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Abstract

We present an approach and numerical results for a new formulation modeling immiscible,
compressible two-phase flow in heterogeneous porous media with discontinuous capillary
pressures. The main feature of this model is the introduction of a new global pressure
and it is fully equivalent to the original equations. The resulting equations are written in
a fractional flow formulation and lead to a coupled degenerate system which consists of
a nonlinear parabolic (the global pressure) equation and a nonlinear diffusion-convection
one (the saturation equation) with nonlinear transmission conditions at the interfaces that
separate different media. The resulting system is discretized using a vertex-centred finite
volume method combined with pressure and flux interface conditions for the treatment of
heterogeneities. An implicit Euler approach is used for time discretization. A Godunov-
type method is used to treat the convection terms and the diffusion terms are discretized
by piecewise linear conforming finite elements. We present numerical simulations for three
one-dimensional benchmark tests to demonstrate the ability of the method to approximate
solutions of water-gas equations efficiently and accurately in nuclear underground waste
disposal situations.

Keywords: Immiscible compressible, two-phase flow, global pressure, heterogeneous porous

media, finite volume, nuclear waste.
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1 Introduction

Numerical modeling of multiphase flow in porous media is significant for many petroleum
and environmental engineering problems. More recently, modeling multiphase flow re-
ceived an increasing attention in connection with the disposal of radioactive waste and
sequestration of CO2.

In this paper, we focus our attention on the numerical simulations and modeling of
immiscible compressible two-phase flow in porous media with several rock types, in the
framework of the geological disposal of radioactive waste. As a matter of fact, one of
the solutions envisaged for managing waste produced by nuclear industry is to dispose
it in deep geological formations chosen for their ability to prevent and attenuate possible
releases of radionuclides in the geosphere. In the frame of designing nuclear waste geological
repositories, a problem of possible two-phase flow of water and gas, mainly hydrogen,
appears, for more details see for instance [30].

The usual set of equations describing this type of flow is given by the mass balance
law and Darcy-Muscat’s law for each phase, which leads to a system of strongly coupled
nonlinear partial differential equations. In such systems there are several choices of primary
variables. In this work we will use the fractional flow formulation which employs the global
pressure and the water saturation as main unknowns. The global pressure has been used
in a wide range of numerical simulations, especially in hydrology and petroleum reservoir
engineering, see for instance [11, 14] and the references therein.

In the case of immiscible compressible two-phase flow, the concept of the global pressure
has not been applied until recently. An exception is its application in certain approximative
models, see [11] and the references therein. Since comparisons with other formulations
[14] have shown the computational effectiveness of the global pressure, it is worthwhile
to investigate its effectiveness in the compressible flow case. Recently, a fully equivalent
global pressure formulation to the original equations for water-gas flow was derived in [3]
and for the two compressible fluids case, it was developed in [4]. In [5], it was shown
that this global pressure formulation is more suitable for the mathematical analysis of
two-phase immiscible compressible flow through heterogeneous porous media and, under
some realistic assumptions on the data, an existence result was obtained. Let us also
mention that for the three-phase compressible flows case, a global pressure formulation
fully equivalent to the original equations was derived in [12], and afterwards considered in
[15].

In the subsurface, these processes are complicated by the effects of heterogeneity on
the flow and transport. Simulation models, if they are intended to provide realistic pre-
dictions, must accurately account on these effects. Here, we will assume that the porous
medium is composed of multiple rock types, i.e. porosity, absolute permeability, relative
permeabilities and capillary pressure curves being different in each type of porous media.
Such heterogeneous porous media lead to a possibly discontinuous solution at medium
interfaces, which is a consequence of the transmission conditions at the interfaces. This
should be taken into account in the discretization. In [16], by analyzing a one dimensional
incompressible flow without gravity, an interface condition for the wetting phase saturation
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is derived, which is called the extended capillary pressure condition. If the phase is mobile
across the interface, the corresponding pressure is continuous. This was discussed for the
incompressible case for a phase formulation in [28] together with theoretical and numerical
analysis of the derived problem. In the incompressible case, an interface condition for the
global pressure was discussed in [7].

The numerical modeling and analysis of two-phase flow in porous media has been a
problem of interest for many years and many methods have been developed. There is
an extensive literature on this subject. We will not attempt a literature review here,
but merely mention a few references. We refer to the books [11, 14, 21] and the references
therein. Several authors have examined numerical simulations of immiscible incompressible
(see for instance [21, 7, 8, 1, 18]) and also compressible two-phase flows [2, 13]. In the area
of multicomponent models numerical simulations were presented in [6, 9].

Finite volume methods which employ also interface conditions, were studied in the
incompressible case by many authors, see for instance [22, 7, 31, 29, 24, 18, 10].

A discontinuous Galerkin method including interface conditions, was considered in the
incompressible case in heterogeneous porous media by [19]. Mixed finite element methods
combined with the discontinuous Galerkin methods in heterogeneous porous media were
studied in the incompressible case by [23, 27].

In the incompressible case, numerical codes applied to two-phase immiscible flow equa-
tions can be verified by semi-analytical solutions which allows to investigate the accu-
racy of numerical schemes. We refer to [17] for a heterogeneous case with no capillary
effects, and to [20] for a heterogeneous case including both capillary and advective ef-
fects with a simple discontinuity. For compressible models, there is no analytical solution
and a numerical method such as finite volume should be used. Verification of numeri-
cal models for immiscible compressible flow in porous media by the means of appropri-
ate benchmark problems is a very important step in developing and using these models.
We restrict our attention to water (incompressible) and gas (compressible) such as hy-
drogen in the context of gas migration through engineered and geological barriers for
a deep repository for radioactive waste. Recently, the French research group MOMAS
(http://www.gdrmomas.org/) has proposed benchmark tests [26] to improve the simula-
tion of the migration of hydrogen produced by the corrosion of nuclear waste packages in
an underground storage.

The model to be presented in this paper is formulated in a fractional flow formulation
in terms of the global pressure and the wetting (water) phase saturation. This formulation
leads to a coupled system consisting of a nonlinear parabolic equation for the global pressure
and a nonlinear degenerate parabolic diffusion-convection equation for the water saturation,
subject to appropriate boundary and initial conditions. Our aim is to study a fully implicit
finite volume scheme for the 1-D problem where a special discretization at the interfaces
is developed and present numerical simulations for three of the MOMAS benchmark tests.

The rest of the paper is organized as follows. In section 2 we give a short description of
the mathematical model [4] used in this study. The space discretization is performed using
a vertex-centred finite volume method and an implicit Euler approach is used for time
discretization, and the nonlinear system is solved by Newton-Krylov’s method at each
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time step. The scheme is presented in section 3 and different types of boundary conditions
are discussed. Furthermore, special attention is given to the treatment of the interface
conditions in the case of multiple rock types. To validate the efficiency and the accuracy of
the method, three 1-D benchmark tests are investigated in section 4 for water-gas flows in
highly heterogeneous porous media. In the first test, a partially saturated domain made of
two porous media separated by an interface is considered, and hydrogen is injected at the
left part of the domain. The second test addresses the evolution of gas migration through a
domain composed of two media. The system stars from a non-equilibrium state under high
capillary pressures discontinuity and the right part of the domain is saturated by water.
The third test case is chosen to test the ability of the method to approximate solutions in
a saturated domain composed of two media with different entry pressure in each medium.
Lastly, some concluding remarks are forwarded.

2 Mathematical Formulation

We consider two-phase immiscible compressible flow in a porous medium under isothermal
condition. The porous medium is assumed to be incompressible with porosity Φ and
absolute permeability K. We consider a system in which each component only appears
in one of the phases with no mass transfer between the phases. Differential equations
describing immiscible, compressible, two-phase flow in a porous medium are given by the
mass balance equation for each phase and the Darcy law which relates the phase pressure
gradient and volumetric phase velocity (see, e.g., [11, 14, 21]). Different wetting properties
of the two fluid phases are described by macroscopic capillary pressure law in which we
distinguish the wetting phase, denoted by the subscript w, and the non-wetting phase,
denoted by the subscript g.

We denote by ρα(Pα) and λα(Sα), α ∈ {w, g}, mass densities and mobilities of each
phase, where Pα and Sα are the α-phase pressure and saturation. Phase saturations satisfy

Sw + Sg = 1, (1)

and they follow the capillary pressure law

Pc(Sw) = Pg − Pw, (2)

where Pc(Sw) is the capillary pressure function. The mass balance equations and the Darcy
law for each phase α ∈ {w, g} can be written as

Φ
∂

∂t
(ρα(Pα)Sα) + div(ρα(Pα)qα) = Fα, qα = −λα(Sα)K(∇Pα − ρα(Pα)g), (3)

where g is the gravitational, downward-pointing, constant vector and Fα the source term.
We assume that the porosity and the permeability depend only on the space variable x.

In the sequel, we will use a global pressure formulation that removes the nonlinear
capillary pressure gradient term from the total flux. The two-phase flow equations are
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written in a fully equivalent global pressure formulation in [3, 4], where a new variable P
called the global pressure is introduced with the aim to partially decouple the two mass
conservation equations. Phase pressures can then be expressed as functions of the global
pressure and saturation, namely, Pg = Pg(Sw, P ) and Pw = Pw(Sw, P ), where here and in
the following we use the same letter for the function and the variable.

In order to write down the system of equations describing the two-phase flow in primary
variables Sw and P we introduce the following coefficients (α ∈ {w, g}):

ρw(Sw, P ) = ρw(Pg(Sw, P )− Pc(Sw)), ρg(Sw, P ) = ρg(Pg(Sw, P )), (4)

λ(Sw, P ) = ρw(Sw, P )λw(Sw) + ρg(Sw, P )λg(Sw), (5)

fw(Sw, P ) =
ρw(Sw, P )λw(Sw)

λ(Sw, P )
, fg(Sw, P ) =

ρg(Sw, P )λg(Sw)

λ(Sw, P )
, (6)

ρ(Sw, P ) =
λw(Sw)ρw(Pw, P )2 + λg(Sw)ρg(Sw, P )2

λ(Sw, P )
, (7)

a(Sw, P ) = −
ρw(Sw, P )ρg(Sw, P )λw(Sw)λg(Sw)P

′

c(Sw)

λ(Sw, Pg)
, (8)

bg(Sw, Pg) = (ρw(Sw, P )− ρg(Sw, P ))
ρw(Sw, P )ρg(Sw, P )λw(Sw)λg(Sw)

λ(Sw, Pg)
. (9)

Here, as in [4], the function Pg(Sw, P ) is taken as a solution of the integral equation

Pg(Sw, P ) = P + Pc(1) +

∫ Sw

1

fw(s, P )P ′

c(s) ds (10)

(here fw(s, P ) is a function of Pg(s, P )), and additionally we have

Pw(Sw, P ) = Pg(Sw, P )− Pc(Sw). (11)

The function ω is defined by (see [4])

ω(Sw, P ) =
∂Pw(Sw, P )

∂P
=

∂Pg(Sw, P )

∂P
,

and it is given by the following formula:

ω(Sw, P ) = exp

(
∫ 1

Sw

(νg(s, P )− νw(s, P ))
ρw(s, P )ρg(s, P )λw(s)λg(s)P

′

c(s)

(ρw(s, P )λw(s) + ρg(s, P )λg(s))2
ds

)

, (12)

where ω(1, P ) = 1, as a consequence of Pg(1, P ) = P + Pc(1) and, where the fluid com-
pressibilities are defined as:

νw(S, P ) =
ρ′w(Pg(S, P )− Pc(S))

ρw(Pg(S, P )− Pc(S))
, νg(S, P ) =

ρ′g(Pg(S, P ))

ρg(Pg(S, P ))
. (13)
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The differential equations of the two-phase, compressible, immiscible flow (3) can now be
written as (cf. [3, 4]):

Φ
∂

∂t
(Swρw(Sw, P ) + ρg(Sw, P )(1− Sw)) (14)

− div
(

λ(Sw, P )K(ω(Sw, P )∇P − ρ(Sw, P )g)
)

= Fw + Fg,

Q = −λ(Sw, P )K(ω(Sw, P )∇P − ρ(Sw, P )g), (15)

Φ
∂

∂t
(Swρw(Sw, P )) + div(fw(Sw, P )Q+ bg(Sw, P )Kg) = div(a(Sw, P )K∇Sw) + Fw. (16)

The pressure equation (14) is a nonlinear parabolic equation, and the saturation equation
(16) is convection-diffusion one. The main advantage of (14)-(16) over other equivalent
formulations obtained by simple manipulations from the original equations is that the
coupling between the two PDEs is much less strong. Furthermore, the form of the system
is more adapted for the mathematical and numerical analysis.

3 A Finite Volume Scheme

Finite volume methods are a popular tool for solving partial differential equations. The
main property of a finite volume method is the local conservation property on discrete
control volumes. Those methods are therefore well suited for the discretization of equations
that arise from conservation laws.

Discretization of the coupled system (14)-(16) is performed by a vertex-centred finite
volume method, see, e.g., [1], with a fully implicit time stepping. The convective terms
are approximated with the aid of a Godunov scheme, where as the diffusion terms are
discretized by piecewise linear conforming finite elements.

In this section, we present this finite volume scheme for the 1-D problem in a domain
made of multiple rock types. The discontinuity of the saturation at the interface separating
two media, as a result of the capillary pressure continuity, may arise from the contrast in
the capillary pressure functions leading to complications in numerical modeling. Thus, at
each time step one has to solve nonlinear transmission conditions at the interfaces. We
employ the Newton method to solve the nonlinear system at each time step. The interface
conditions are incorporated into the discretization when we compute the Jacobian and
residual in the Newton iterations.

In this and the following sections we will omit the subscript w and we will denote the
wetting phase saturation by S.

3.1 Basic Notation

The equations (14)-(16) are solved in a finite time interval J = ]0, T [, and in a finite spatial
domain I = ]a, b[. In order to present the discretization, the following notation is applied,
similar to the one presented in [2]:
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(N.1) Let
{

t0 < t1 < . . . < tNT
}

be the discretization of the time domain and we denote
by Jk = [tk, tk+1[ the k-level time interval. The time step is: △tk = tk+1 − tk,
k = 0, 1, . . . , NT − 1.

(N.2) Let {x0 < x1 < . . . < xNx
} be the discretization of the spatial domain where:

Ei+ 1

2

:= [xi, xi+1] , i = 0, 1, . . . , Nx − 1, as shown in Figure 1 and we set △xi+ 1

2

=

|Ei+ 1

2

| = xi+1 − xi, i = 0, 1, . . . , Nx − 1.

(N.3) Control volumes are defined as follows: for each i = 0, 1, . . . , Nx − 1 we denote the
center of the element Ei+ 1

2

by xi+ 1

2

:= xi+xi+1

2
, and set x

−
1

2

= x0 and xNx+
1

2

= xNx
.

For i = 0, . . . , Nx, the control volume is defined as Vi = [xi− 1

2

, xi+ 1

2

]. The following

notation is used: hi = |Vi| = xi+ 1

2

− xi− 1

2

, i = 0, 1, . . . , Nx.

(N.4) The permeability and the porosity are functions of the space and they are assumed
to be constant by element: Ki+ 1

2

= K
∣

∣

E
i+1

2

, Φi+ 1

2

= Φ
∣

∣

E
i+1

2

i = 0, 1, . . . , Nx − 1.

(N.5) The approximations of S and P at the point (xi, tk) are denoted by Sk
i and P k

i .

A special care has to be taken when the spatial mesh is created in the situations with
multiple rock types since in each rock type the rock properties differ. Relative permeabil-
ities and capillary pressure functions may be different for each rock type as well.

If the spatial domain in one dimension is divided into Nm parts, and each part of the
domain is related to a certain rock type, there are Nm− 1 interfaces. Every interface point
is set to be an element of the spatial mesh {x0 < x1 < . . . < xNx

}. The other nodes of the
spatial mesh can be chosen arbitrarily. The numerical scheme will be presented for the
situation of the two rock types. A higher number of media does not change the way of
the treatment of heterogeneity. In two and three-dimensional case the treatment of the
heterogeneity is essentially the same, but technically more complicated. In the following,
it is assumed that the spatial domain is divided into two parts, one related to the material
m1 and the other related to the material m2, as is presented in Figure 1.

Figure 1: Spatial mesh in one-dimensional case with two rock types.
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Let I = Im1 ∪ Im2 and the interface node is set to be {xδ} = Im1 ∩ Im2, for an index
δ ∈ {1, 2, . . . , Nx − 1}.

The following functions are introduced:
M(S, P ) := ρw(S, P )S+ρg(S, P )(1−S), N(S, P ) := ρw(S, P )S, χ(S, P ) := λ(S, P )ω(S, P ),

and the function γ(S, P ) to satisfy a(S, P ) = γ(S, P )P ′

c(S).
The equations (14)-(16) (with neglected gravity term, for simplicity) rewritten in one-

dimensional case, and considering the notation above, are:

Φ
∂

∂t
(M(S, P ))−

∂

∂x

(

χ(S, P )K
∂P

∂x

)

= Fw + Fg, (17)

Q = −χ(S, P )K
∂P

∂x
, (18)

Φ
∂

∂t
(N(S, P )) +

∂

∂x
(fw(S, P )Q)−

∂

∂x

(

γ(S, P )K
∂Pc(S)

∂x

)

= Fw. (19)

The capillary pressure functions and the relative permeabilities differ on different media.
The coefficients of the equations (17)-(19) are calculated from the relative permeabilities
and the capillary pressure, therefore, the index m (either m = m1 or m = m2) will be
used to indicate the part of the domain (medium) on which the calculations are done. For
every function f depending on the wetting phase saturation and the global pressure we set

f(S(x, t), P (x, t)) =

{

fm1(S(x, t), P (x, t)) x ∈ Im1

fm2(S(x, t), P (x, t)) x ∈ Im2

.

At the initial time, either the global pressure, the saturation or the phase pressures are
given. A set of boundary conditions of diverse types can be given.

Since a porous medium with multiple rock types is considered, the numerical scheme
has to employ also the interface conditions for the main unknowns. This is discussed in
the following subsection.

3.2 Interface Conditions

In this subsection we will formulate the interface conditions, for the model explained in
section 2. Note that we have denoted by S the wetting phase saturation. Let us consider
the case when the entry pressure is present in the model so that Pm1

c (1) = Pm1
d and

Pm2
c (1) = Pm2

d . In the situations where Pm1
d ≤ Pm2

d , as presented in Figure 2 the interface
conditions which connects the limiting saturations on the different materials is given by
the extended capillary pressure condition [28]:

Sm2 =

{

1 for Sm1 > S∗

(Pm2
c )−1(Pm1

c (Sm1)) for Sm1 ≤ S∗,
(20)
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Figure 2: Capillary pressure curves with different entry pressures.

where S∗ is a threshold saturation defined by the formula

S∗ = (Pm1
c )−1(Pm2

d ). (21)

For the global pressure, the interface condition is derived from the transmission condition
for the phase pressures. Similar to [7], where the incompressible case was considered, we
have two different cases:

(C.1) Sm1 > S∗, Sm2 = 1; in this situation, the non-wetting pressure is not defined in the
domain Im2 and Pw is continuous at the interface. Thus, from Pm2

w (1, P ) = P and
from the continuity of the wetting phase pressure we get:

Pm1
w (Sm1, Pm1) = Pm2

w (1, Pm2) = Pm2. (22)

In this case, the transmission condition between two limiting values of the global
pressure is described by the nonlinear equation (22). From given Pm1 and Sm1,
the value Pm2 can be calculated by (22). In reverse, for given Pm2 and Sm1 we can
compute Pm1 by solving the nonlinear equation (22), for which the solution is defined
since the derivative of the wetting phase pressure over the global pressure is strictly
positive.

(C.2) Sm1 ≤ S∗, Pm1
c (Sm1) = Pm2

c (Sm2); here the phase pressures are continuous across
the interface, using the continuity of the non-wetting phase pressure, for example,
we obtain the following condition for the global pressure:

Pm1
g (Sm1, Pm1) = Pm2

g (Sm2, Pm2). (23)
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In this case, when Sm1 and Sm2 are given, we obtain Pm2 from any given Pm1 by
solving the nonlinear equation (23) whose solution is well defined since the partial
derivative of the non-wetting phase pressure over the global pressure is strictly pos-
itive. Also, for any given Pm2 one may calculate Pm1 from the nonlinear equation
(23).

Remark 1. Note that in the case of the van Genuchten functions the case (C.2) always
applies.

The saturation and the global pressure are generally discontinuous at the interface point.
Let us explain the meaning and use of the global unknowns Sk

δ , P
k
δ which we will include in

the numerical scheme, as a value of the saturation and the global pressure at the interface
node xδ, at the time level k.

There are several ways of defining these global unknowns. For the saturation the
global variable Sδ can be chosen equal to Sm1

δ or Sm2
δ in advance or as Sδ = f(Sm1

δ , Sm2
δ ),

where f is strictly increasing function in each variable. Then, in all calculations one can
recalculate other limiting value by (20) and perform the calculations with correct limiting
value. This also guarantees that during the calculation we actually always work with the
correct capillary pressure at the interface node xδ.

In the simulations where the entry pressure is present (e.g. Brooks and Corey capillary
pressure), the choice of the unknown Sδ is more restrictive. If we decide that, during the
whole simulation it is equal to the one limiting value, it has to be taken equal to the
limiting saturation of the medium which is related to the smaller “entry pressure”.

The situation with the global pressure is similar. The choice of Pδ can be done in
several ways, and the simplest approach is to choose Pδ = Pm1

δ or Pδ = Pm2
δ , and then

use (22) or (23) depending which of the cases (C.1) or (C.2) applies in order to obtain the
other limiting value, depending on which part of the domain the calculation is done.

3.3 Numerical Scheme Presentation

For the presentation of the numerical scheme, we will assume that the value Pm1
c (1) ≤

Pm2
c (1), and for the global unknowns Sk

δ and P k
δ we will choose the following:

Sk
δ = Sm1,k

δ , Pδ = Pm1,k
δ .

For any function f(S, P ) and j = ±1
2
, i = 1, . . . , Nx − 1, we define:

fk
i+j = f(Sk

i+j, P
k
i+j),

where for i+ j 6= δ + 1
2
, we use the following notation:

Sk
i+j =

Sk
i + Sk

i+2j

2
, P k

i+j =
P k
i + P k

i+2j

2
.

If i + j = δ + 1
2
we need to use correct limiting values for the saturation and the global

pressure. These limiting values are obtained as functions Sm2,k
δ = Sm2,k

δ (Sk
δ ), P

m2,k
δ =
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Pm2,k
δ (Sk

δ , P
k
δ ) using the nonlinear transmission conditions explained in the subsection 3.2.

So it is set:

Sk
δ+ 1

2

=
Sm2,k
δ + Sk

δ+1

2
, P k

δ+ 1

2

=
Pm2,k
δ + P k

δ+1

2
.

At first, the system (17)-(19) is integrated over the set Vi × Jk to obtain:

∑

j=±
1

2

∫

Vi∩Ei+j

Φ
(

Mm(Sk+1, P k+1)−Mm(Sk, P k))
)

dx−

∫

Jk

∑

j=±
1

2

(2j)χm
i+jKi+j

(

∂P

∂x

)

i+j

dt

= hi

∫

Jk

(Fw,i + Fg,i) dt

∑

j=±
1

2

∫

Vi∩Ei+j

Φ
(

Nm(Sk+1, P k+1)−Nm(Sk, P k))
)

dx+

∫

Jk

∑

j=±
1

2

(2j)Qm
i+jf

m,up
w,i+j dt

=

∫

Jk

∑

j=±
1

2

(2j)γm
i+jKi+j

(

∂Pm
c (S)

∂x

)

i+j

dt

+ hi

∫

Jk

Fw,i dt,

where either m = m1 or m = m2 depending on which part of the domain the calculation
is done. Now for i+ j 6= δ + 1

2
the following approximations are used:

(

∂P

∂x

)

i+j

= 2j
Pi+2j − Pi

∆xi+j

,

(

∂Pm
c (S)

∂x

)

i+j

= 2j
Pm
c (Si+2j)− Pm

c (Si)

∆xi+j

.

If i+ j = δ + 1
2
one sets:

(

∂P

∂x

)

δ+ 1

2

=
Pδ+1 − Pm2

δ

∆xδ+ 1

2

,

(

∂Pm
c (S)

∂x

)

δ+ 1

2

=
Pm2
c (Sδ+1)− Pm2

c (Sm2
δ )

∆xδ+ 1

2

.

On the left side of the equations the mass lumping is applied. The following implicit in
time scheme is obtained (here we set ∆x

−
1

2

= ∆xNx−
1

2

= Φ
−

1

2

= ΦNx−
1

2

= 0):

∑

j=±
1

2

Φi+j
∆xi+j

2

Mm,k+1
i −Mm,k

i

∆tk
= Rk+1

P,i (24)

∑

j=±
1

2

Φi+j
∆xi+j

2

Nm,k+1
i −Nm,k

i

∆tk
= Rk+1

S,i , (25)

where m = m1 or m = m2 depending on which part of the domain the calculations are
done. The following notation is introduced:

Ti+1/2 :=
Ki+1/2

△xi+ 1

2

, i = 0, 1, 2 . . . , Nx − 1.
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For i = 1, 2, . . . , Nx − 1, the right hand side of (24) is

Rk+1
P,i = −

∑

j=±
1

2

Qm,k+1
i+j + hi(F

k+1
g,i + Fk+1

w,i ). (26)

For i+ j 6= δ + 1
2
, we set

Qm,k+1
i+j = −χm,k+1

i+j Ti+j(P
k+1
i+2j − P k+1

i ),

where either m = m1 or m = m2, otherwise

Qm2,k+1

δ+ 1

2

= −χm2,k+1

δ+ 1

2

Tδ+ 1

2

(P k+1
δ+1 − Pm2,k+1

δ ).

For i = 1, 2, . . . Nx − 1

Rk+1
S,i =

∑

j=±
1

2

Dm,k+1
i+j −

∑

j=±
1

2

(2j)Qm,k+1
i+j fm,up,k+1

w,i+j + hiF
k+1
w,i , (27)

For i+ j 6= δ + 1
2
, we set

Dm,k+1
i+j = γm,k+1

i+j Ti+j(P
m
c (Sk+1

i+2j)− Pm
c (Sk+1

i )),

where either m = m1 or m = m2, and otherwise we have

Dm2,k+1

δ+ 1

2

= γm2,k+1

δ+ 1

2

Tδ+ 1

2

(Pm2
c (Sk+1

δ+1 )− Pm2
c (Sm2,k+1

δ )).

For the convective term, the following upwind procedure is applied:

fm,up,k+1

w,i+ 1

2

=







fm
w (Sk+1

i , P k+1
i ) for Qk+1

i+ 1

2

≥ 0

fm
w (Sk+1

i+1 , P
k+1
i+1 ) for Qk+1

i+ 1

2

< 0
,

and note that for i = δ one has to use the limiting values Pm2,k+1
δ and Sm2,k+1

δ in the above
expressions.

The terms Rk+1
S,0 , Rk+1

p,0 , Rk+1
p,Nx

, Rk+1
S,Nx

depend on the imposed boundary conditions.

3.3.1 Nonlinear Equations

Notice that by the above discretization procedure a nonlinear system is obtained at each
time step which is solved by the Newton method. In order to use this procedure, we need
to know how to form a residual and a Jacobian at the previous iteration. While those
calculations are done, special attention needs to be paid to the interface node. Consider-
ing that all the calculations are performed locally on the element E, it is worthwhile to
give some details of the local calculations. A brief explanation is given in the following
subsection.
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Figure 3: Local and global approximations.

3.4 Local Calculations

All the functions used in the discretization belong to the medium where the current element
is positioned. Therefore, the medium index will be omitted in this subsection. Considering
that the time index is constant in the scope of this discussion, it is omitted as well. The
local calculations are presented for the situation when the phase fluxes are set to be zero at
the boundary. For simplicity, in this subsection, it is assumed that Pm

d = 0, m = m1,m2,
and also Fw = Fg = 0.

Let us denote the local element by E = [x0, x1]. The values of the global unknowns are
set to be P0, P1, S0, S1. In general we assume that the local values S+

0 , S
−

1 depend on the
values S0 and S1 respectively. Also, we assume, that P+

0 depends on S0 and P0, and that
P−

1 depends on P1 and S1, see Figure 3.
In the local calculations, the local values S+

0 , P
+
0 , S−

1 , P
−

1 will be used. As discussed in
the previous section, if calculations are performed at the interface node, one needs to know
the limit values of the saturation and the global pressure. These are obtained from the
global unknown value from the previous iteration. Let us consider the simplest example,
if the global unknown for the saturation [resp. the global pressure] at the node xδ is set to
be equal to the left limiting saturation [resp. the global pressure], then it follows:

• S−

1 = S1 is always valid. However, at the point x0, we set:

S+
0 =

{

S0 if x0 6= xδ

(Pm2
c )−1(Pm1

c (S0)) for x0 = xδ

. (28)

• P−

1 = P1 is always valid and at x0 the calculation has to be performed as follows:
assuming S+

0 is already calculated, we set:

P+
0 =

{

P0 if x0 6= xδ

solution of Pm1
g (S0, P0) = Pm2

g (S+
0 , P

+
0 ) if x0 = xδ

. (29)

For solving this nonlinear equations the Newton method or some other nonlinear solver
can be used to obtain the value P+

0 .
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The permeability K is constant by element, we set:

P 1

2

=
P+
0 + P−

1

2
, S 1

2

=
S+
0 + S−

1

2
, dx = x1 − x0, T =

K

dx
.

We need to compute the residual local contributions RP,0, RP,1, RS,0, RS,1 at the nodes x0, x1

at the element E which are added to the global value of the residual. It follows:

RP,0 = χ(S 1

2

, P 1

2

)T (P−

1 − P+
0 )

RP,1 = −χ(S 1

2

, P 1

2

)T (P−

1 − P+
0 ).

For the saturation equation we obtain:

RS,0 = γ(S 1

2

, P 1

2

)T (Pc(S
−

1 )− Pc(S
+
0 ))−Q 1

2

fup
w ,

RS,1 = −γ(S 1

2

, pP 1

2

)T (Pc(S
−

1 )− Pc(S
+
0 )) +Q 1

2

fup
w ,

where

Q 1

2

= −χ(S 1

2

, P 1

2

)T (P−

1 − P+
0 ), fup

w =

{

fw(S
+
0 , P

+
0 ) for Q 1

2

≥ 0

fw(S
−

1 , P
−

1 ) for Q 1

2

< 0
.

In calculations by elements we need to compute the following local contributions to the
accumulation terms:

M0 = ρw(S
+
0 , P

+
0 )S+

0 + ρg(S
+
0 , P

+
0 )(1− S+

0 ) N0 = ρw(S
+
0 , P

+
0 )S+

0 ,

M1 = ρw(S
−

1 , P
−

1 )S−

1 + ρg(S
−

1 , P
−

1 )(1− S−

1 ) N1 = ρw(S
−

1 , P
−

1 )S−

1 .

To form the Jacobian, we need to compute the derivatives

dS+
0

dS0

(S0),
dS−

1

dS1

(S1),
∂P+

0

∂S0

(S0, P0),
∂P+

0

∂P0

(S0, P0),
∂P−

1

∂S1

(S1, P1),
∂P−

1

∂P1

(S1, P1).

As mentioned before, here the scheme is presented for the global unknown at the inter-
face equal to the left limiting saturation (pressure), so it is always valid:

S−

1 = S1,
∂S−

1

∂S1

= 1, P−

1 = P1,
∂P−

1

∂S1

= 0,
∂P−

1

∂P1

= 1.

From the transmission conditions (28) and (29) one obtains the following:

∂S+
0

∂S0

=

{

1 if x0 6= xδ
(

dPm1
c (S0)
dS

)

/
(

dPm2
c (S+

0
)

dS

)

for x0 = xδ

∂P+
0

∂S0

=

{

0 if x0 6= xδ

(
∂Pm1

g (S0,P0)

∂S
−

∂Pm2
g (S+

0
,P+

0
)

∂S

∂S+

0

∂S0
)/ωm2(S+

0 , P
+
0 ) for x0 = xδ

∂P+
0

∂P0

=

{

1 if x0 6= xδ

ωm1(S0, P0)/ω
m2(S+

0 , P
+
0 ) for x0 = xδ

.

Note that when the unknowns at the interface node are selected differently, the above
derivatives have to be calculated accordingly.
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4 Numerical Simulations

In this section, we present numerical results based on the scheme presented in this paper. A
code based on the C++ programming language, has been performed on various examples.
The implementation uses the libMesh library [25] and PETSc [32] as a linear solver. The
obtained results are satisfactory. The computed approximate solution satisfy the discrete
maximum principle. Moreover, the front is approximated accurately. Below we present
numerical simulations for three benchmark tests to demonstrate the ability of the method
to approximate solutions of water-gas equations efficiently and accurately in nuclear un-
derground waste disposal situations. All simulations were performed on a heterogeneous
porous medium made of two rock types where the wetting phase (water) is incompressible
and the non-wetting phase (gas) is compressible and obeys the ideal gas law.

4.1 Test Case 1

In the first test case the porous domain I = ]0, 200[ is composed of two media such that
I = Im1 ∪ Im2 where Im1 = ]0, 20] and Im2 = ]20, 200[, so that the point x = 20 is an
interface between the media. In this test, the source terms are equal to zero, which means
that Fα = 0, α = w, g. The duration of the simulation is T = 106 years.

The boundary conditions are set to be Dirichlet at the right part of the domain:

Pw,out = 1.0 MPa Pg,out = 1.5 MPa.

Phase fluxes are set on the left boundary:

Qw = 0 and Qg = 5.57 · 10−6 kg/m2/year.

The initial conditions are equal to the Dirichlet conditions on the right part of the boundary.
In this test case we use the van Genuchten capillary pressure (m = 1− 1

n
)

Pc(Se) = Pe(S
−

1

m
e − 1)

1

n Se ∈ ]0, 1] (30)

and the van Genuchten-Mualem relative permeabilities

krw(Se) =S
1

2
e

(

1− (1− S
1

m
e )m

)2

(31)

krg(Se) =(1− Se)
1

2 (1− S
1

m
e )2m. (32)

where Se is the effective water saturation. It is assumed that K = cte in each subset of the
domain. The same is valid for the porosity. The parameters for the relative permeabilities
and the capillary pressures are different on each sub-domain. The temperature is taken to
be fixed, T = 303 K. The parameters for each sub-domain are presented in Table 1. The
following fluid properties are considered: µw = 1 cP, µg = 0.009 cP, ρw = 1000 kg/m3. The
gas density is modeled by the ideal gas law ρg(Pg) = cgPg, where cg = 0.794 kg/m3MPa.
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n Pe Swr Sgr Φ K
- MPa - - - m2

Im1 1.54 2 0.01 0.0 0.3 10−18

Im2 1.49 15 0.4 0.0 0.15 5 · 10−20

Table 1: Test 1. Function parameters and rock properties.
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Figure 4: Test 1. Water saturation at different times.
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Figure 5: Test 1. Capillary pressure at different times.

In this simulation, an equidistant grid of the space domain with ∆x = 200 cm is used and
a time step varying from ∆t = 10 years at the beginning to ∆t = 250 years at the end
of the simulation. The obtained results are presented in Figures 4-9. We can observe
that during the first 1000 years, due to the small amount of gas (hydrogen) injected, the
changes in the saturation are very small. Also, the changes in the water pressure presented
in Figure 8 are not significant at the first 1000 years. The water pressure is increasing at
the beginning and as one may observe in Figure 8, around the time of 5 · 104 years it starts

September 26, 2011, Submitted Version



17

0 20 40 60 80 100 120 140 160 180 200
x[m]

1.000

1.005

1.010

1.015

1.020

1.025

1.030

1.035

P
[M

P
a
]

Global pressure

t=0years

t=100years

t=500years

t=1000years

0 20 40 60 80 100 120 140 160 180 200
x[m]

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

P
[M

P
a
]

Global pressure

t=104 years

t=105 years

t=106 years

Figure 6: Test 1. Global pressure at different times.
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Figure 7: Test 1. Gas pressure at different times.

to decrease. At the end of the simulation, it tends to its initial value 1.0 MPa. During
the whole simulation the gas pressure (presented in Figure 7) is increasing attaining the
values in the range of 1.5 MPa to 2.3 MPa. The global pressure is presented in Figure 6,
and its behavior is similar to that of the water pressure. The continuity condition for the
gas pressure and the capillary pressure at the interface produces a discontinuity of the
saturation and the global pressure at the interface.

4.2 Test Case 2

The second test case is the BOBG test case [26] - French acronyms of Engineered Barrier
Geological Barrier. This test was numerically solved by other authors [2, 6]. The porous
domain I = ]−0.5, 0.5[ ⊂ R is taken to be 1 m long. The porous domain is assumed to be
composed of two media such that I = Im1 ∪ Im2 where Im1 = ]−0.5, 0] and Im2 = ]0, 0.5[,
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Figure 8: Test 1. Water pressure at different times.
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Figure 9: Test 1. Gas saturation and phase pressures on the left end of the domain.

so that the point x = 0 is the interface between media. In this test the source terms are
equal to zero.

Phase fluxes are set to be zero at the boundary, both on the left and the right end for
each phase, which means that a total flux is also set to be zero:

Q = Qw = Qg = 0 kg/m2/s.

Initially, the capillary pressure is discontinuous, and the following initial condition for the
water saturation is given

Sw(x, 0) =

{

0.77 for x ≤ 0

1 for x > 0
, x ∈ I.

Regarding to the initial conditions for the gas pressure two cases are considered:
Test case 2.1
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Pg(x, 0) = 0.1 MPa, x ∈ I.

From these initial conditions we obtain the initial condition for the global pressure
P = −88.8449 MPa in Im1, and P = 0.1 MPa in Im2.
Test case 2.2

Pg(x, 0) =

{

0.1 MPa for x ≤ 0

0.0 MPa for x > 0
, x ∈ I.

From these initial conditions we obtain the initial condition for the global pressure
P = −88.8449 MPa in Im1, and P = 0.0 MPa in Im2.

In this test case the van Genuchten capillary pressure is used and the relative perme-
abilities are given by the following formulae:

Sw(Pc) =

(

1 +

(

PC

Pr

)
1

1−m

)−m

krg(S) = (1− S)2(1− S
5

3 ), krw(S) = (1 + A(S−B − 1)C)−D.

It is assumed that K = cte in each subset of the domain. The same is valid for the porosity.
The parameters for the relative permeabilities and the capillary pressures, different on each
sub-domain, are presented in Table 2. Isothermal assumption at T = 300 K is considered.

Figure 10: Test 2. Capillary pressures in the two media.

The following fluid properties are taken: ρw = 1000 kg/m3, µw = 1 cP, µg = 0.018 cP,
Mg = 0.02896 kg mol−1. The density of gas is modeled by the ideal gas law ρg = cgPg.
In numerical results presented here, in the Test case 2.1, the density of gas is scaled so
that cg = 1.0 kg/m3MPa. In the spatial domain, an equidistant mesh is taken with the
step size ∆x = 0.01m. The time steps used during the simulation are from 10−5 s at the
beginning to the 2 · 106 s at the end of the simulation. The obtained results are presented
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Figure 11: Test 2. Water saturation at different times for Test case 2.1 (left) and Test
case 2.2 (right)

Pr m A B C D Φ K
MPa - - - - - - m2

Im1 1.5 0.06 0.25 16.67 1.88 0.5 0.3 10−20

Im2 10 0.412 1.0 2.429 1.176 1.0 0.05 10−19

Table 2: Test 2. Function parameters and rock properties.

in Figures 11-15. As shown in Figures the results for Test case 2.1 and 2.2 differ visibly
only in the values of the gas pressures obtained at 105 s. This is also confirmed in [6].

In both cases the right part of the domain Im2 is initially fully saturated with water. At
first, the changes of saturation are very small, the water starts to flow from the sub-domain
Im2 to the sub-domain Im1. After a certain time a change in the saturation in the region
Im2 becomes more visible. In the region Im1, the gas pressure increases near the interface,
since the gas is expected to enter the domain saturated by water. As explained in [6] the
volume which was occupied by water in the sub-domain Im2 cannot be immediately filled
by gas, so in Test case 2.1, in the sub-domain Im2 an exact vacuum is observed. At the
time of 105 s in both cases, the gas pressure becomes 0 MPa in the sub-domain Im2, see
Figure 13. After the time of 105 s in both test cases in the region Im1 the gas pressure
starts to decrease from its maximum value in the vicinity of the interface. In the region
Im2, it starts to obtain strictly positive values, as x and t augments. In later times, it is
increasing function of time in the region Im2. At the end of the simulation the gas pressure
tends to the value of 0.1 MPa which is the initial value that was set in Test case 2.1.

In both cases, at later times the water pressure attains constant value of around
−20.0 MPa in the whole domain, because the water is mobile in the whole domain, see
Figure 14.

At the beginning of the simulation variation in the saturation is higher in the sub-
domain Im2, than in Im1 because of the porosity value set. In both cases, the wetting phase
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Figure 12: Test 2. Global pressure at different times for Test case 2.1 (left) and Test case
2.2 (right).
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Figure 13: Test 2. Gas pressure at different times for Test case 2.1 (left) and Test case 2.2
(right).

saturation attains the value Sw = 0.844 on the left part of the domain, and Sw = 0.548 on
the right part of the domain by the end of the simulation. In both cases after the time of
108 s, the changes in saturation are not significant.

The difference between the global pressure and the water pressure is small compared to
its difference from the gas pressure. This observation is valid during the whole simulation.

4.3 Test Case 3

The third test case is considered in order to simulate the effect of the entry pressure. The
porous domain I = ]0, 200[ ⊂ R is taken to be 200 m long. The domain is composed of
two media such that I = Im1 ∪ Im2 where Im1 = ]0, 100] and Im2 = ]100, 200[, so that the
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Figure 14: Test 2. Water pressure at different times for Test case 2.1 (left) and Test case
2.2 (right).
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Figure 15: Test 2. Capillary pressure at different times for Test case 2.1 (left) and Test
case 2.2 (right).

point x = 100 is the interface between the two media. In this test, the source terms are
equal to zero.

The boundary conditions are set to be Dirichlet on the right boundary:

Sw,out = 1.0 Pw,out = 1.0 MPa.

On the left boundary, phase fluxes conditions (total flux) are set:

Qw = 0 and Qg = 500 mg/m2/year.

The initial conditions are equal the Dirichlet conditions on the right part of the boundary.
It is assumed that the porous medium is fully saturated by water and the gas is injected.
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In this numerical test, we use Brooks and Corey capillary pressure

Pc(Se) = PdS
−

1

λ
e Se ∈]0, 1], (33)

and Brooks and Corey-Burdine relative permeabilities

krw(Se) = S
3+ 2

λ
e (34)

krg(Se) = (1− Se)
2
(

1− S
2+λ
λ

e

)

(35)

where Se is the effective water saturation.
It is assumed that all parameters are the same for each part of the domain: only the
entry pressures differ. The temperature is assumed to be fixed, T = 303 K. The following

λ Pd Swr Sgr Φ K
- MPa - - - m2

Im1 0.5 1.9 0.0 0.0 0.3 10−16

Im2 0.5 2.1 0.0 0.0 0.3 10−16

Table 3: Test 3. Function parameters and rock properties.

fluid properties are considered: µw = 1 cP, µg = 0.009 cP, ρw = 1000 kg/m3, cg =
0.794 kg/m3MPa. The density of gas is modeled by the ideal gas law ρg(Pg) = cgPg. In
this example the extended capillary pressure condition (20) is applied. This means, in this
particular case, that the capillary pressure is discontinuous until the threshold saturation
S∗ = 0.95119 at the interface is reached.

In this simulation, an equidistant mesh of the space domain with ∆x = 200 cm is
used. For the time domain, a non-equidistant step is used, starting with ∆t = 10−2 s at
the beginning to ∆t = 1 year at the end of the simulation. Also, since only the water
is mobile across the interface and consequently only the water pressure is continuous, the
continuity condition is applied to the water pressure. The obtained results are presented
in Figures 16-20.

In Figure 16 the water saturation is presented. As the extended capillary pressure
condition is used, the saturation is equal to 1 in the sub-domain Im2, until the threshold
saturation is reached, which is around 7685 years. One can observe the visible changes in
the saturation on the right part of the domain around 9000 years. During all the time the
water and the global pressure do not differ significantly, since the water saturation is very
high. The global pressure has a visible discontinuity at the interface, during the time of the
simulation. As expected, the capillary pressure, and the gas pressure are discontinuous until
the threshold saturation is reached at the interface. The capillary pressure is increasing,
which also has the effect on increasing of the gas pressure, since the changes of the water
pressure are relatively small.
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Figure 16: Test 3. Water saturation at different times.
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Figure 17: Test 3. Global pressure at different times.
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Figure 18: Test 3. Gas pressure at different times.
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Figure 19: Test 3. Water pressure at different times.
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Figure 20: Test 3. Capillary pressure at different times.
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5 Conclusions and Future Work

In this paper, we have presented a numerical scheme for a new immiscible, compressible
two-phase flow model based on the concept of the global pressure which is fully equivalent
to the original phases formulation. A special discretization at the interfaces is developed to
treat media with discontinuous properties. The algorithm is then used to simulate water-
gas migration related to underground waste disposal situations. The algorithm captures
the complex behavior of the resulting flow. The numerical results provided in this paper
follow the MOMAS benchmark guideline [26]. The results obtained for Test case 2, are
close to those obtained in [2, 6], and show model applicability in the simulations with
highly heterogeneous porous media. The third example shows that the model is applicable
in the simulations with initially fully saturated porous media by the wetting phase, and
demonstrates the significance of the entry pressure. In future work, we intend to extend
the approach to more general multiphase systems with mass transfer between phases and
thermal effects to the two-dimensional problem.
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[20] R. Fučik, J. Mikyška, M. Baneš, T. Illangasekare, Semianalytical solutions for two-phase
flow in porous media with a discontinuity, Vadose Zone Journal 7 (3) (2008), 1001–1009.

[21] R. Helmig, Multiphase Flow and Transport Processes in the Subsurface, Springer, Berlin
(1997).

September 26, 2011, Submitted Version



28

[22] R. Helmig, R. Huber, Comparison of Galerkin-type discretization techniques for two-phase
flow in heterogeneous porous media, Advances in Water Resources 21 (8) (1998), 697–711.

[23] H. Hoteit, A. Firoozabadi, Numerical modeling of two-phase flow in heterogeneous permeable
media with different capillarity pressures, Advances in Water Resources 31 (2008) 56–73.

[24] R. Huber, R. Helmig, Node-centered finite volume discretizations for the numerical sim-
ulation of multiphase flow in heterogeneous porous media, Comput. Geosci. 4 (2) (2000),
141–164.

[25] B.S. Kirk, J.W. Peterson, R.H. Stogner, and G. F. Carey. libMesh: A C++ Library for
Parallel Adaptive Mesh Refinement/Coarsening Simulations. Engineering with Computers,
22 (3-4) (2006), 237–254.

[26] MoMaS, Diphasique benchmarks,
http://www.gdrmomas.org/ex qualifications.html
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