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Abstract - Most light aircrafts are powered by piston 
engines. During its operation piston engine generates 
pressures within cylinders and consequently at exhaust 
valves that have counterparts in exhaust noise impulses at 
the end of exhaust tube. These impulses can be recorded by 
pressure microphone, stored, analyzed and used for fault 
detection. Method for fault detection based on exhaust noise 
analysis is proposed. Because examples of engine faults are 
very rare (due to inherent reliability of aircraft engine), 
decision thresholds are determined from assumed normal 
distribution of extracted features and estimated MTBF of 
the aircraft piston engine. 

I. INTRODUCTION 

Acoustic signals measured from within an aircraft 
piston engine’s exhaust pipe contain useful information 
for engine monitoring. The exhaust stream is directly 
related to the combustion process and contains rich 
information about combustion conditions. 

In most single-engine light aircraft, the power plant is 
a four-stroke reciprocating engine with a direct drive to a 
propeller. Aircraft piston engines are relatively reliable 
devices. In case of engine failure it is possible to land an 
aircraft, but this is very risky operation, particularly if 
engine failure happen over inhospitable terrain or at night. 

The main source of engine information available to 
pilot are several gauges indicating engine rotational speed 
(RPM, tachometer), oil pressure, oil temperature, exhaust 
gas temperature (EGT) and fuel flow. These gauges give 
very basic information about engine condition. 

More advanced solutions exist today in form of 
expensive engine monitors, however their price is 
relatively high compared to a total value of a typical used 
single engine piston aircraft common in training fleets. 
Their installation is somewhat complex, requires drilling 
into engine and must be performed carefully, otherwise 
could cause engine problem itself. Such engine monitors 
cover much more engine data then basic gauges in a 
cockpit (about dozen of parameters that are also recorded 
and can be analyzed later). Adequate skill is needed for 
correct engine monitor data interpretation, more common 
among service personnel than beginner pilot. Beside 
engine condition monitoring, these engine monitors can 
be used for improved engine operation (fuel economy). 

In this paper alternative way for detecting basic 
engine faults using method for analyzing engine exhaust 
noise is proposed that reflects combustion process in 
internal combustion engine. 

II. PISTON ENGINE 

Piston engines are economical source of power for 
small (general aviation) aircrafts due to its power output 
(not to much), price and fuel consumption at cruise speed 
of a typical general aviation aircraft. 

A. Engine Operation 

Typical main four strokes of the petrol engine are 
intake, compression, power and exhaust strokes, Fig. 1. 

 
Figure 1.  Four strokes of the petrol engine 

 

The main mechanical events in the engine cycle are 
valve opening/closing events of intake and exhaust valves 
associated with the intake and exhaust strokes. The 
combustion process of an internal combustion engine is a 
non-linear, dynamic process, having deterministic and 
stochastic components and very difficult to model 
mathematically. 

B. Engine Exhaust Noise 

The principal source of engine sound is the regular 
firing of the cylinders. The fundamental frequency of this 
mechanism is given by the expression 

P

NR
fF eng 600     (1) 

where N is the number of cylinders, R is the RPM, and P 
is the number of revolutions per firing per cylinder, [1]. 
In a four-stroke engine, the crankshaft rotates twice for 
each cylinder firing, that is P = 2. For such an engine 
with four cylinders (N = 4) and operating at R = 600 rpm, 
the frequency of the fundamental tone is 20 Hz, with 
harmonics at 40 Hz, 60 Hz, 80 Hz, … 

C. Influence of the Exahust Pipe 

As the exhaust valve opens, a positive or pressure 
wave front is created which travels down the exhaust pipe  
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Figure 2.  Schematic of an exhaust system for a four cylinder engine 

 

at the speed of sound. As this pressure wave reaches the 
end of the pipe, it expands and a negative or suction pulse 
travels back up the pipe towards the engine, Fig. 2. As the 
negative wave front in turn reaches the cylinder, it 
reverses again and moves back towards the end of the 
pipe. Pressure pulsations and the resulting spectral 
amplitudes are strongly influenced by the standing 
pressure waves caused by reflections. Exhaust noise 
waveform picked by microphone is distorted due to 
spectral shaping and reflections in exhaust pipe, Fig. 3. 
This distorted waveform doesn’t have simple relationship 
to engine operation (amplitude and shape of combustion 
pressure pulses are irregular and fluctuating) and as such 
is not suitable for analysis in time domain. Much of 
distortion caused by reflection could be diminished by 
using two microphones placed at spaced holes on exhaust 
pipe, [2], but this would require permanent installation as 
well as temperature and chemical resistance. 

To minimize influence of measurement position to 
results, measurements can be accomplished in far field 
(few meters distance from the exhaust pipe). 

 

 
Figure 3.  Distorted exhaust noise waveform 

D. Piston Engine Reliability 

Aircraft piston engines are relatively reliable devices. 
Engine failure is rare, thankfully, but does happen. 
Engine problem, is likely to manifest itself as a partial 
engine failure in the first instance (e.g. cylinder failure). 
Total engine failure is defined as off the ground, total and 
mechanically caused (i.e. rod, crankshaft, stuck valve). 
Piston engine reliability data is shown in table I. These 
numbers are obtained from data collected from pilot 
experiences participating in high traffic newsgroups 
rec.aviation.piloting and rec.aviation.ifr with pilots 
reporting total hours flown and number of experienced 
partial and total engine failures. Numbers are rounded. 
There is  roughly one  total failure  for every  four  partial  

 
TABLE I  Reliability of typical piston engine 
Type of failure MTBF (hours) 
Partial failure 5.000 

Total failure 
20.000 club airplanes 

> 30.000 private airplanes 

failures. The failure rate is not uniform, and depends a lot 
on how the aircraft are maintained and utilized (club vs. 
private airplane). Generally, better results are obtained for 
simpler engines like O-240, O-320 and O-360 then for 
more complex and powerful O-520, O-540 and 
particularly turbocharged engines where turbo failure 
cause very significant power loss. In terms of engine 
reliability simpler designs give better results. Statistics is 
skewed toward four cylinder engines simply because they 
are most common among light airplanes. 
 

III. METHOD FOR FAULT DETECTION 

Proposed method is combination of heuristics and 
statistical approach. Great problem with advising method 
is due to very reliable aircraft engines. It is very difficult, 
with exception of large manufacturer and overhaul 
services, to obtain sufficient large sample of failed 
engines. On the other hand artificial failures can be 
produced (failure injection), but this process could harm 
the expensive engine (some failures would require 
destructive testing with high price tag), yet it will not 
cover all problems. 

A. Common Approaches 

Common approaches for machine fault detection and 
diagnosis are 
 spectral analysis with limit checking (acceptance 

envelope) 
 use of conventional features (RMS, variance, 

skewness, kurtosis, energy content) 
 

Unfortunately, power spectrum analysis methods of 
detecting faults in internal combustion engines are much 
less reliable then detecting faults in turbines and electric 
motors. Despite looking simple, as in Fig. 4, this 
approach encounter lot of problems, mainly due to engine 
speed variability (frequency shifts of important 
harmonics), spectral variability of the healthy engine and 
noise floor. To partially alleviate the problem some 
authors propose use of high order spectral analysis [3]. 
This method promise easier detection of piston engine 
faults. However typical human expert is more 
comfortable with a classical spectral signal representation. 
Determination of acceptance limits is usually difficult 
task (done by expert), particularly if there are not 
available examples of failures; with accuracy/false alarms 
tradeoff. If automatic fault detection is to use insight of 
human expert spectral approach could be easier. Spectral 
coherence could be better used with statistical classifiers. 
Approaches with neural nets have also been tried [4, 5, 6], 
as kind of statistical classifiers that require examples of 
measurement signals both from normal and faulty engine.  

 
Figure 4. Acceptance envelope method of power spectral fault detection  
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B. Proposed Method 

Solution can be heuristic approach based on 
knowledge of engine operation and maintenance 
combined with statistical approach. 

 
Features used in proposed method are following: 
 RMS variations across frames within recording 
 frequency variation (stability of F0) 
 amplitudes of four most prominent spectral peaks 
 
RMS (envelope variations are illustrated in Fig. 5) 

and main frequency variation are related to rough engine 
operation and misfire (most common culprit is the aircraft 
magneto, although other reasons may apply), [7, 8]. 

Amplitude deviations of components within 
frequency spectrum pattern indicate engine component 
problem/failure (more complex to diagnose). 

Frequency spectrum, Fig. 6, is reduced to a pattern 
with only four components, F0, F1, F2, and F3 
corresponding most prominent frequency components 
within spectrum, Fig. 7, F1, F2 and F3 are harmonics of 
F0: 

01 2FF     (2) 

02 3FF     (3) 

03 4FF     (4) 

 
Amplitudes of frequency components with highest 

amplitude in four narrow frequency bands around 
expected positions of fundamental frequency and three 
first harmonics are determined.  The idle speed of a 
healthy engine should be more than 550 RPM and less 
than 750 RPM, hence the frequency of the first harmonic, 
that is the fundamental, is between 18.3 and 25 Hz, 
Method, illustrated in Fig. 8, consists of following steps: 

 

 
 

Figure 5.  Envelope variations 

 

 
 

Figure 6.  Spectral content of exhaust noise 

 
 

Figure 7.  Main frequency components of exhaust noise 
 

 
Figure 8.  Proposed Method 

 

1. Acoustic measurement of engine exhaust noise (far 
field) is performed for a period of one minute. 

2. Signal is amplitude normalized. 
3. Sliding frame analysis is applied (2.97s, 50% overlap). 
4. For each frame 

a. Signal RMS value is calculated (no overlap) 
b. Rotational speed and F0 is determined 
c. Hanning window is applied 
d. Frequency analysis is performed and 

amplitudes of four most prominent 
frequency components are determined, 
simple frequency pattern is formed 

5. Signal RMS variation, 
RMS is determined. 

6. Frequency variation, 
0F , of rotational speed RPM 

are determined. 
7. Signal RMS variations, frequency F0 variations and 

amplitude variations of peak spectral components are 
compared to predefined thresholds (limit checking) 

 RMS variation is compared to RMS 
variation threshold 

 Pitch frequency variation is compared to 
pitch frequency variation threshold 

 Amplitudes A0, A1, A2 and A3 of four peak 
frequency components F0, F1, F2 and F3 
must fall into interval around its previously 
estimated mean values 

 
Decision is based on threshold comparisons. Engine 

must pass all tests (envelope variations, idle RPM, 
frequency variations and frequency pattern), one failure is 
enough for fail decision (pass/fail). Further diagnostics 
based on violated threshold is possible. 
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Acoustic recording is a series of amplitude samples: 

 1210 ,,,,  nssss s   (5) 

where si are samples, and n total number of samples that 
is product of sample rate and duration of recording 
period. In experiment sample frequency fs=22050 Hz was 
used. Sliding frame is applied to a recorded signal (50% 
frame overlap, frame size N = 65536): 

   ebbbiNiiif ssssxxx ,,,,,...,, 21,1,1,0,  x  (6) 

Nibi 2

1
       (7) 

1 Nse ii
      (8) 

where xf,i is a ith signal frame, N is a frame size, x0,i=sb is 
first (beginning) sample and xN-1,i=se is the end sample 
within ith frame.  

Root mean square (RMS) value of recorded signal is 
determined for each first half of a frame (no overlap) as 
an average of squared values within frame period. 
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Pitch frequency must be within idle rotation speed of 
a healthy engine (F0,MIN = 18.3 Hz, F0,MAX = 25 Hz, (1)) 

F0,MIN < F0  < F0,MAX  (10) 
Pitch frequency of recorded signal is determined for 

each frame as by autocorrelation method: 
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Within this range pitch frequency is determined with 
an accuracy of about ±0.1% (due to accuracy of period τ 
of ±1 sample). This way much higher precision is 
achieved then by using FFT (frequency component of 
interest could often fall between two spaced FFT 
frequency analysis components). 

To determine amplitudes of peak frequency 
components Hanning window is applied to a frame. 
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Recorded signal could be represented as a sum of 
sinusoidal components: 
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0 sin   (16) 

Peak amplitudes are determined with Discrete Fourier 
Transform (DTF), but concentrating only to frequency 

components of interest (F0, F1, F2, and F3), where 
iFa is 

cosinus term, 
iFb sinus term and 

iFA amplitude for 

frequency component Fi 
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Figure 9.  Side components for more precise peak determination 

 

Frequency value is quite precisely determined from 
pitch. To achieve even greater precision in determining 
peak amplitude for a particular frequency, amplitude is 
calculated for central frequency and eight nearby 
frequencies within 0.1% of central frequency, as shown 
in Fig. 9 and Table II. 

 
TABLE II  Relation to central frequency 

Frequency component Relation to center, Fi 
Fi,-4 0.99900Fi 
Fi,-3 0.99925Fi 
Fi,-2 0.99950Fi 
Fi,-1 0.99975Fi 
Fi,1 1.00025Fi 
Fi,2 1.00050Fi 
Fi,3 1.00075Fi 
Fi,4 1.00100Fi 

 
 Then, maximal value is chosen: 

 4,,3,,2,,1,,0,,4,,4,,4,,4,max
iiiiiiiiii FFFFFFFFFF AAAAAAAAAA   (20) 

Frames xF,i of features are formed: 
xF,i=[ xRMS,i, F0,i, AF0,i, AF1,i, AF2,i, AF3,i] (21) 

 

where for ith frame 
xRMS,i is RMS value  
F0,i   is main frequency (pitch)  
AF0,i is amplitude of component F0  
AF1,i is amplitude of component F1 
AF2,i is amplitude of component F2 

AF3,i is amplitude of component F3 

 
Total recording (matrix X), now consist of all 

recorded frames xF,i (vectors with extracted features as 
components). 

X=[xF,0, xF,1, … , xF,NF-1]  (22) 
 
For each feature mean value and standard deviation 

for this recording is calculated across all frames: 
Mean value is determined by 
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Standard deviation is determined by 
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Six pairs of mean and standard deviation are formed 
from all frames of recording: 

 
 RMS mean and standard deviation 

 RMSRMS  ,   (25) 

Standard deviation σRMS is also a measure of RMS 
variability within recording. 
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 pitch (main frequency) mean and standard deviation  
 

00
, FF    (26) 

Standard deviation 
0F is also taken as a measure of 

pitch frequency F0 variability within recording. 
 Amplitude mean and standard deviation of frequency 

components (F0 - F3) in frequency pattern: 
 

ii AA  ,  i = 0 , … , 3 (27) 

C. Determination of Decision  Tresholds 

The engine exhaust noise is a complex signal 
produced by a number of sources in the engine 
compartment. Due to numerous influential parameters as 
well as histograms (empirical distributions of features 
RMS, F0, AF0, AF1, AF2 and AF3 with the Gaussian fit, taken 
from 39 frames samples), Fig. 11 - 16, it is assumed that 
normal distribution  2,N  is appropriate for extracted 

features. Please note that in Fig. 11 and 12 are histograms 
of RMS and F0, and not of its variations σRMS and 

0F  that 

are calculated after the measurement is completed. 

  
Figure 11 RMS Figure 12 Pitch F0 Figure 13 Ampl. of F0 

 
Figure 14 Ampl. of F1  Figure 15 Ampl. of F2  Figure 16 Ampl. of F3 

 

Probability density function, Fig. 10, is expressed by 
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Figure 10.  Distribution of extracted features 

 

Due to the lack of available examples of engine 
failures, determination of threshold values for pass/fail 
decision is accomplished by determination of standard 
deviation σ of the normally distributed feature, and using 
multiple k of σ with expectation that RMS and pitch 
variations form healthy engine will satisfy relations 

HRMSTRMS k ,,      (29) 

HFTF o
k ,,0
     (30) 

where 
TRMS ,  and 

TF ,0
  are standard deviations of test 

recording, 
HRMS ,  and 

HFo ,  standard deviations obtained 

from recordings of a healthy engine. 

Similarly, amplitudes A0, A1, A2 and A3 of frequency 
components F0, F1, F2 and F3 form each frame of a 
healthy engine (ie. Ai,TH) will fall within predefined 
interval around mean, 

HAi ,  

 HAHAHAHATHi iiii
kkA   ,,  (31) 

where HAi ,  is mean of a feature Ai from a healthy 

engine, σAiH standard deviation of  feature Ai from a 
healthy engine, i = 0,…,3. 

On the other hand for one or more features of the 
failed engine of following relations will apply: 

HRMSTRMS k ,,      (32) 

HFTF o
k ,,0
     (33) 

 HAHAHAHATHi iiii
kkA   ,,

 (34) 

 
where μTF is mean of a test frame from a faulty engine 
 

Proportion r of data values within z standard 
deviations of the mean is defined by: 


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z
erfr    (35) 

where erf is the error function 
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22
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Standard deviation is σ is determined from 10 minutes 
of acoustic recording. 

Test recording is of duration of one minute and 
produces 39 frames. One hour of engine operation consist 
of 2421 frames. In 1.000 hours there will be at average 
one frame corresponding to minor engine problem event. 
Considering that 1.000 hours consist of about 2.421.000 
measurement frames) proportion r equals 

 

9999995.0
000.421.2

1
1 r   (37) 

 

and appropriate z is around 4.9, calculated from (35). 
  

[μ - 4.9 σ, μ + 4.9 σ]  (38) 
 

Period of 1.000 hours is chosen considering MTBF 
for partial (5.000) and total (20.000) engine failures. It is 
supposed that choosing interval of 1.000 hours will 
capture minor engine problems before developing into 
serious problem, yet be large enough to minimize false 
alarms. Samples outside 4.9 σ around the mean are 
outliers and as such warrant further attention. 

However, test recording is of duration of one minute 
and produces 39 frames. One hour of engine operation 
(typical flight) consist of 2421 (overlapping 2.9 s) frames. 
Chances that one minute test recording will capture one 
outlier (anomaly) that appear within one hour is 

 

0161.0
2421

39
p   (39) 

 

To be almost certain to detect failed frame in one 
minute test recording it is necessary to look for something 
that occurs about every minute or 62.08 times more often 
(this time looking for faulty frame that appears at average 
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once in 39.000 frames per 1.000 hours of engine 
operation). That changes our thresholds and limit interval:  

HRMSTRMS ,, 05.4     (40) 

HFTF o ,, 05.4
0

     (41) 

 HAHAHAHATHi iiii
A  05.4,05.4,    (42) 

To find a minor engine problem, that occurs once in 
1.000 hours of engine operation (and five times more 
often than partial engine failure), we are looking for 4σ 
event. 

IV. EXPERIMENTAL SETUP 

Acoustic measurements were obtained using, external 
measurement condenser microphone ECM8000 
(Behringer) and M-Audio Fast Track Pro USB Audio 
Interface connected to a notebook computer with Cool 
Edit software. Recordings were done with 22050 Hz 
sample rate and 16 bit and later processed by program 
written in C language. Far field acoustic measurement 
was carried out according to Fig. 17, to avoid the 
propeller slipstream. Distance from exhaust pipe to 
microphone was about 2.5 m. A series of acoustic 
measurements was conducted on Cessna 172N airplane 
with flawless internal combustion engine, type O-320-
H2A2, (even many hours after measurements giving to 
recordings greater confidence of healthy engine 
example). Measurement data on Cessna 172 was 
collected only at engine idle speed.  At high rotation 
speeds (RPM) contribution of propeller noise is becoming 
significant, even dominant noise source and would 
heavily contaminate measurements of engine exhaust 
noise. Noise of engine and related parts (alternator, etc) 
would also contribute to contamination. 

 It would be nice to have much larger acoustics 
measurement interval for more precise determination of 
σ; however it is not advisable to keep engine at idle 
setting for longer period due possibility of spark plug 
fouling. Also, engine time is expensive, around 
150 EUR / hour, for Cessna 172, (in terms fuel and 
maintenance expenses). 

 
Figure 17.  Measurement setup 

V. RESULTS 

Total of 10 minutes of acoustic measurement has been 
acquired and processed. Mean value μ and variance σ was 
calculated for each feature. Measurement results and 
proposed decision thresholds (4.05σ) for each extracted 
feature are summarized in table III. 

 

TABLE III  Measurement results and proposed decision thresholds 
Feature μ σ 4.05 σ*

Amplitude variation, σRMS 0.099683 0.002584 0,010465 

Frequency variation of F0, σF0 19.112942 0.120259 0,487049 
Amplitude A0 of freq. peak F0 0.004993 0.001408 0,005702 
Amplitude A1 of freq. peak F1 0.057620 0.003933 0,015929 
Amplitude A2 of freq. peak F2 0.027245 0.003054 0,012369 
Amplitude A3 of freq. peak F3 0.011036 0.002168 0,008780 

* one event in 1.000 hours 
 

VI. CONCLUSION 

Fault detection in aircraft piston engine is very 
important for reducing the probability of in-flight engine 
failure that puts pilot of an aircraft in high risk situation 
(off airport landing or poor climb gradient and thrust 
asymmetry in case of twin engine aircraft). The analysis 
of exhaust noise may be useful for monitoring engine and 
assessing the need for maintenance. It could provide early 
diagnostics of a pending engine failure. Simple four 
component frequency pattern is used that is more robust 
(in terms of frequency shifts and spectral variability) than 
use of whole exhaust noise spectrum. Due to the lack of 
failure mode examples, threshold limits are calculated 
considering estimated MTBF of aircraft piston engine. 
With some more acoustic measurements more reliable 
decision thresholds could be determined. Advantage of 
the method is that it is non-contact and requires a short test 
measurement making it suitable for preflight check. Its 
disadvantage is that some types of engine problems (e.g. 
non-combustion related) may remain hidden in exhaust 
noise. This method should not be used in isolation, but as 
an addition to diagnostics based on engine instruments. 
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