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A methodology is proposed for nonlinear contrast-
enhanced unsupervised segmentation of multispec-
tral (color) microscopy images of principally
unstained specimens. The methodology exploits
spectral diversity and spatial sparseness to find ana-
tomical differences between materials (cells, nuclei,
and background) present in the image. It consists of
rth-order rational variety mapping (RVM) followed by
matrix/tensor factorization. Sparseness constraint
implies duality between nonlinear unsupervised seg-
mentation and multiclass pattern assignment prob-
lems. Classes not linearly separable in the original
input space become separable with high probability
in the higher-dimensional mapped space. Hence,
RVM mapping has two advantages: it takes implicitly
into account nonlinearities present in the image (ie,
they are not required to be known) and it increases
spectral diversity (ie, contrast) between materials,
due to increased dimensionality of the mapped
space. This is expected to improve performance of
systems for automated classification and analysis of
microscopic histopathological images. The method-
ology was validated using RVM of the second and
third orders of the experimental multispectral mi-
croscopy images of unstained sciatic nerve fibers
(nervus ischiadicus) and of unstained white pulp in
the spleen tissue, compared with a manually de-
fined ground truth labeled by two trained patho-

physiologists. The methodology can also be useful
for additional contrast enhancement of images of
stained specimens. (Am J Pathol 2011, 179:547–554; DOI:

10.1016/j.ajpath.2011.05.010)

Staining of the specimen in the slide preparation process
has been standard procedure for many years, because it
increases contrast between the cell and the background.
However, staining involves hours of preprocessing of the
specimen, and can also add chemical effects to the
nature of the cells, cause their shrinkage, and alter their
morphology.1 For example, in studying effects of DNA
damage on cell viability, fluorescent probes must not be
used to stain the cell nuclei, to avoid compromising the
viability of the cultures.2 Similarly, when studying the ef-
fects of inhibitor compounds designed to block the rep-
lication of cancerous cells, fluorescent dyes must not be
used to mark nuclei, because the dyes themselves have
toxicity.3 The subcellular localization of genetically en-
coded proteins imposes constraints on the cell recogni-
tion methods used to draw conclusion about function of a
protein; again, staining of the cell is not allowed, to pre-
serve the quality of the specimen and to avoid influencing
the result of an investigation.4 When staining is not al-
lowed, contrast between the cell and the background will
be poor, and it is challenging for either a trained pathol-
ogist or an automated image processing system to
achieve good results. Furthermore, manual classification
of cells by trained pathologists in images of stained spec-
imens shows interobserver variability up to 20%.5 These
findings prompted us to explore the possibility of devel-
oping a contrast enhancement methodology based on
nonlinear unsupervised segmentation of multispectral im-
ages with poor contrast between the materials (ie, cells,
nuclei, tissue types, and the like) present in the image.
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The methodology reported here is based on represen-
tation of the multispectral image by a linear mixture model
(LMM) in a space induced by rth-order rational variety
mapping (RVM), which is a polynomial type of nonlinear
mapping.6 LMM itself has been used in remote sensing
for years,7–9 and recently in medical imaging as
well.10–12 It represents a multispectral image matrix as a
product of basis or mixing matrix and matrix of spatial
distributions of the materials present in the image (re-
ferred to as a source matrix). Very recently, the tensorial
nature of the multispectral image has been exploited for
the purpose of linear unsupervised segmentation.13

Thus, any method capable of uniquely factorizing multi-
spectral image matrix or tensor can be used to perform
unsupervised segmentation. This implies that only a mul-
tispectral image is at disposal for the factorization
method. In adopted representation, columns of the basis
matrix represent spectral profiles of the materials present
in the image.

The quality of linear segmentation depends in the first
place on how accurately LMM represents an experimen-
tal multispectral image. When nonlinearities are present
in the image, accuracy of the LMM-based representation
is limited. It can, however, be improved if LMM is used to
represent the image in the space induced by the rth-
order RVM.6 This capability is grounded in the duality
existing between nonlinear unsupervised image segmen-
tation and pattern recognition problems, such as occurs
when spatial distributions of the materials present in the
image are mutually sparse. Here, RVM increases the
number of separating surfaces between the classes and
enables their separability. Then, the multispectral image
represents a set of patterns (pixel vectors), columns of
the mixing matrix represent centers of the class-related
clusters, and sources represent classes. Representing
the image by LMM in mapped space has two advan-
tages: it implicitly takes into account the possible pres-
ence of nonlinearities in the image (ie, they are not re-
quired to be known) and it enhances contrast between
spectrally similar materials, which occurs because of
increased dimensionality of the mapped space. In this
regard, nonlinear band expansion as used by Kopriva
and Peršin10 and by Ouyang et al 14 is a special case
(second-order) of the rth-order RVM used in our meth-
odology.

We apply second- and third-order mappings (RVM2
and RVM3, respectively) in combination with several
state-of-the-art matrix and tensor factorization meth-
ods15–18 to perform nonlinear unsupervised segmenta-
tion of the multispectral microscopy images of the un-
stained specimen of sciatic nerve fibers (nervus
ischiadicus) and spleen tissue. In the first case, our pro-
posed methods yielded significant contrast enhance-
ment between nerve cells and background, relative to
segmentation performed by factorization algorithms only.
The same outcome occurred in the second experiment:
with our proposed methods, lymphatic cells present in
the white pulp spleen tissue were better discriminated
against the red pulp, relative to segmentation performed
by factorization algorithms only. Moreover, RVM3 brought

an additional performance improvement. The proposed
methodology can also be useful for additional contrast
enhancement in analysis and classification problems as-
sociated with multispectral images of stained speci-
mens.19–23 To our knowledge, there is no previous report
of nonlinear blind segmentation of multispectral (color)
images of either unstained or stained specimens per-
formed by matrix/tensor factorization in the space in-
duced by rth-order RVM.

Materials and Methods

Animal Studies

Adult NOD (10 to 12 weeks old) mice were acquired from
the breeding facility at the Ruder Bošković Institute, Za-
greb, Croatia. Animal care and treatment were con-
ducted in conformity with institutional guidelines and in
compliance with international law. Before and during the
experiments, animals had standard pelleted food and tap
water ad libitum. The studies were approved by the insti-
tutional Ethics Committee.

Histological Analysis

Sciatic nerve fibers and spleen tissue were taken from
NOD mice for histological analysis. After extirpation, the
tissues were fixed in Bouin’s solution for 24 hours. Fixed
tissues samples were immersed in increasing concentra-
tions of alcohol for dehydration. After dehydration, tissues
were embedded in paraffin. The paraffin blocks were
then cut with a microtome into slices 5 �m thick.

Deparaffinization

Microscope glass slides with a histological preparation
were put in a rack, covered with foil, and incubated for 5
minutes at 55°C in an oven (Thermo Fisher Scientific,
Waltham, MA). Afterwards, glass slides were incubated
three times for 15 minutes in toluene. Microscope glass
slides with a histological preparation were put in a rack,
covered with foil, and incubated for 5 minutes at 55°C in
an oven (Thermo Fisher Scientific, Waltham, MA). After-
wards, glass slides were incubated three times for 15
minutes in toluene. Glass slides were then transferred
into 100% ethanol at 1 minute, after that started process
rehydration for 5 minutes in 96% ethanol, for 5 minutes in
75% ethanol, and for two 5-minute washes in distilled
water with constant stirring.

Preparation for Staining and Antigen Retrieval

Deparaffinized microscope glass slides with histological
preparation were placed in a rack, plunged into 450 mL
citrate buffer, and heated two times for 5 minutes in a
microwave oven. Slides were then transferred into hot
water, heated to 60°C, and stored until cooled down to
room temperature. After cooling, slides were washed
three times for 5 minutes in PBS buffer at room tem-

perature.
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Staining

The microscopic glass slides with histological prepara-
tion were applied to 50 �L incubation buffer. After incu-
bation and mixing (for 30 minutes) glass slides were
washed with PBS buffer. On each slide, 50 �L primary
monoclonal antibody (mAb IgG) was added and slides
were incubated for 60 minutes with occasional mixing.
After incubation, the slides were rinsed thoroughly three
times for 5 minutes in PBS buffer. Next, 80 �L 10%
glycerol-PBS was added to each slide; slides were then
coverslipped. Finally, processed glass slides were ana-
lyzed under a microscope.

Multispectral Microscope Image Acquisition

Spectral images of the slides were acquired at room
temperature, in the 10% glycerol-PBS imaging medium,
under an Olympus BX51 fluorescence microscope
(Olympus America) equipped with a DP50 camera (nu-
merical aperture of the objective lens, 1/120; Olympus
Singapore), at �400 magnification, and with Viewfinder
Lite 1.0 image acquisition software (Better Light, Inc., San
Carlos, CA). Preparations were scanned using spectral
filters at wavelengths of 465, 510, 578, and 620 nm.
Acquired spectral images were analyzed in a MATLAB
software environment with programs written in MATLAB
script language (Mathworks, Natick, MA).

Multispectral Image and Linear Mixture Model

The multispectral image of a specimen is represented by
the LMM in a space induced by rth-order RVM (see
Cover6), �(X) (the mapping itself is formally defined in the
next section):

��X� � A���S� (1)

where X�R0�
I3�I1I2 stands for the multispectral image com-

prised of I3 spectral bands and I1�I2 pixels and S�R0�
J�I1I2

stands for the matrix of sources representing spatial dis-
tributions of J materials present in the image. The first-
order mapping represents the original image itself, and
model (1) becomes a standard LMM in the original input
space, X � AS, used commonly in multispectral image
analysis,7–11 where A�R0�

I3�J stands for a matrix of spec-
tral profiles of J materials present in the image. In
mapped space, ��X��R0�

I�3�I1I2 and A��R0�
I�3�J�, where I�3 �

I3 and J� � J. Hence, RVM has dimensionality (band)
expansion effect. In the image segmentation problem
considered, �(X), A�, and �(S) are assumed to be non-
negative. Matrix representation (1) is obtained from three-
dimensional multispectral image tensor X��R0�

I1�I2�I3 by row
or column stacking procedures.

To obtain factorization (1) unique up to permutation
and scaling indeterminacies, which are inherent to blind
decompositions, sparseness constraints are imposed by
non-negative matrix factorization (NMF) algorithms24 or
statistical independence constraints are imposed by in-
dependent component analysis (ICA) algorithms25 on

rows of �(S). Sparseness implies that one material dom-
inantly occupies each pixel footprint, and that condition is
fulfilled for histopathological images of the specimen. The
statistical independence assumption fails when materials
are spectrally similar. This occurs, for example, in the
case of low-dimensional multispectral imaging of a skin
tumor with a low fluorescence intensity,10,11 but occurs
also with multispectral microscopy imaging of an un-
stained specimen with low contrast between the cell and
the background.

An alternative to matrix representation of multispectral
image is tensor representation X��R0�

I1�I2�I3 (see Ref. 13),
with elements �xi1i2i3�I1,I2,I3�1

I1,I2,I3 ; that is, the multispectral im-
age is a set of I3 spectral band images with the size of
I1�I2 pixels. This is a standard notation adopted for use
in multiway analysis.26 For the purpose of multispectral
image decomposition, a Tucker3 tensor model is ad-
opted27:

��X�� � G���1 A�
�1��2 A�

�2��3 A�
�3� (2)

where, as in model (1), the image is represented in the
mapped space and first-order mapping of � yields two-
dimensional LMM in the original space,13 thus: X� �
G� � 1 A�1� � 2 A�2� � 3 A�3�. Here, G��R0�

J�J�J is a core
tensor, �A�n��R0�

In�J�n�1
3 are factors, and xn denotes n-mode

product of a tensor with a matrix A(n). In mapped space,
the dimension that corresponds to spectral mode I3 is
replaced by induced dimension I�3, where I�3 � I3. In tensor
model (2), array factor A�

�3� corresponds to the matrix of
spectral profiles A� in model (1).13 In contrast to matrix
factorization model (1), tensor factorization model (2) ex-
ploits spatial structure of the multispectral image and
enables decomposition in which uniqueness does not
depend on the fulfillment of hard constraints on model
factors such as sparseness or statistical indepen-
dence.18,24 Furthermore, spatial distributions of the ma-
terials present in the image (cell and background) are
immediately obtained in tensor format13:

��S�� � ��X���3 �A�
�3��† (3)

where ��S���R0�
I1�I2�J and † denotes the Moore-Penrose

pseudo-inverse.

Contrast Enhancement of Unstained Specimen
by Rational Variety Mapping

With LMM-based representation of the multispectral im-
age, it is apparent that contrast enhancement between
the materials occurs when the angle between their spec-
tral profiles (column vectors in the mixing matrix) is in-
creased. This coincides with increased dimensionality of
the space induced by rth-order RVM. The nonlinear band
expansion, introduced in Refs. 10, 14, and 28, is just a
special case (corresponding to r � 2) of the rth-order
RVM. The rth-order RVM of the pixel vector pattern x�R0�

I3

at spatial coordinate i1i2 is of the form

��x� � �1�x1
q1x2

q2 � · · · � xI3
qI3�q1, · · · ,qI3

�0

r �T s.t.
0 � �i3�1
I3 qi3 � r (4)
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That is, it involves monomials up to the order r. It
increases dimensionality of the pattern from I3 to I�3 �

	 I3�r

r 
 �
�I3�r�!

I3!r!
. This, for I3 � 4 spectral images used

in the experiments reported here yields I�3 � 15 for RVM2
and I�3 � 35 for RVM3. This enables separability between
mapped patterns with high probability, because the num-
ber of separating surfaces grows with r and is given with

C�I1I2,d� � 2�k�0
d	1 	 I1I2	1

k 
, where d � (I3 � r)!I3!r! [see

equation (5) in Ref. 6]. However, computational complex-
ity grows rapidly when r increases, and therefore second-
order or perhaps third-order RVM are of primary practical
interest. From the standpoint of pattern separability, order
of the RVM depends on the strength of nonlinearities
present in the image. Hence, it is probable that perfor-
mance improvement brought by higher-order RVM will be
small, compared with the increase in computational com-
plexity. Nevertheless, RVM enables nonlinear blind mul-
tispectral image decomposition, wherein nonlinearities
do not need to be known. Because of increased dimen-
sionality of the mapped space, RVM also improves the
contrast between spectrally similar materials (as for un-
stained specimen images, for which contrast is low).
Nonetheless, it is important to note that factorization of
the LMM of models (1) and/or (2) in mapped space does
not immediately lead to the solution of the segmentation
problem. That is because �(S) in (1) resembles �(X) in
(4), implying that actual solutions �sj�j�1

J are hidden among
many spurious ones. However, mutual sparseness con-

Figure 1. Spectral fluorescent microscopy images at 510 nm of histological
slices of unstained specimens of sciatic nerve fibers (nervus ischiadicus) (A)
and spleen (B). False-positive predicted nerve fiber spots (A) are marked by
white crosses and false-positive predicted lymph nodes in the spleen tissue

(B) are marked by green squares. Left: Spectral image. Right: Isolines of
the estimated energy of the vector field convolution (VFC).
straint simplifies �(S), because all of the monomials that
involve cross-products vanish and �(S) becomes

��s� � �1s1s1
2...s1

r ....sJsJ
2...sJ

r�T (5)

where T denotes transpose. Now, sparseness-based fac-
torization enforces factorization: ��s� � �1s�1...s�J�T where
s� j � �q�1

r sj
q, j � 1,... ,J, represent equivalent sources

that are mutually sparse (although different powers of the
same source are not). For image segmentation this solu-
tion is legitimate, because any combination of the powers
of the spatial distributions of the material is itself a spatial
distribution of the material.

Factorization Methods for Unsupervised
Segmentation of Multispectral Image

Here, we briefly review four state of-the-art methods for
factorization of matrix (1) and tensor (2) models of the
multispectral image of a principally unstained specimen.
These methods are referred to as i) dependent compo-
nent analysis (DCA),10,11 ii) multilayer hierarchical alter-

Figure 2. Segmented images of sciatic nerve fibers (A) with corresponding
isolines of the estimated external energy of the VFC (B). Left: Second-order
RVM2 and DCA algorithm. Right: Third-order RVM3 and NMU-�1 algorithm.
Isoline images in B are obtained from segmented images shown in A and are
in one-to-one correspondence with them. On the isoline images obtained
from the RVM-transformed images, the false-positive and false-negative spots
are marked by red or white crosses, respectively; spots that fall on tissue
border were excluded from the accuracy analysis.
nating least-square non-negative matrix factorization
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(HALS NMF),16,17 iii) non-negative matrix underapproxi-
mation (NMU),15 and iv) non-negative tensor factorization
(NTF).18

DCA is an extension of independent component anal-
ysis for problems in which statistical independence as-
sumption between sources is not fulfilled. Then, high-
pass filtering based preprocessing transform T is applied
on multispectral image (1), yielding T(�(X)) � A�T(�(S)),
whereupon rows of T(�(S)) are more statistically indepen-
dent than rows of �(S). ICA algorithms are then applied to
T(�(X)), yielding more accurate estimation of A�. After-
ward, sources are recovered through ��S� � �A��†��X�.
Candidates for preprocessing transform T include wave-
let packets,29 filter banks,30 and innovations.31

The HALS NMF algorithm minimizes global cost func-
tion D���X��A���S�� � ���X� 	 A���S��2

2 to estimate mix-
ing matrix A�, and a set of local cost functions D��
�X�j���a�;j��s�j�� � ���X�j�� 	 a�;j��s�j��2

2, j � 1,...,J� , to estimate
the sources ���s�j��j�1

J� , where ��X�j�� � ��X� 	 �k
j a�;k�

�s�k� and underlining denotes the row vectors. To obtain
factorization unique up to permutation and scaling,
sparseness constraints are imposed on �s�j�j�1

J� .17,12 As
already noted, they enforce all of the powers of the same
source to combine into one equivalent source: �s�j�j�1

J� →

�s��j�j�1
J . An additional performance improvement of the

NMF algorithms is obtained when they are applied in the
multilayer mode.16

Table 1. Outcomes for Image Analysis of the Unstained Specimen

Outcome
Unstained
specimen

RVM2
DCA

Sciatic nerve fiber (nervus ischiadicus)
NTP 55/55 50/51
NFN 0/0 4/4
NFP 27/27 11/11

Spleen tissue
NTP 128/131 128/131
NFN 0/0 3/7
NFP 55/47 41/48

Results obtained independently by two pathologists are separated by
Transforms: RVM2 and RVM3 (second-order and third-order rationa

(�-divergence non-negative tensor factorization), HALS NMF (hierarch
(non-negative matrix underapproximation).

NFN, number of false negatives; NFP, number of false positives; NTP, n

Table 2. Sensitivity and Positive Predictive Value of Image Analy
Different Transforms and Algorithms

Statistic*
Unstained
specimen

RVM2
DCA

RVM3
DCA

Nerve fiber (nervus ischiadicus)
Sens, % 100/100 92.6/92.7 92.9/96.2 90
PPV, % 67/67 82/82.3 63.4/61.4 70

Spleen tissue
Sens, % 97.7/97.7 97.7/94.9 97.7/96 97
PPV, % 70/73.6 75.7/73.2 84/84 84

Results obtained independently by two pathologists are separated b
sensitivity and low false positive alarm rate.
*Sens � NTP/(NTP � NFN) and PPV � NTP/(NTP � NFP), where Sens is sensitivity
and PPV is positive predictive value.
The NMU has been introduced recently as a refine-
ment of the NMF algorithms toward sparse factorization
of �(X) in (1). In addition to non-negativity constraints
imposed on A� and �(S), the cost function D���X��A��

�S�� � ���X� 	 A���S��2
2 is minimized, imposing an un-

derapproximation constraint on A� and �(S): A��(S) �

�(X). This naturally generates a sparse solution without
imposing direct constraints on the rows of �(S). Thus,
problems associated with selection of optimal values of
the regularization constants and/or number of layers are
avoided. Depending on the norm of the cost function,
NMU algorithm can be used in two versions: NMU-l2 if l2
norm is used, and NMU-l1 if l1 norm is used. Code for the
NMU algorithm as used for image segmentation in the
present study is available at http://www.core.ucl.ac.be/
�ngillis/papers/recursiveNMU.m.

The NTF algorithms are based on minimization of a cho-
sen discrepancy measure between multispectral image
tensor ��X�� and its model (2). Discrepancy measures
based on �- and �-divergences have been used recently,
because of their adaptability to data statistics.24 Results
related to unsupervised segmentation of the multispectral
microscopy images of unstained specimens of nerve cells
and spleen tissues reported here were obtained by an NTF
algorithm that minimizes the �-divergence between ��X��

and its model ��X̂_�. For equations of the multiplicative NTF
algorithms based on �-divergence, as well as �-diver-

Images Segmented by the Different Transforms and Algorithms

M3
A

RVM2
�-NTF

RVM3
�-NTF

RVM2
HALS
NMF

RVM3
HALS
NMF

RVM2
NMU-�1

RVM3
NMU-�1

/51 48/48 53/55 50/49 54/54 48/49 58/58
/2 5/5 2/1 5/55 1/2 4/4 1/1
/32 20/19 42/40 20/22 20/19 27/25 29/30

/121 128/131 Failed 128/131 Failed 128/131 118/117
/5 3/6 Failed 5/5 Failed 5/8 2/1
/23 24/33 Failed 31/25 Failed 29/35 17/19

le mark.
mapping). Algorithms: DCA (dependent component analysis), �-NTF

ernating least-square non-negative matrix factorization), and NMU-�1

of true positives.

the Unstained Specimen and of Images Segmented by the

RVM3
�-NTF

RVM2
HALS
NMF

RVM3
HALS
NMF

RVM2
NMU-�1

RVM3
NMU-�1

6 96.4/98.2 90.9/90.7 98.2/96.4 92.3/92.5 98.3/98.3
6 55.8/57.9 71.4/69 73/74 64/66.2 66.7/65.9

6 Failed 96.2/96.3 Failed 96.2/94.2 98.3/99.2
9 Failed 80.5/84 Failed 81.5/78.9 87.4/86

le mark. Bold type indicates the several best results that combine high
and of

RV
DC

52
4

30

126
3

24

a virgu
l variety
ical alt
sis of

RVM2
�-NTF

.6/90.

.6/71.

.7/95.

.2/79.

y a virgu
, N is number, TP is true positive, FN is false negative, FP is false positive,

http://www.core.ucl.ac.be/ngillis/papers/recursiveNMU.m
http://www.core.ucl.ac.be/ngillis/papers/recursiveNMU.m
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gence, we refer the reader to Ref. 18 and to sections 7.4.4
and 7.4.5 in Ref. 24.

Results

Contrast enhancement capability of the RVM-based
methods was demonstrated on one multispectral fluores-
cent image of the unstained specimen of sciatic nerve
fibers and one of the spleen tissue. Recorded multispec-
tral images comprised four spectral images at 465, 510,
578, and 620 nm; 510 nm is the wavelength at which the
best contrast was obtained; Figure 1A shows the 510-nm
spectral image of unstained sciatic nerve fibers, and
Figure 1B shows the cross-section of unstained spleen
tissue. The cross-section of the spleen shows both red
and white pulp; the white pulp consists further of lymph
nodes or follicles. The image also shows a part of the
spleen that is wrapped around the white pulp. This part
consists of reticular fibers and is full of red blood cells.
Part of the white pulp, which is of interest to our research,
shows diffuse lymph tissue that belongs to the family of T
lymphocytes.

Two pathophysiologists (M.H. and M.P.H.) evaluated
these images. In the image of unstained sciatic nerve
fibers, both pathophysiologists detected 55 true-positive
nerve fiber spots and 28 false-positive spots (Figure 1A).
It is of greater importance, however, that an automated
recognition would be highly unreliable because of weak
contrast between the nerve spots and the background.
This is demonstrated in Figure 1A, which shows isolines
of the estimated external energy of the vector field con-
volution (VFC),32,33 calculated for the 510-nm spectral
image of the unstained specimen. Because of weak
boundaries, isolines are not closed around the spots but
are scattered randomly across the image. Figure 2A
shows images segmented from multispectral image of
unstained specimen by the RVM2 transform and DCA
algorithm and by the RVM3 transform and NMU-�1 algo-
rithm, with corresponding images obtained without RVM
transform. Isolines of the estimated external energy (Fig-
ure 2B) are shown in one-to-one correspondence with
their related images (Figure 2A).

The most important finding is that contrast enhance-
ment due to the use of the RVM yielded stronger bound-
aries of the nerve fiber spots, and these are, therefore,
better encircled by isolines. This enables more accurate
classification and/or analysis of histopathological micros-
copy images. This statement is further supported by
quantitative performance analysis performed by the two
trained pathophysiologists (M.H. and M.P.H.). The num-
bers of true-positive (NTP), false-positive (NFP), and false-
negative (NFN) outcomes are reported in Table 1 for the
unstained image and for images segmented by the RVM2
and RVM3 transforms paired with DCA, �-NTF, HALS
NMF, and NMU-�1 algorithms. Table 2 reports sensitivity
and positive predictive value. In the validation phase, the
attention of the pathophysiologists was on the spots en-
circled by isolines, which would normally be checked by
an automated classification system. Where a false posi-

tive or false negative fell in a part of the specimen corre-
sponding to a border line (Figure 2B), it was excluded
from the accuracy analysis (Table 2).

The RVM2-DCA method yielded the smallest false-
alarm rate (PPV � 82.1%, with sensitivity (Sens) � 92.6%;
Table 2), which is significantly better than the rate ob-
tained from the image of the unstained specimen. The
highest accuracy (Sens � 97.3%) was obtained with the
RVM3-HALS NMF algorithm, but with increased false-
alarm rate. Overall, the RVM2-DCA would be the method
of choice for the present example. It is also important to
note that, for the case of sciatic nerve fiber, the interob-
server variability was small; the worst case was 3% for
images segmented by RVM3-DCA and RVM2 NMU-�1

algorithms. Figure 3 shows results obtained by the RVM2
and RVM3 transforms and NMU-�1 algorithm, with corre-
sponding isolines. Red blood cells located in the upper
left corner are suppressed and the white pulp part of the
spleen tissue is emphasized (Figure 3A). For a reference,
an image of the unstained specimen and the correspond-
ing isolines are shown in Figure 1B. Because of weak
boundaries, isolines are scattered randomly across the
image for the unstained specimen (Figure 1). Isolines
shown in Figure 3B show more regular structure.

Quantitative performance analysis was conducted by

Figure 3. Segmented images of spleen tissue (A), with corresponding iso-
lines of the estimated external energy of the VFC (B). Left: Second-order
RVM2 NMU-�1 algorithm. Right: Third-order RVM3 and NMU-�1 algorithm.
True-positive spots are marked with yellow circles. False-negative spots are
marked with green squares in the second-order RVM2 NMU-�1 segmented
image and with orange squares in the third-order RVM3 NMU-�1 segmented
image.
two pathophysiologists. The numbers of true-positive
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(NTP), false-positive (NFP), and false-negative (NFN) out-
comes are reported in Table 1, and the sensitivity and
positive predictive values are reported in Table 2. RVM3
paired with �-NTF and HALS NMF methods failed to
detect true-positive spots in spleen tissue. These meth-
ods were therefore excluded from the accuracy analysis
(Table 2). The failure was a consequence of significantly
increased computational complexity of RVM3 and �-NTF/
HALS NMF; it takes many hours to segment the image,
and selection of the optimal values of free parameters
becomes intractable. On the other hand, segmentation
by RVM3 and DCA/NMU was performed within several
minutes.

All methods yielded consistent improvement of false-
alarm rate (10% improvement), relative to the case of
image of unstained specimen (Table 2). Moreover,
RVM3-NMU yielded the smallest false-alarm rate (PPV �
86.7%) and the best accuracy (Sens � 98.7%). In the
present study, RVM3 brought additional performance im-
provement over RVM2, as did the RVM3-DCA algorithm.

Discussion

A contrast-enhancement methodology is proposed for
nonlinear unsupervised segmentation of fluorescent mul-
tispectral microscopy images of unstained specimens.
The methodology combines rth-order RVM, to increase
spectral diversity between the materials present in the
image, with non-negative matrix or tensor factorization.
The methodology was demonstrated on images of un-
stained specimen of sciatic nerve fiber and spleen tissue.
Lymphatic cells present in the spleen tissue were visually
and anatomically clearly separated from their envelopes
of red pulp. The results obtained imply that staining of the
specimen only for contrast enhancement can be
avoided, enabling the specimen to be used for visual
inspection by a pathophysiologist, as well as for other
purposes that require absence of staining. Moreover, the
demonstrated contrast-enhancement enables design of
an automated system for classification and analysis of
unstained microscope histopathological images. RVM-
based nonlinear blind image segmentation has two main
advantages: it implicitly takes into account the possibly
nonlinear nature of the image and it enhances contrast
between spectrally similar materials, which occurs be-
cause of increased dimensionality of the mapped space.
It is conjectured that a theoretical framework related to
reproducible kernel Hilbert space will further be relevant
for this purpose.
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