d and
d(a, a′) ≤ c, d(b, b′) ≤ c with c ≤ ψd

k(δ−1)/δ·8δ , then we have ω(πPopt(a
′, b′)) ≤ (1 + 2ψ)ω(πPopt(a, b))

as well as ω(πPopt(a, b)) ≤ (1 + 2ψ)ω(πPopt(a
′, b′).

Proof. Clearly the first claim holds according to Lemma 6. For the second one observe that d′ =
|a′b′| ≥ d− 2 · c and then apply the Lemma again. ⊓⊔

Applying this Corollary, it is now straightforward to see that the approximation ratio of the
modified template path is (1 + 2ψ)2(1 + ϵ).

Lemma 7. Given a well separated pair decomposition of a point set P ⊂ R2 with separation

constant s = k(δ−1)/δ·8δ
ψ , the path π(p, q) returned for a query pair (p, q) is a (1 + 2ψ)2(1 + ϵ)

approximate k-hop path from p to q.

Proof. Let (A,B) be the unique cluster pair connected by a blue edge with p ∈ A, q ∈ B, cA, cB
their respective cluster centers. By the choice of the separation parameter and Lemma 6, we

know that |pcA|, |qcB | ≤ ψ|cAcB |
k(δ−1)/δ·8δ and therefore ω(π(p, q)) ≤ (1 + 2ψ)(1 + ϵ)ω(πopt(cA, cB)) ≤

(1 + 2ψ)2(1 + ϵ)ω(π(p, q)). ⊓⊔

Adequate Choice for ψ and ϵ For a given ϕ > 0, what is the right choice for ψ and ϵ to obtain
an arbitrary approximation quality of (1 + ϕ)? In order to answer on that, note that in the pre-
processing phase for O(s2n) many different pairs of points we have to compute approximate paths
in O( lognϵ2 ) time. Having in mind that separation constant s = O( 1

ψ ), we have that preprocessing

running time depends on ϵ and ψ as O( 1
ψ2ϵ2 ·n log n). Hence, we would like to choose ψ and ϵ such

that 1
ψ2ϵ2 is minimized subject to the constraint (1 + 2ψ)2(1 + ϵ) = (1 + ϕ). This is the classical

problem of finding constrained extreme values of the function with two real variables which can
be solved using Lagrange multiplier.

We leave the details for the reader to figure out the right choice for ψ and ϵ to obtain an
arbitrary approximation quality of (1 + ϕ).



Retrieving Cluster Pairs for query points in O(1) time In the previous paragraphs we have
shown that using properties of the well-separated pair decomposition, it is possible to compute
O(n) “template paths” such that for any query pair (p, q) out of the Ω(n2) possible query pairs,
there exists a good template path which we can modify to obtain a good approximation to the
lightest k-hop path from p to q. Still, we have not shown yet how to determine this good template
path for a given query pair (p, q) in constant time. We note that the following description does not
use any special property of our original problem setting, so it may apply to other problems, where
the well-separated pair decomposition can be used to encode in O(n) space sufficient information
to cover a query space of Ω(n2) size.

Gridding the Cluster Pairs The idea of our approach is to round the centers cA, cB of a cluster
pair (A,B) which is part of the WSPD to canonical grid points c̃A, c̃B such that for any query
pair (p, q), p ∈ A and q ∈ B, we can determine c̃A, c̃B in constant time. The resolution of the
grid used will depend on the distance of the query points. Furthermore we will show that there is
only a constant number of cluster pairs (A′, B′) which have their cluster centers rounded to the
same grid positions c̃A, c̃B, so well-known hashing techniques can be used to store and retrieve the
respective blue edge and also some additional information I(A,B) (in our case: the precomputed
k-hop path) associated with that edge.

In the following we assume that we have already constructed a WSPD of the point set P with
a separation constant s > 4. For any point p ∈ R2, let snap(p, w) denote the closest grid-point of
the grid with cell-width w originated at (0, 0) and let H : Z× Z2 × Z2 → (I × E)∗ denote a hash
table data structure which maps a 5-tuple of integers (grid-width and a pair of integer points in
the plane) to a list of pairs consisting of some information type and a (blue) edge in the WSPD.
Let K ⊂ Z × Z2 × Z2 denote the set of actual keys for H. Note that the size of set K is O(n).
Using universal hashing [CW79] this data structure has constant expected access time.

Preprocessing

– For every blue edge connecting clusters (A,B) in the split tree do the following

• cA ← center(R(A)), cB ← center(R(B))

• w ← |cAcB |/s
• w̃ ← 2⌈logw⌉

• c̃A ← snap(cA, w̃)

• c̃B ← snap(cB, w̃)

• Append ((I(A,B), (A,B))) to H[w̃, c̃A, c̃B ]

That is, we determine w̃, which is the next power of two of the largest possible radius w of the
two minimum enclosing disks of R(A) and R(B), respectively (largest possible such that (A,B)
can still be a pair of the WSPD). We use w̃ as width of a grid on which we snap the centers cA
and cB . The snapped grid positions together with the grid-width are used as keys for the hash
table datastructure.

c̃A

c̃B

2dlog(d/s)e

d = |cAcB |

Fig. 6. Cluster centers cA and cB are snapped to closest grid points c̃A and c̃B



Look at Figure 6 for a sketch of the preprocessing routine for one cluster pair (A,B). Clearly
this preprocessing step takes linear time in the size of the WSPD. So given a query pair (p, q),
how to retrieve the information I(A,B) stored with the unique cluster pair (A,B) with p ∈ A and
q ∈ B?

The idea is that given p and q, the grid-width w̃ of the grid where cA and cB of the cluster
pair (A,B) have been snapped to can only be one of 2⌈log |pq|/s⌉−1, 2⌈log |pq|/s⌉, and 2⌈log |pq|/s⌉+1.
We can afford to try out each of those grid-widths.

Query(p, q)

– w′ ← |pq|/s
– w̃1 ← 2⌈logw

′⌉−1

– w̃2 ← 2⌈logw
′⌉

– w̃3 ← 2⌈logw
′⌉+1

– for grid-widths w̃i, i = 1, 2, 3 and adjacent grid-points c̃p, c̃q of p and q respectively
• Inspect all items (I(A,B), (A,B)) in H[w̃i, c̃p, c̃q]
∗ if p ∈ A and q ∈ B return I(A,B)

In this description we call a grid-point g̃ adjacent to a point p if |g̃p|x, |g̃p|y < 3
2 w̃i, where | · |x/y

denotes the horizontal/vertical distance. Clearly there are at most 9 adjacent points for any point
p in a grid of width w̃i (see Figure 7).

fwip q

Fig. 7. Adjacent points of p and q are grid points (hollow circles) inside the rectangles centered in p and
q of side-length 3w̃i.

In the remainder of this section we will show that this query procedure outputs the correct
result (the unique I(A,B) with p ∈ A and q ∈ B such that (A,B) is a blue edge in the WSPD) and

requires only constant time. We denote by w̃ = 2⌈log |cAcB |/s⌉ the grid-width of the grid, to which
the cluster centers cA, cB of the cluster pair (A,B) we are looking for were snapped.

Lemma 8. For s > 4, we have w̃i = w̃ for some i ∈ {1, 2, 3}.

Proof. As A and B are well-separated and p ∈ A and q ∈ B, we know that |cAp|, |cBq| < |cAcB|/s.
Therefore |cAcB |(1− 2/s) < |pq| < |cAcB|(1 + 2/s) and hence

⌈log |cAcB|(1− 2/s)

s
⌉ < ⌈log |pq|

s
⌉ < ⌈log |cAcB |(1 + 2/s)

s
⌉

Using the fact that s > 4 we obtain

⌈log |cAcB|
s
− 1⌉ < ⌈log |pq|

s
⌉ < ⌈log |cAcB |

s
+ 1⌉

and therefore

⌈log |cAcB|
s
⌉ − 1 < ⌈log |pq|

s
⌉ < ⌈log |cAcB |

s
⌉+ 1

which proves the Lemma. ⊓⊔



This Lemma says that the correct grid-width as determined by cA and cB is amongst the grid-
widths tried by the query procedure.. Furthermore for any given grid-width and a pair of query
points p and q, there are at most 9 · 9 = 81 pairs of adjacent grid points to inspect. We still need
to argue that given the correct grid-width w̃, the correct pair of grid points (c̃A, c̃B) is amongst
these ≤ 81 possible pairs of grid points that are inspected.

Lemma 9. For w̃i = w̃, c̃A and c̃B are amongst the inspected grid-points.

Proof. Without loss of generality, it suffices to show that c̃A is adjacent to p. Clearly we have

|cAp| < |cAcB |
s ≤ w̃, so in particular |cAp|x, |cAp|y < w̃. Furthermore |cAc̃A|x, |cAc̃A|y,≤ w̃/2 and

hence |c̃Ap|x/y < 3
2 w̃, i.e. cA is adjacent to p. ⊓⊔

The last thing to show is that only a constant number of cluster pairs (A,B) can be rounded
during the preprocessing phase to a specific pair of grid positions (g̃1, g̃2) in a grid of grid-width w̃
and therefore we only have to scan a list of constant size that is associated with (w̃, g̃1, g̃2) in the
hash table data structure. Before we can prove this, we have to cite a following “packing” Lemma
from the original work of Callahan and Kosaraju on the WSPD [CK92].

Lemma 10 (CK92). Let C be a d-dimensional cube and let S = {A1, . . . , Al} be a set of nodes
in the split tree such that Ai ∩ Aj = ∅ and lmax(p(Ai)) ≥ l(C)/c and R(Ai) overlaps C for all i.
Then we have K(c, d) ≤ (3c+ 2)d, where K(c, d) denotes the maximum possible value for |S|.
Here p(A) denotes the parent of a node A in the split tree, lmax(A) the longest side of the minimum
enclosing rectangle R(A).

Lemma 11. Consider a WSPD of a point set P with separation constant s > 4, grid width w̃ and
a pair of grid points (g̃1, g̃2). The number of cluster pairs (A,B) such that cA and cB are rounded
to (g̃1, g̃2) is O(1).

Proof. In the following we will establish a lower bound on r(p(A)) such that we can apply Lemma
10, as r(p(A)) ≤ lmax(p(A)). Since (p(A), B) is not a blue edge in the WSPD we have r(p(A)) >
|cp(A)cB |

s . Furthermore |cp(A)cB | ≥ |cAcB |−r(p(A)) and hence using the fact that sw̃2 < |cAcB | ≤ sw̃
we obtain the following lower bound

r(p(A)) >
sw̃

2 + 2s
=

w̃

2 + 2/s

So for s > 4 we obtain lmax(p(A)) >
2
5 w̃. Before we can apply Lemma 10, observe that if the

clusters around g̃1 which are paired with some clusters around g̃2 are not disjoint (i.e. one is the
parent of another), we can just refine those clusters until no cluster is the parent of another, this
will only increase the number of links to “the other side”. But applying Lemma 10 for the cube
centered at g̃1 with side-length w̃ and c = 5/2 bounds even this larger number of clusters by
(3 · 5/2 + 2)2 < 91. As the same bound holds for the clusters around g̃2, the number of cluster
pairs that might be assigned to (g̃1, g̃2) is less than 91 · 91 < 9000 and therefore O(1). ⊓⊔

Putting everything together we get the main theorem of this section:

Theorem 6. Given a well-separated pair decomposition of a point set P with separation constant
s > 4, we can construct a data structure in space O(n · s2) and construction time O(n · s2) such
that for any pair of points (p, q) in P we can determine the unique pair of clusters (A,B) that is
part the well-separated pair decomposition with p ∈ A, q ∈ B in constant time.

Together with the results of the previous section we obtain the following main result of our
paper:

Theorem 7. Given a set of points P ⊂ R2, a distance function ω : R × R → R+ of the form
ω(p, q) = |pq|δ + Cp, for some constants δ ≥ 1, k ≥ 2 and nonnegative offset cost Cp, we can
construct a data structure of size O( 1

ϵ2 · n) in preprocessing time O( 1
ϵ4 · n log n + 1

ϵ6 · n) such
that for any query (p, q) from P , a pointer to (1 + ϵ)-approximate lightest k-hop path from p to q
can be obtained in O(1) time which does not depend on δ, ϵ, k. Reporting the entire path takes an
additional O(k) time.



We also remark that there are techniques to maintain the well-separated pair decomposition
dynamically, and so our whole construction can be made dynamic as well (see [CK95]).

4 Computing the Shortest Paths without Hop Restrictions

In this section we consider the case of computing the shortest path without any restrictions in
the number of hops used for radio networks when δ = 2. Since all edge weights are nonnegative,
we can use the dynamic programming algorithm from Theorem 1, which guarantees a running
time of O(n2 log n). This is even worse than applying Dijkstra’s algorithm to the complete graph.
Therefore, we use a different shortest path algorithm. It is similar to Dijkstra’s algorithm in that
it settles nodes in order of the distance from the source. But edges are never explicitly relaxed.
Instead a powerful geometric data structure replaces both edge relaxation and the priority queue
of Dijkstra’s algorithm.

Theorem 8. In a complete geometric graph defined by n points in the plane with edge weights
Cp + |pq|2, the single source shortest path problem can be solved in O(n1+ϵ) time and space, for
any constant ϵ > 0.

Proof. Let µ(v) denote the length of a shortest path from source s to v ∈ V . During the execution of
the algorithm each node is in one of two possible states, settled (red) and unsettled (blue). Initially
all nodes except the source node are unsettled. Nodes become settled in order of increasing µ()
values. At the time a node becomes settled, its µ() value is known. Let R and B denote the set of
settled (red) and unsettled (blue) nodes respectively. In each iteration, we determine a blue node
with smallest distance to the source:

v = argmin
b∈B

min
r∈R
{µ(r) + |rb|2 + Cr} (4)

As in Section 2.1, we use an embedding of the points into R3 which allows us to find the node
v that minimizes the above expression by solving a closest bichromatic point problem. We define
two functions f0, fµ : P −→ R3 by

fµ(r) = (xr, yr,
√
µ(r) + Cr) and f0(b) = (xb, yb, 0)

For any red-blue pair (r, b) ∈ R × B, we have |fµ(r)f0(b)|2 = |rb|2 + µ(r) + Cr according to
Pythagoras. Hence, the closest bichromatic pair with the sets {fµ(r) | r ∈ R} and {f0(b) | b ∈ B}
gives a solution to Equation 4. By slightly abusing notation, the algorithm can be stated as follows.

B ← V \{s}, R← {s}, d[s]← 0;
while (B ̸= ∅)
Find closest bichromatic pair (r, b) in {fd(r) | r ∈ R} and {f0(b) | b ∈ B}.
R← R ∪ {b}, B ← B\{b}, d[b]← |fd(r)f0(b)|2;

The dynamic bichromatic closest points problems we have to solve are of special type: all blue
points are lying in the xy-plane and the distance function is simply the Euclidean distance. This
enables us to speed up the computation compared to the general 3D dynamic closest pair problem.

A general technique for solving the dynamic bichromatic closest pair problem is given by Epp-
stein [Epp95], who reduces the problem to the dynamic nearest neighbors problem for dynamically
changing sets of sites R and B. For blue sites B the queries are red points (q ∈ R) and vice versa.
Since in our application the blue set is essentially a 2D point set, we distinguish two types of
nearest neighbor queries:

1. Sites S are restricted to the xy-plane, query points unrestricted.
2. Queries q are restricted to the xy-plane, sites are unrestricted.



We show that these special instances of the 3D problem can be regarded as 2D nearest neighbor
problems. First consider finding the nearest blue point for a given red query point q = (qx, qy, qz).
Since all blue points lay in the xy plane we can simply query with point q′ = (qx, qy, 0). It is easy
to verify that the nearest neighbor for q′ is also the nearest neighbor for q.

The second type of nearest neighbor queries was already considered in Section 2.1 for a static
set of sites, where we used power diagrams. Now we have to deal with a dynamic set of points.
We will exploit the well-known relation between power diagrams and the upper envelope of 3D
hyperplanes. In particular, finding the nearest site is equivalent to finding the first hyperplane
that is intersected by a query ray (see [AM92]). Agarwal and Matoušek describe algorithms for
dynamic ray shooting problems and state the following lemma.

Lemma 12 ([AM92]). Given a convex polytope in R3 described as the intersection of n half-
spaces, one can process it in time O(n1+ϵ) into a data structure of size O(n1+ϵ), so that the first
point of the polytope boundary hit by a query ray can be determined in O(log5 n) time. The data
structure can be maintained dynamically in amortized time O(nϵ) per insert/delete operation.

Combined with the result of Eppstein ([Epp95], Theorem 1) for maintaining the bichromatic
closest pair, this proves Theorem 8. ⊓⊔

Note that in [CE01], the lower envelope of a set of bivariate functions is used to solve the nearest
neighbor problem. In contrast, we considered a more restrictive cost function and maintain a set
of linear objects, namely planes, which leads to a better running time.
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