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Abstract - Fault detection plays an important role in high-
cost and safety-critical processes. Early detection of process 
faults can help avoid abnormal event progression. Fault 
detection can be accomplished through various means. This 
paper presents the literature survey of major methods and 
current state of research in the field with a selection of 
important practical applications. 

I. INTRODUCTION 

Increasing demands on reliability and safety of 
technical plants require early detection of process faults. 
Methods are developed that enable earlier detection of 
process faults than conventional limit and trend checking 
based on single process variable. These methods 
encompass information from not just one process variable 
but also include nonmeasurable variables as process state, 
parameters and characteristics quantities, [1,2,3]. Some 
methods require accurate process models while others rely 
primarily on available historical process data. 

In this brief review paper is outlined introduction to 
the field with major methods and literature references.  

II. BASIC TERMINOLOGY 

It is of importance to define terminology of a field: 
fault, failure and malfunction, types of faults and fault 
detection. 

A. Faults 

A fault is an unpermitted deviation of at least one 
characteristics property (feature) of the system from the 
acceptable, usual, standard condition [1,2]. 

B. Failure 

A failure is a permanent interruption of a system’s 
ability to perform a require function under specified 
operating conditions [1]. 

C. Malfunction 

A malfunction is an intermittent irregularity in the 
fulfillment of a system’s desired function, [1]. 

Development of events “failure” or “malfunction” 
from a fault is illustrated in Fig. 1, [1]. 
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Figure 1.  Progression of fault toward failure or malfunction 

D. Types of Faults 

 Based on the faulty component: actuator faults, plant 
component faults and sensor faults, Fig. 2, [1,2]. 
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Figure 2.  Fault models based on faulty component  

 Based on the faulty form: abrupt (stepwise), 
incipient (drift-like) and intermittent faults (with 
interrupts), Fig. 3, [1,2]. 
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Figure 3.  Fault models based on faulty form 

 Based on the form in which he fault is added: 
additive and multiplicative, Fig. 4, [1,2]. 

 
Figure 4.  Additive and multiplicative fault models 

Additive fault, variable Yu(t) is changed by addition of 
fault f(t). 

     tftYtY u     (1) 

Multiplicative fault is given by: 

      tUtfatY    (2) 

Additive faults often appear as offsets of sensors, 
whereas most common multiplicative faults are parameter 
change within a process, [2]. 

E. Fault Detection 

Fault detection determines the occurrence of fault in 
the monitored system. It consists of detection of faults in 
the processes, actuators and sensors by using 
dependencies between different measurable signals. 
Related tasks are also fault isolation and fault 
identification. Fault isolation determines the location and 
the type of fault whereas fault identification determines 
the magnitude (size) of the fault. Fault isolation and fault 
identification are together referred as fault diagnosis, [4]. 
The task of fault diagnosis consists of the determination of 
the type of the fault, with as many details as possible such 
as the fault size, location and time of detection, [1]. 
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III. FAULT DETECTION METHODS 

There exist several overlapping taxonomies of the 
field. Some are more oriented toward control engineering 
approach, other to mathematical/statistical/AI approach. 
Interesting divisions are described in [1-12]. The 
following division of fault detection methods is used in 
this paper: 

A. Data Methods and Signal Models 

 Limit checking and trend checking 
 Data analysis (PCA) 
 Spectrum analysis and parametric models 
 Pattern recognition (neural nets) 

B. Process Model Based Methods 

 Parity equations 
 State observers 
 Parameter estimation 
 Nonlinear models (neural nets) 

C. Knowledge Based Methods 

 Expert systems 
 Fuzzy logic 

IV. DATA BASED METHODS AND SIGNAL MODELS 

Data based methods exploit only available 
experimental (historical) data.  

A. Limit Checking and Trend Checking 

Two limit values, thresholds, are present, a maximal 
value Ymax and a minimal value Ymin. A normal state is when 

  maxmin YtYY     (3) 

This method can be also applied to first derivative 
(called trend checking) 

  maxmin YtYY      (4) 

Big advantage of limit checking is its simplicity and 
reliability, however they are able to react after relatively 
large change of feature [1,2]. The distribution of normal 
condition (non fault) data is not always Gaussian, in such 
cases Gaussian Mixture Models can be used, [13]. 

B. Fault Detection with Principal Component Analysis 

Principal component analysis (PCA) uses an 
orthogonal transformation to convert a set of observations 
of possibly correlated variables into a set of values of 
uncorrelated variables called principal components. It is 
defined by linear transformation matrix P[m x r], r < m (its 
determination requires several matrix calculation steps), 
which transforms matrix of input data X[N x m] in a group 
of orthogonal data T[N x r] (principal component scores),[1]. 

T[N x r]=X[N x m]P[m x r]  (5) 
PCA reduces dimensionality of a data set considering a 
large number of interrelated variables, while retaining as 
much as possible of the variation present in a data set. 
This makes processing and monitoring of large 
dimensional data possible [1,7,14,15,16]. Fault detection 
is accomplished by application of change detection on 
transformed data T considering acceptable means  μj and 
variances σ2

j, Fig. 5. The extension of PCA to tackle 
dynamic systems is suggested in [16]. 

 
Figure 5.  Fault detection with Principal Component Analysis 

C. Fault Detection with Signal Models 

 
Figure 6.  Fault detection with signal models 

 

When changes in signal are related to faults in a 
process, a signal analysis can be applied [1,2]. By 
assuming mathematical models for the measured signal, 
suitable features are calculated (e.g. amplitudes, phases, 
and spectrum). A comparison with the observed features 
for normal behavior provides changes of the features that 
are considered as analytical symptoms, Fig. 6, [2]. 
 

 Spectrum Analysis 
 

The extraction of fault-relevant signal characteristics 
can be restricted to the amplitudes or amplitude densities 
within a certain bandwidth of the signal. An efficient 
algorithm Fast Fourier transform (FFT) can be used to 
calculate frequency content of signal x(t).  During normal 
operation components Ai fall within particular range: 

   



N

i
iii tAAtx

1
0 sin    (6) 

max,min, iii AAA     (7) 

 Parametric Signal Models 
 

Parametric signal models like ARMA (autoregressive 
moving average) can also be used, [1,2]. ARMA(p,q) 
refers to the model with p autoregressive terms φi and q 
moving average terms θi, constant c and error terms εt, εt-i:  
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   (8) 

Parametric models are very sensitive to small 
frequency changes. 

D. Pattern Recognition 

 Neural Networks 
 

Neural networks have been successfully used for 
pattern recognition and as such are suitable for fault 
detection, [1,7,17,18,19,20]. In supervised training input-
output pairs, both for normal and faulty conditions, are 
presented to the network. If not enough faults are 
available in training data, additional training samples can 
be produced by artificial fault injection. For supervised 
training a feedforward network is the most common 
architecture, Fig. 7, usually trained with some variant of 
backpropagation  algorithm.  If  unsupervised  learning  is 
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Figure 7.  Feedforward neural network 

 
Figure 8.  Self-organizing map (SOM), from [17] 

 

required (training data without labeled input-output pairs) 
Kohonen selforganizing network is a choice, Fig. 8, [17]. 
The neurons of the competitive net learn to recognize 
groups of similar input vectors, in such a way that each 
neuron competes to respond to an input vector xt, the 
neuron whose value mc is closest to xt get the highest net 
input and therefore wins the competition and outputs one, 
all other neurons output zero. Non fault and fault 
conditions are represented as different subsets of neurons 
within a map, [17,18,19]. Among other statistical 
classifiers, the common is the k-Nearest Neighbor rule as 
nonparametric supervised classification method [1, 7]. 

V. PROCESS MODEL-BASED FAULT DETECTION 

Model based methods are based on concept of 
analytical redundancy, [4,5]. The essence of this concept 
is the comparison of the actual outputs of the monitored 
system with the outputs obtained from a (redundant. i.e. 
not physical) analytical mathematical model, Fig. 9, 
[1,2,3,4,5,10,12]. It involves two stages: residual 
generation and residual evaluation. 

This approach assumes that that the structure and the 
parameters of   the model are precisely known. Faults can 
be modeled as state variable changes. Limiting 
consideration to linear systems, the actual system may be 
given in continuous time by state equations, (9) and (10): 

     ttt BuAxx    (9) 
   tt Cxy                 (10) 

 
Figure 9.  Process model based fault detection 

where  A,  B and  C  are known matrices.  Output y(t) is a  
          tθ,t,tω,tft xuy    (11) 

function, (11), where u(t) denotes measurable outputs and 
inputs, x(t) and ω(t) represent (mostly unmesurable) state 
variables and disturbances, and θ are the process 
parameters. Process faults cause changes in state 
variables and model parameters. Based on a process 
model one can estimate x(t) or θ(t) by observed y(t) and 
u(t). Residual evaluation is accomplished by threshold 
logic and decision function. Beside fixed thresholds, 
advanced robust adaptive residual evaluators exist, [22]. 

A. Fault Detection with Parity Equations 

This method compares the process behavior with a 
process model describing nominal, i.e. non-faulty 
behavior. The key idea is to check the parity 
(consistency), [12], of the mathematical equations of the 
system (analytical redundancy relations) by using the 
actual measurements. The difference of signals between 
the process and model is expressed by residuals, Fig. 10. 

 
Figure 10.  Fault detection with parity equations 

 

 The process is described by transfer function Gp(s) 
and the process model by Gm(s), [2]. A straightforward 
model-based method is to take fixed model GM and run it 
in parallel to the process, thereby forming an output error 

        susGsGsr Mp    (12) 

B. Fault Detection with State Observers and State 
Estimation 

Changes in the input/output behavior of a process lead 
to changes of the output error and state variables [1,2]. 
The basic idea of the observer approach is to reconstruct 
the outputs of the system from the measurements with the 
aid of observers using the estimation error, or innovation, 
as residual for the detection of the fault, [12]. 

a) State observers 
State observer can be applied if the faults can be 

modeled as state variable changes Δxi. The configuration 
of linear full order state estimator is shown in Fig. 11, [2]. 
It consists of a parallel model of a process, (13), (14), with 
the feedback (matrix H) of the estimation error e, [12]. 

       tttˆtˆ HeBuxAx    (13) 
xCy ˆˆ      (14) 

     tˆtt xCye     (15) 

   tt Wer      (16) 
e from (15), is used for calculation of the residual, r, (16), 
for the purpose of fault detection (eg. by threshold logic). 

 
Figure 11.  Fault detection with state observer 
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b) Output observers 
The task of state observers is to reconstruct the states 

of a process. However, there is generally no such need for 
diagnostic purpose. It is possible to use output observers 
if the reconstruction of the state vector x(t) is not of 
interest. A linear transformation with matrix T1 leads to 
new state vector ξ(t), [2]. Output observers reconstruct 
the outputs in order to create redundancy, Fig. 12, [2]. 

 
Figure 12.  Fault detection with output observer 

Observer equations now change to: 
       tttξ̂tξ̂ yHuBA           (17) 

   tξ̂tη C           (18) 
   ttξ 1xT           (19) 
     ttξt 2yTCr  

         (20) 

021  CTTC
          (21) 

Parity equations method and state observers have 
similar equations, but differ in filtering of a residual. 

C. Fault Detection with Parameter Estimation 

In most practical cases the process parameters are 
partially not known or not known at all. They can be 
determined with parameter estimation methods by 
measuring the input and output signal if the basic model 
structure is known. Faults of a dynamical system are 
reflected in physical parameters (friction, mass, 
resistance, capacitance, inductance etc.). The idea of the 
parameter identification approach, Fig. 13, [1,2,3,5,12] is 
to detect the faults via estimation of the parameters of the 
mathematical model due to following procedure,  [12]: 

1. Choice of parametric model of a system 
2. Determination of relationship between the model 

parameters θi and physical parameters pi 
 pfθ     (22) 

3. Identification of model parameter vector θ using 
the input u and output y of the actual system 

4. Determination of physical parameter vector p 
 θf 1p    (23) 

5. Calculation of vector deviations, Δp, from its 
nominal value taken from the nominal model 

6. Decision on a fault by exploiting the 
relationships between faults and changes in the 
physical parameters, Δpi 

The symptoms are deviations of the process parameters. 

 
Figure 13.  Fault detection with parameter estimation 

D. Nonlinear Models and Neural Networks 

Many industrial processes are not suitable to 
conventional modeling approaches due to the lack of 
precise, formal knowledge about the system and strongly 
nonlinear behavior. In cases when mathematical process 
models GP are not available, a nonlinear model can be 
employed to generate residuals, Fig. 14. One way to build 
a nonlinear model GNM is to use neural networks [1]. Neural 
networks do not require specific knowledge of process 
structure. They can serve as black-box models of general 
nonlinear, multivariable static and dynamic systems. 

 
Figure 14.  Fault detection using nonlinear model and parity equations 

 

Neural networks contain many parameters, but these 
parameters are generally not suitable for physical 
interpretation of the modeled system. However, once the 
process modeling is completed, fault detection with parity 
equations can be implemented. 

        susGsGsr NMP    (24) 

Use of neural network for model based fault detection 
with parity equations is described in [23]. 

Neural networks for pattern recognition can also be 
combined with various process models and used for 
residual evaluation (often after some residual 
preprocessing), [18]. 

E. Fault Detection of Control Loops 

Control systems must include automatic supervision 
of closed-loop operation to detect malfunctions as early 
as possible. For larger plants with hundreds of control 
loops it is practical to have automatic fault detection for 
control loops. Control loop faults lead to oscillations; 
hence automatic detection of different kinds of 
oscillations is of importance. Methods are signal based 
(variance), detection of oscillations and model based, [1]. 

VI. KNOWLEDGE BASED METHODS 

In recent time there is a trend towards knowledge 
based and artificial intelligence methods [6,7,24,25,26]. 

A. Expert Systems 

Rule-based expert systems have a wide range of 
applications for diagnostic tasks where expertise and 
experience are available, but deep understanding of the 
physical properties of the system is either unavailable or 
too costly to obtain. This approach offers efficiency for 
quasi-static systems operating within fixed set of rules. 
Main components of this approach are knowledge base 
and inference engine, Fig. 15. Knowledge is represented 
in form of production rules. Knowledge acquisition is 
always considered as one of the biggest difficulties in 
designing an expert system. The main knowledge source 
is the experience of domain specialists, including the 
experienced engineers and operators of industrial plant. 
Main advantages of expert system are following: rules can 
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Figure 15.  Main components of expert system approach 

 

be added or removed easily, explanation of the reasoning 

process, induction and deduction process is easy. 
Disadvantages are: lack of generality, poor handling of 
novel situations, inability to represent time-varying 
phenomena, inability to learn from their errors and 
development and maintenance is costly, [25]. 

B. Fuzzy Logic 

The output of fault detection system needs not to be 
an alarm that takes two values, fault or no fault. Instead 
of simple binary decision fault/no-fault, fault severity of 
the system is provided to operators as the output of fuzzy 
controller. A linguistically interpretable rule-based model 
is formed based on the available expert knowledge and 
measured data, [1,26,27]. Block diagram of fuzzy logic 
controller is shown in Fig. 16, [26]. 
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Figure 16.  Fuzzy logic controller 

Fuzzy inference process involves following steps: 
 Fuzzification 

 

Inputs to a controller pass through the fuzzification 
process using membership functions. The membership 
function is a graphical representation of the magnitude of 
participation of each input. The shape of some 
membership functions is shown in Fig. 17. 

 
Figure 17.  Examples of membership functions 

 

 Rule Based Inference 
 

All rules are evaluated in parallel using fuzzy 
reasoning. The process of fuzzy inference use 
membership functions, logical operations and if-then 
rules, Fig. 18. 

 
Figure 18.  Fuzzy inference process 

 Defuzzification 
 

Converting the fuzzy information to crisp is known as 
defuzzification. It is accomplished by combining the 
results of the inference process and computing the "fuzzy 
centroid" of the area, x* is defuzzified value, µi(x) is the 
aggregated membership function, x is the output variable: 

 
 


dxx

xdxx
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i




*

  (25) 

Fault detection of hydraulic plant using combination 
of nonlinear observer and fuzzy logic is given in [27].  

VII. APPLICATIONS 

Until early 1990s most research and development in 
fault detection was limited to nuclear power plants, 
aircraft, process plants, the automobile industry and 
national defense. Today fault detection is established in 
many industries. Major categories of applications are, [1]: 

A. Machines and Engines 

Signal analysis technique for internal combustion 
engine using ANN is given in [28], engine cylinder fault 
detection in [29], marine diesel engine monitoring in [30]. 

B. Electrical Motors 

Electrical motor fault detection is described in [31] 
and fault detection of induction motors in [32]. 

C. Pumps 

Fault detection for centrifugal pumps combining neural 
networks and neuro-fuzzy approach, is described in [33]. 

D. Steam turbines 

Fault detection for steam turbine is described in [34] 

E. Manufacturing 

Fault detection is an essential part in automated 
electronics manufacturing systems, particularly in 
semiconductor manufacturing, [35]. Reliable detection of 
faults is an important for maximization of productivity. 

F. Bearings and Machinery 

Fault detection in hydraulic system is given in [27], 
use of neural nets in rotating mechanical systems in [20]. 

G. Aircraft 

Fault detection systems have great application in a 
field of flight critical aero engine control systems, [36], in 
order to achieve high degree of reliability. Fault detection 
of flight critical systems is described in [37]. Solution to 
fault detection of aircraft fuel system is given in [38].  

H. Automotive Systems 

Model-based fault detection is adding functionality to 
existing engine electronic control unit of internal 
combustion engine. Fault detection for the injection, 
combustion and engine-transmission is described in [39]. 
Fault detection of faulty components in railway 
suspension is described in [40]. 

I. HVAC (Heating, Ventilation, Air Conditioning) 

Review of methods for HVAC&R is in [8,9]. Fault 
detection system for HVAC Systems is described in [41]. 

J. Chemical Processes 

The performance of chemical processes degrades due 
to deterioration of process equipment and components. An 
application to wastewater plant is given in [15], fatty acid 
fractionation [21], esterification in [42] and refinery in [43]. 

VIII. CONCLUSION 

Early fault detection can minimize plat downtime, 
extended equipment life, increase the safety and reduce 
manufacturing costs. Number of issues must be 
considered when choosing particular fault detection 
method. Most important are: type of failures, description 
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of process structure, process dynamics, available process 
signals, process complexity, available amount of process 
input-output data and process suitability for description in 
terms of rules. Simplest approach is direct limit checking of 
measurable variable. Large scale processes (e.g. chemical 
plants) can benefit from multivariate statistical analysis, 
particularly PCA. Some processes generate periodic or 
stochastic signals that can be used for fault detection if 
changes in signal models are caused by process faults. 
When large amount of process input-output data can be 
obtained, but process structure is unknown or too complex 
to be modeled, pattern recognition methods (neural nets 
and k-NN) can be used. Process model based fault 
detection includes process dynamics and nonmeasurable 
state variables, but requires accurate models and is easier 
to apply for well defined processes such as electrical and 
mechanical then for thermal and chemical processes. If 
basic relationship between faults and symptoms is known 
in form of rules knowledge based methods are the choice. 
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