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Abstract. In this paper the weighted Čebyšev functional T (p; f, g; a, b) is
regarded as a function of two variables

T (p; f, g; x, y) =

∫ y
x p(t)f(t)g(t)dt∫ y

x p(t)dt
−

(∫ y
x p(t)f(t)dt∫ y

x p(t)dt

) (∫ y
x p(t)g(t)dt∫ y

x p(t)dt

)
, (x, y) ∈ [a, b]×[a, b]

where f, g and p > 0 are Lebesgue integrable functions. For a function

K(p; f, g; x, y) =

(∫ y

x
p(t)dt

)2

T (p; f, g; x, y) (x, y) ∈ [a, b]× [a, b]

the property of Schur-covexity, Schur-geometric convexity, Schur-harmonic
convexity and (1, 1)-convexity is proved.

1. Introduction

Let f, g and p > 0 be Lebesgue integrable functions on the interval I = [a, b] ⊆
R. In this paper the weighted Čebyšev functional T (p; f, g; a, b) is regarded as a
function of two variables

T (p; f, g; x, y) =

∫ y

x
p(t)f(t)g(t)dt∫ y

x
p(t)dt

−
(∫ y

x
p(t)f(t)dt∫ y

x
p(t)dt

)(∫ y

x
p(t)g(t)dt∫ y

x
p(t)dt

)
, (x, y) ∈ I2.

In [4] we proved Schur-convexity of a function T (1; f, g; x, y) with (x, y) ∈ I2.

Theorem A 1. Let f and g be Lebesgue integrable functions on I = [a, b] ⊆ R.
If they are monotone in the same sense (in the opposite sense) then T (x, y) :=
T (1; f, g; x, y), (x, y) ∈ I2 is Schur-convex (Schur-concave) on I.

Using the following notations:
P (x, y) :=

∫ y

x
p(t)dt,

fp(x, y) := 1∫ y
x

p(t)dt

∫ y

x
p(t)f(t)dt and gp(x, y) := 1∫ y

x
p(t)dt

∫ y

x
p(t)g(t)dt

we obtained next result for the weighted Čebyšev functional (see [5]):

Theorem A 2. Let f and g be Lebesgue integrable functions on I = [a, b] ⊆ R and
let p be a positive continuous weight on I such that pf and pg are also Lebesgue
integrable functions on I. Then T (x, y) := T (p; f, g; x, y) is Schur-convex (Schur-
concave) on I2 if and only if the inequality
(1)

T (x, y) ≤ p(x)(fp(x, y)− f(x))(gp(x, y)− g(x)) + p(y)(fp(x, y)− f(y))(gp(x, y)− g(y))
p(x) + p(y)

.

holds (reverses) for all x, y in I.
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For a function K : I2 ⊆ R2 → R defined by

(2) K(p; f, g; x, y) =
(∫ y

x

p(t)dt

)2

· T (p; f, g; x, y), (x, y) ∈ I2

the author in [17] proved the following statement:

Theorem A 3. Let f, g : [a, b] → R be Lebesgue integrable functions, and let p :
[a, b] → R+ be a Lebesgue integrable function. A function K(x, y) := K(p; f, g; x, y)
defined as (2) is increasing (decreasing) with y on I = [a, b] and decreasing (in-
creasing) with x on I if f and g are monotone in the same sense (in the opposite
sense).

In this paper we prove the property of Schur-convexity, Schur-geometric con-
vexity and Schur-harmonic convexity of a function K(x, y) with (x, y), depending
of monotonicity and simultan ordering of the functions f and g. We also show
(1, 1)-convexity of a function K.

2. Definitions and proprties

The concepts of majorizations and Schur-convex functions involve convex func-
tions and measure of the diversity of the components of an n-tuple in Rn. Most
of the basic results are given in Marshall and Olkin’s book [8]. In the recently
references [1], [2], [3], [10], [11], [13], [15], [16], we can find the definitions and
applications of the Schur-convex, Schur-geometrically convex and Schur-harmonic
convex functions.

In this section we will recall usefull definitions, lemmas and theorems:

Definition 1. Let x,y be in E ⊆ Rn and let x[i], y[i] denote the i th largest
component in x and y. We say y majorizes x, denote x ≺ y if

k∑

i=1

x[i] ≤
k∑

i=1

y[i], k = 1, ..., n− 1,

n∑

i=1

x[i] =
n∑

i=1

y[i].

Definition 2. Let x,y be in E ⊆ Rn. A function F : E → R is called a Schur-
convex function on E if

F (x1, x2, .., xn) ≤ F (y1, y2, .., yn)

for each x and y in E such that x ≺ y.
A function F is Schur-concave if and only if −F is a Schur-convex function.

Definition 3. Let x,y be in E ⊆ Rn
+. A function F : E → [0,∞) is called a Schur-

geometrically convex function on E if

F (x1, x2, .., xn) ≤ F (y1, y2, .., yn)

for each two positive x and y in E such that (lnx1, ln x2, .., ln xn) ≺ (ln y1, ln y2, .., ln yn)
i.e y logarithm majorizes x.

A function F is Schur-geometrically concave if and only if −F is a Schur-
geometrically convex function.
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Definition 4. Let x,y be in E ⊆ Rn
+. A function F : E → [0,∞) is called a

Schur-harmonic convex function on E if

F (x1, x2, .., xn) ≤ F (y1, y2, .., yn)

for each two positive x and y on E such that it holds ( 1
x1

, 1
x2

, .., 1
xn

) ≺ ( 1
y1

, 1
y2

, .., 1
yn

).
A function F is Schur-harmonic concave if and only if −F is a Schur-harmonic

convex function.

The next lemmas gives us the characterisations of Schur-convexity, Schur-geometrically
convexity and Schur-harmonic convexity (see [8, p.57], [11, p.333], [14], [15, p.108],
[16]):

Lemma A 1. Let E ⊆ Rn be a symmetric convex set with a nonempty interior.
Let F : E → R be a continuous function on E and differentiable on the interior of
E. Then F is Schur-convex (Schur-concave) if and only if it is symmetric and

(3)
(

∂F

∂x2
− ∂F

∂x1

)
(x2 − x1) ≥ 0 (≤ 0)

holds for all x in the interior of E, x1 6= x2.

Lemma A 2. Let E ⊆ Rn
+ be a symmetric logarithm convex set with a nonempty

interior i.e. ln E = {lnx = ( lnx1, ..., ln xn) : x ∈ E} is a convex set. Let F : E →
[0,∞) be a continuous function on E and differentiable on the interior of E. Then
F is Schur-geometrically convex (Schur-geometrically concave) if it is symmetric
and the inequality

(4)
(

x2
∂F

∂x2
− x1

∂F

∂x1

)
(ln x2 − ln x1) ≥ 0 (≤ 0)

holds for all x in the interior of E, x1 6= x2.

Lemma A 3. Let E ⊆ Rn
+ be a symmetric harmonic convex set with a nonempty

interior.i.e. 1/E = {1/x = ( 1
x1

, ..., 1
xn

) : x ∈ E} is a convex set. Let F : E →
[0,∞) be a continuous function on E and differentiable on the interior of E. Then
F is Schur-harmonic convex (Schur-harmonic concave) if it is symmetric and

(5)
(

x2
2

∂F

∂x2
− x2

1

∂F

∂x1

)
(x2 − x1) ≥ 0 (≤ 0)

holds for all x in the interior of E, x1 6= x2.

Definition 5. The functions f and g : In → R are similarly ordered if

(f(x1, x2, .., xn)− f(y1, y2,.., yn)) · (g(x1, x2, ., xn)− g(y1, y2,.., yn)) ≥ 0,

for each two n-tuples x and y on In.
Function f and g are oppositely ordered if f and −g are similarly ordered.

We recall the well-known Čebyšev inequality for monotone functions (see [9, p.
239], [11, p.197] ) and for similar ordered functions (see [7, p.168], [9, p.252]):

Theorem A 4. Let f and g be Lebesgue integrable on an interval I = [a, b] ⊆ R
and let p be a positive continuous weight on I such that pf and pg are also Lebesgue
integrable functions on I. If f and g are monotone in the same sense (in the opposite
sense) then it holds

T (p; f, g; a, b) ≥ 0 (≤ 0).
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Theorem A 5. Let f and g be Lebesgue integrable functions on I = [a, b] ⊆ R
and let p be a positive continuous weight on I such that pfg, pf and pg are also
Lebesgue integrable functions on I. If f and g are similarly (oppositely) ordered
then it holds

T (p; f, g; a, b) ≥ 0 (≤ 0).

Popoviciu in ([12, p.60]) used the (n,m)- divided difference of the function in
the definition of the (n, m)−convexity (concavity) (see also [11, p.18]):

Definition 6. A function F : I2 → R is (n,m)-convex (concave) if for all distinct
points x0, x1, .., xn ∈ I and y0, y1, .., ym ∈ I yilds

[
x0, x1, ., ., xn

y0, y1, ., ., ym

]
F =

n∑

i=0

m∑

j=0

F (xi, xj)
ω′(xi) · w′(yj)

≥ 0 (≤ 0),

where ω(x) =
n∏

i=0

(x− xi), w(y) =
m∏

j=0

(y − yj).

The next lemma give us the necessary and sufficient conditions for verifying the
(n,m)−convexity (concavity):

Lemma A 4. If the partial derivative ∂(n+m)F
∂xn∂ym exists then F : I2 → R is (n,m)-

convex (concave) if and only if

∂(n+m)F

∂xn∂ym
≥ 0 (≤ 0).

3. Results

Theorem 3.1. Let f and g be Lebesgue integrable on interval I = [a, b] ⊆ R. Let
p be a positive continuous weight on I such that pfg, pf and pg are also Lebesgue
integrable functions on I. If f and g are monotone in the same sense (in the
opposite sense) then for a function K(x, y) := K(p; f, g;x, y) defined by (2) holds

(i) K(x, y) ≥ 0 (≤ 0) , for (x, y) ∈ I2;
(ii) K(x, y) is Schur-convex (Schur-concave) with (x, y) on I2 ⊆ R2;
(iii) K(x, y) Schur-geometrical convex (Schur-geometrical concave) with (x, y)

on I2 ⊆ R2
+;

(iv) K(x, y) is Schur-harmonic convex (Schur-harmonic concave) with (x, y) on
I2 ⊆ R2

+;
(v) K(x, y) := K(p; f, g; x, y) is an (1, 1)-concave (convex) function on I2 ⊆ R2.

Proof. Let f and g be monotone in the same sense (in the opposite sense). Let p
be a positive continuous weight on I such that pfg, pf and pg are also Lebesgue
integrable functions on I = [a, b].

We may assume that x < y without loss of generality.
Now, we calculate ∂K(x,y)

∂y , ∂K(x,y)
∂x and ∂2K(x,y)

∂x∂y :
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∂K(x, y)
∂y

= p(y)
∫ y

x

p(t)(f(t)− f(y))(g(t)− g(y))dt;(6)

∂K(x, y)
∂x

= −p(x)
∫ y

x

p(t)(f(t)− f(x))(g(t)− g(x))dt;(7)

∂2K(x, y)
∂x∂y

= −p(x)p(y)(f(y)− f(x))(g(y)− g(x))(8)

(i) Applying Čebyšev inequality, Theorem A4 to the function K(p; f, g; x, y) =
[P (x, y)]2 · T (p; f, g; x, y) we obtain that holds K(x, y) ≥ 0 (≤ 0).

(ii) To prove Schur-convexity of K(p; x, y) (or Schur-concavity) we apply Lemma
A1. It is sufficient to discuss the following inequlity

(
∂K(x,y)

∂y − ∂K(x,y)
∂x

)
(y − x) ≥

0 (≤ 0), for all x, y ∈ [a, b], since the function K(x, y) is evidently symmetric.
According Theorem A3 we know that K(x, y) is increasing (decreasing) with y on
I and decreasing (increasing) with x on I. So, it follows Schur-convexity (Schur-
concavity) of K as in the statement (ii).

(iii) The set I2 ⊆ R2
+ is a symmetric logarithm convex set. By applying the condi-

tion in Lemma A2 to the function K(x, y) we conclude that
(
y ∂K(x,y)

∂y − x∂K(x,y)
∂x

)
·

(ln y − ln x) ≥ 0 (≤ 0), (x, y) ∈ I2 ⊆ R2
+, i.e. K(x, y) is Schur-geometically convex

(Schur - geometically concave) with (x, y) on I2 ⊆ R2
+.

(iv) The set I2 ⊆ R2
+ is a symmetric harmonic convex set. According Lemma

A3 we conclude that
(
y2 ∂K(x,y)

∂y − x2 ∂K(x,y)
∂x

)
(y − x) ≥ 0 (≤ 0), (x, y) ∈ I2 ⊆ R2

+,

i.e. K(x, y) is Schur-harmonic convex (Schur-harmonic concave) with (x, y) on
I2 ⊆ R2

+.

(v) Since ∂2K(x,y)
∂x∂y ≤ 0 (≥ 0), Lemma A4 implies that K(x, y) is the (1, 1)-

concave (convex) function on I2 ⊆ R2. ¤

Theorem 3.2. Let f and g be Lebesgue integrable functions on I = [a, b] ⊆ R+

and let p be a positive continuous weight on I such that pfg, pf and pg are also
Lebesgue integrable functions on I = [a, b]. If f and g are similarly (oppositely)
ordered then for the function K(x, y) := K(p; f, g;x, y) defined by (2) holds

(i) K(x, y) is increasing (decreasing) with y on I and decreasing (increasing)
with x on I;

(ii) K(x, y) ≥ 0 (≤ 0) , for (x, y) ∈ I2 ⊆ R2
+;

(iii) K(x, y) is Schur-convex (Schur-concave) with (x, y) on I2 ⊆ R2;
(iv) K(x, y) is Schur-geometrical convex (Schur-geometrical concave) with (x, y)

on I2 ⊆ R2
+;

(v) K(x, y) is Schur-harmonic convex (Schur-harmonic concave) with (x, y) on
I2 ⊆ R2

+;
(vi) K(x, y) is an (1, 1)-concave (convex) function on I2 ⊆ R2.

Proof. Let f and g are similarly ordered (oppositely ordered) on I = [a, b] ⊆ R+.
Let p be a positive continuous weight on I such that pfg, pf and pg are also
Lebesgue integrable functions on I.

(i) From (6) and (7) we have that ∂K(x,y)
∂y ≥ 0 (≤ 0) and ∂K(x,y)

∂x ≤ 0 (≥ 0) So,
it holds statement (i).
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(ii) K(p; f, g; x, y) = [P (x, y)]2 · T (p; f, g; x, y) and Čebyšev inequality, Theorem
A5 implies statement (ii).

(iii) The claim (i) implises that
(

∂K(x,y)
∂y − ∂K(x,y)

∂x

)
(y − x) ≥ 0 (≤ 0) on I2and

according Lemma A3 it follows the property of Schur-convexity (Schur-concavity)
of K(x, y) on I2.

(iv) Similarly, by statement (i) we conclude that
(
y ∂K(x,y)

∂y − x∂K(x,y)
∂x

)
· (ln y−

ln x) ≥ 0 (≤ 0) on I2 and according Lemma A2 we obtain the property of Schur-
geometricaly convexity (Schur-geometricaly convexity) of K on I2.

(v) The claim (i) implies that
(
y2 ∂K(x,y)

∂y − x2 x∂K(x,y)
∂x

)
(y − x) ≥ 0 (≤ 0) on

I2 and according Lemma A3 we obtain the property of Schur-harmonic convexity
(Schur-harmonic concavity) of K on I2.

(vi) Applying (8) for similarly (opposit) ordered functions f and g we have
∂2K(x,y)

∂x∂y ≤ 0 (≥ 0). Lemma A4 implies that K(x, y) is an (1, 1)-concave (convex)
function. ¤
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