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This paper proposes an efficient algorithm for reducing matrices to the generalized Hessenberg form
by unitary similarity, and recommends using it as a preprocessor in a variety of applications. As an

illustration of its power, two cases from control theory are analyzed in detail: a solution procedure
for a sequence of shifted linear systems with multiple right hand sides (e.g. evaluating transfer

function of a linear time invariant (LTI) dynamical system, with multiple inputs and outputs, at

many complex values) and computation of the staircase form. The proposed algorithm for the
generalized Hessenberg reduction introduces two levels of aggregation of Householder reflectors,

thus allowing efficient BLAS 3 based computation. Another level of aggregation is introduced

when solving many shifted systems by processing the shifts in batches. Numerical experiments
confirm that the proposed methods have superior efficiency.
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1. INTRODUCTION

Hessenberg form belongs to the tools of trade of numerical linear algebra. We
say that H ∈ Rn×n is m-Hessenberg matrix, m < n, if Hij = 0 for all i, j =
1, . . . , n such that i > j + m. Any A ∈ Rn×n can be written as A = UHUT ,
where U is orthogonal and H is m-Hessenberg form of A. Such a generalized
Hessenberg structure naturally arises e.g. in the block Arnoldi algorithm, and it is
very frequent in the computational control. For instance, the controller Hessenberg
form of (A,B) ∈ Rn×n×Rn×m is (H, (R0 )) = (QTAQ,QTB), whereQ is orthogonal,
H is m-Hessenberg and R is upper triangular.

For computing the standard (1-)Hessenberg form, the state of the art software
package LAPACK [Anderson et al. 1992] contains an optimized subroutine xGEHRD.
Recent work by Tomov and Dongarra [Tomov and Dongarra 2009] shows that on
a hybrid CPU/GPU parallel computing machinery, a considerable speedup over
xGEHRD is possible; see also [Tomov et al. 2010]. In a distributed parallel comput-
ing environment, ScaLAPACK [ScaLAPACK 2009] provides parallel subroutines
PxGEHRD. For the controller Hessenberg form, the computational control library
SLICOT [SLICOT 2009] contains the subroutine TB01MD, which also computes the
m-Hessenberg form. Unlike xGEHRD, the subroutine TB01MD does not use aggregated
transformations (block reflectors). As a consequence, its low flop–to–memory–
reference ratio cannot provide optimal efficiency. Our goal is high performance
CPU and CPU/GPU software for the generalized Hessenberg form and its appli-
cations. We are in particular interested in the computational control applications
and contributions to the control library SLICOT.

In the first stage of the development, we give detailed block CPU implementa-
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tions. Section 2 describes the new algorithm for m-Hessenberg reduction. In §3, we
apply the m-Hessenberg form as a preprocessor and improve the efficiency of the
staircase reduction, which is one of the structure revealing canonical forms of LTI
systems [Dooren 1979]. In §4, we show how to use the m-Hessenberg form and a
variant of incomplete RQ factorization to compute C(σI − A)−1B very efficiently
for possibly large number of complex values σ. Numerical experiments in §5 show
that the new algorithms provide superior performances. The second part of this
work, in a separate report [Bosner et al. 2011], contains parallel hybrid CPU/GPU
implementations of the algorithms from this paper.

2. A BLOCK ALGORITHM FOR M -HESSENBERG FORM

As with the QR and the 1-Hessenberg LAPACK routines, the main idea for a
faster m-Hessenberg algorithm is to partition the n× n matrix1 A into blocks of b
consecutive columns, A = (A(1) A(2) . . . A(l)), l = dn/be. Each of the leading
l−1 blocks carries b columns, while the last one contains the remaining n− (l−1)b
ones. After determining suitable block size b, the blocks are processed one at a
time, from left to right, and the computation is organized to enhance temporal and
spatial data locality. In particular, some transformations are postponed until the
very last moment in which the updated content is actually needed for the next step.
Accumulated transformations are then applied in a block fashion, thus increasing
the flop count per memory reference. Many details and tricks are involved, and this
section contains the blueprints of the new algorithm.

2.1 Processing a single block

Processing a block consists of constructing b Householder reflectors that annihilate
appropriate elements in each of the block’s columns. For the i-th block A(i) =

(a
(i)
1 a

(i)
2 . . . a

(i)
b ), define a sequence of Householder reflectors: for j = 1, 2, . . . , b, let

Hj = I−τjvjvτj be the Householder reflector such that the vector HjHj−1 · · ·H1a
(i)
j

has zeros as its (k + j + 1)-th, (k + j + 2)-th, . . . , n-th element (with an offset k
that will be a function of i and b). Here τj is a scalar and vj is a vector such that
vj(1 : k + j − 1) = 0 and vj(k + j) = 1. These vectors are stored in the matrices
Vj = (v1 v2 . . . vj). (The introduction of the Vj matrices is for explanatory
purposes only.) As in xGEHRD, the non-trivial elements of the vectors vj are stored
in the matrix A in places of entries that have been zeroed by the Hj ’s. In our
description of the algorithm, we overwrite the initial data, thus there will be no
“time stepping” index in our notation.

To set the stage for the new algorithm and to introduce necessary notation, we
briefly describe block reflectors. For more details we refer the reader to [Schreiber
and van Loan 1989].

Proposition 1. The product Qj = H1H2 . . . Hj can be represented as Qj =
I − VjTjV τj , where Tj is an upper triangular j × j matrix.

Proof. The construction of Tj is inductive: we first set V1 = (v1), T1 = τ1, and

1For the sake of brevity, we describe only the real case. The algorithm is easily extended, mutatis
mutandis, to complex matrices.

ACM Journal Name, Vol. V, No. N, Month 20YY.



· 3

then we easily verify that, for t+ = −τjTj−1V
τ
j−1vj , it holds

Qj = Qj−1Hj = (I − Vj−1Tj−1V
τ
j−1) · (I − τjvjvτj )

= I − (Vj−1 vj) ·
(
Tj−1 t+

0 τj

)
· (Vj−1 vj)

τ .

Thus, setting Tj =

(
Tj−1 t+

0 τj

)
completes the proof.

Once the block is processed, we will have to update

A← QτAQ = (I − V T τV τ )A(I − V TV τ ) = (I − V T τV τ )(A− Y V τ ) , (1)

where V = Vb, T = Tb, Q = Qb and Y = AV T . The auxiliary matrix Y will be
used for fast update of the matrix A “from the right-hand side” (A← A− Y V τ ).

Proposition 2. The matrices Yj = Y (:, 1 : j) = AVjTj satisfy:

Y1 = τ1Av1; Yj =
(
Yj−1 τj(−Yj−1 · V τj−1vj +Avj)

)
. (2)

Proof. Starting with Y1 = τ1Av1 and using Proposition 1, we have

Yj = A ·
(
Vj−1 vj

)
·
(
Tj−1 t+

0 τj

)
=
(
AVj−1Tj−1 AVj−1t+ + τjAvj

)
= (since t+ = −τjTj−1V

τ
j−1vj) =

(
Yj−1 τj(−Yj−1 · V τj−1vj +Avj)

)
. (3)

In order to compute the reflector that annihilates the elements in the j-th column
of the block, we must have already updated this part of the matrix A with the
accumulated product Hj−1 · · ·H1. To that end, we use Yj−1, following (1). Note
that computing the reflectors requires only the elements of A in the rows from
(k+ 1)-st on – thus the update will also require only the elements of Yj−1 with the
same row indices. The processing of a single block is outlined in Algorithm 1 and
the details are given in §2.1.1-§2.1.4.

2.1.1 Updating a
(i)
j (k+1 : n) from the right. In line 4 of Algorithm 1, the column

a
(i)
j (k + 1 : n) is updated by the transformation from the right. The details of this

update are given in Algorithm 2 and in Figure 1, which illustrates the situation in
the case n = 15, m = 2 and the block size b = 5. The current block A(i) is shaded
(i = 2); the parameter k is equal to (i−1) · b+m = 7. The elements of a particular

column a
(i)
j are shown as diamonds and filled circles (j = 4). All elements below

the m-th subdiagonal in the columns to the left of a
(i)
j have already been set to

zero by the algorithm, and our goal now is to use a Householder reflector and zero

out those elements of the column a
(i)
j that are shown as filled circles.

Prior to that, we have to apply to this column the previously generated block
reflector I − Vj−1Tj−1V

τ
j−1 from both the left and the right. During the block

processing, only the row indices k + 1 : n of a
(i)
j will be updated – the remaining

indices are not involved in computation of the Householder reflectors for the current
block. For the same reason, only the rows k + 1 : n of Yj−1 and Vj−1 will be
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Algorithm 1: Processing of a block to reduce it to m-Hessenberg form

Input: block A(i), block size b, index k
Output: partially updated block A(i), transformation matrices Y and T ,

auxiliary array TAU ; details in §2.1.1, 2.1.2, 2.1.3.

1 for j = 1, 2, . . . , b do
2 if j > 1 then

3 Update a
(i)
j (k + 1 : n):

4 a
(i)
j (k + 1 : n) = a

(i)
j (k + 1 : n)− (Yj−1V

τ
j−1)(k + 1 : n, k + j −m);

5 Multiply a
(i)
j (k + 1 : n) with I − Vj−1T

τ
j−1V

τ
j−1 from the left;

6 end

7 Generate the elementary reflector Hj to annihilate a
(i)
j (k + j + 1 : n);

8 Set TAU(j) = τj , and compute Yj(k + 1 : n, j);
9 Compute Tj(:, j);

10 end
11 Compute Y (1 : k, 1 : b);
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Fig. 1: Updating column a
(i)
j (k + 1 : n) from the right (line 4 in Algorithm 1)

referenced. The horizontal dashed line separates the rows 1 : k and k + 1 : n of all
matrices in the figure. All action takes place below this line.

The non-trivial elements of the matrix Vj−1 are shown as p – these are actually
stored in places of the elements of A(i) that have already been zeroed out. All
elements above the ones in the matrix Vj−1 are zero. Note that the j-th column of
the block A(i) is the ((i− 1) · b+ j = k + j −m)-th column of the original matrix

A. Thus, updating the column a
(i)
j involves only the row k + j −m of the matrix

Vj−1 – the shaded one in Figure 1. In fact, what is needed from this row are the
leading j −m − 1 elements stored in A(i)(k + j −m, 1 : j −m − 1), and a single
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Algorithm 2: Details of line 4 in Algorithm 1

4.1 if j > m then

4.2 temp = a
(i)
j−m(k + j −m);

4.3 a
(i)
j−m(k + j −m) = 1;

4.4 Call xGEMV (BLAS 2) to compute

a
(i)
j (k + 1 : n) = a

(i)
j (k + 1 : n)−

Yj−1(k + 1 : n, 1 : j −m) ·
(
A(i)(k + j −m, 1 : j −m)

)τ
;

4.5 a
(i)
j−m(k + j −m) = temp;

end

�
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Fig. 2: Updating column a
(i)
j (k + 1 : n) from the left

element 1 (thus the trick with introducing 1 in line 4.3 in Algorithm 2).

2.1.2 Updating a
(i)
j (k + 1 : n) from the left. The details of the implementation

of line 5 in Algorithm 1 are given in Algorithm 3, and illustrated in Figure 2.

The lines 5.2 and 5.3 compute the product V τj−1a
(i)
j . This multiplication is carried

out in two phases: first, we multiply the triangular block Vj−1(k+ 1 : k+ j − 1, 1 :
j − 1) using the xTRMV routine. This routine can be deployed to “pretend” as if
the lower triangular matrix has ones on its diagonal without explicitly looking up
matrix elements, enabling us to avoid the temporary backup of elements of A(i)

which occupy that place. (This triangular block of Vj−1 is between the dashed and
the wavy line in Figure 2.) Then the rectangular block Vj−1(k + j : n, 1 : j − 1)

multiplies the rest of vector a
(i)
j .

In line 5.4, the vector T τj−1V
τ
j−1a

(i)
j is formed, and lines 5.5–5.7 complete the
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Algorithm 3: Details of line 5 in Algorithm 1

5.1 Copy a
(i)
j (k + 1 : k + j − 1) to T (1 : j − 1, j);

5.2 Call xTRMV (BLAS 2) to compute

T (1 : j − 1, j) =
(
A(i)(k + 1 : k + j − 1, 1 : j − 1)

)τ · T (1 : j − 1, j);
5.3 Call xGEMV to compute

T (1 : j − 1, j) = T (1 : j − 1, j) +
(
A(i)(k + j : n, 1 : j − 1)

)τ · a(i)
j (k + j : n);

5.4 Call xTRMV to compute T (1 : j − 1, j) = T τj−1 · T (1 : j − 1, j);

5.5 Call xGEMV to compute

a
(i)
j (k + j : n) = a

(i)
j (k + j : n)−A(i)(k + j : n, 1 : j − 1) · T (1 : j − 1, j);

5.6 Call xTRMV to compute

T (1 : j − 1, j) = A(i)(k + 1 : k + j − 1, 1 : j − 1) · T (1 : j − 1, j);

5.7 a
(i)
j (k + 1 : k + j − 1) = a

(i)
j (k + 1 : k + j − 1)− T (1 : j − 1, j);

Algorithm 4: Details of line 8 in Algorithm 1

8.1 temp = a
(i)
j (k + j); a

(i)
j (k + j) = 1;

8.2 Call xGEMV to compute

Yj(k + 1 : n, j) = A(k + 1 : n, k + j : n) · a(i)
j (k + j : n);

8.3 Call xGEMV to compute

Tj(1 : j − 1, j) =
(
A(i)(k + j : n, 1 : j − 1)

)τ · a(i)
j (k + j : n);

8.4 Call xGEMV to compute
Yj(k + 1 : n, j) = Yj(k + 1 : n, j)− Yj−1(k + 1 : n, :) · Tj(1 : j − 1, j);

8.5 Scale Yj(k + 1 : n, j) by multiplying it with τj = TAU(j);

transformation by multiplying that vector by Vj−1 from the left.

2.1.3 Other details of block processing. The line 7 is a single call of the LA-

PACK routine xLARFG. The Householder vector is stored in a
(i)
j (k + j + 1 : n),

while the scalar τj is stored in an auxiliary array TAU as the element TAU(j).
Next, in line 8, we append a column to Yj−1 to define Yj as in (2). Note that

a
(i)
j (k + j + 1 : n) now contains the non-trivial part of the j-th elementary House-

holder vector. Algorithm 4 gives the details.
Line 8.2 is the only line in the loop of the block processing algorithm that ref-

erences elements of A outside of the current block A(i). This is also the only line
which deals with a matrix of dimension O(n) × O(n); all others have at least one
dimension of block size b or less. Line 8.3 computes the product V τj−1vj – observe
that vj(1 : k+ j − 1) = 0, so we can disregard the rows 1 to k+ j − 1 of the matrix

Vj−1. The old value of the element a
(i)
j (k + j), whose backup copy is in line 8.1,

can be restored after the update of the next column a
(i)
j+1.

All that is now left to do in order to complete the matrix Tj is to re-scale the
current content of its last column by TAU(j), and to multiply it by Tj−1 from the
left by using yet another call to xTRMV. Finally, we show how to compute the first
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Fig. 3: Updating first k rows of Y

k rows of Y , outside of the main loop in Algorithm 1 (line 11):

Algorithm 5: Details of line 11 in Algorithm 1

11.1 Copy A(1 : k, k + 1 : k + b) to Y (1 : k, 1 : b);
11.2 Call xTRMM (BLAS 3) to compute

Y (1 : k, 1 : b) = Y (1 : k, 1 : b) ·A(i)(k + 1 : k + b, 1 : b);
11.3 Call xGEMM (BLAS 3) to compute

Y (1 : k, 1 : b) = Y (1 : k, 1 : b) +A(1 : k, k + b+ 1 : n) ·A(i)(k + b+ 1 : n, 1 : b);
11.4 Call xTRMM to compute Y (1 : k, 1 : b) = Y (1 : k, 1 : b) · T ;

In Figure 3, the region below the elements denoted by � in the current block
(shaded) of the matrix A has been zeroed out. It now stores the non-trivial part
of the matrix V (elements denoted by p). Multiplication by the matrix V from
the right in lines 11.2 and 11.3 is once again split into triangular and rectangular
parts. Line 11.3 references elements not in the current block. Note that only the
columns k+ 1 : n of the matrix A (the ones to the right of the vertical dashed line)
are referenced while updating Y , because of the zero-pattern in V .

2.1.4 The concept of mini-blocks. The first m columns of a block do not need
to be updated from the right since the corresponding rows of the matrices Vj−1 are
zero. Moreover, if m is greater than or equal to the block size, then the updates
from the right are not needed at all within the current block.2 When m is less than
the block size, this fact permits another variant of Algorithm 1 in which:

(1) The block is split into several disjoint “mini-blocks”, each (except maybe the
last one) consisting of m consecutive columns.

(2) In each “mini-block”, column by column is updated only from the left, and the
appropriate elements are annihilated.

2We are indebted to Daniel Kressner [Kressner 2010] for pointing this out; a similar concept is

also used in [Bischof et al. 2000] for the reduction of a symmetric matrix to the tridiagonal form.
The mini-blocks are also successfully used in [Karlsson 2011].
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Algorithm 6: Processing of a block by using mini-blocks to reduce it to m-
Hessenberg form

Input: block A(i), block size b, index k
Output: partially updated block A(i), transformation matrices Y and T ,

auxiliary array TAU

1 for j = 1, 2, . . . b do
2 if j > 1 then

3 Update a
(i)
j (k+ 1 : n) only from the left by applying I −Vj−1T

τ
j−1V

τ
j−1;

4 end

5 Generate the elementary reflector Hj to annihilate a
(i)
j (k + j + 1 : n);

6 Compute Tj(:, j);
7 if j mod m = 0 or j = b then
8 cMini = m or (b mod m); // current miniblock size

9 nMini = min{b− j,m}; // next miniblock size

10 Compute Yj(k + 1 : n, j − cMini+ 1 : j);
11 Call xGEMM to update the entire next miniblock from the right:

A(i)(k + 1 : n, j + 1 : j + nMini) =
A(i)(k+ 1 : n, j + 1 : j + nMini)− (YjV

τ
j )(k+ 1 : n, j + 1 : j + nMini);

12 end

13 end
14 Compute Y (1 : k, 1 : b);

(3) A “mini-reflector” Qm = I − VmTmVτm is aggregated from m annihilations.

(4) After processing of the “mini-block”, the block reflector Qj+m is updated:

Vj+m =
(
Vj Vm

)
;

Tj+m =

(
Tj Tjm
0 Tm

)
, Tjm = −TjV τj VmTm;

Yj+m =
(
Yj (−YjV τj Vm +AVm)Tm

)
.

 (4)

(5) The next m columns of A are updated from the right; these columns are then
declared the new current “mini-block”.

Note that, in order to update all columns in the next “mini-block” from the right,
one only needs the elements of Y that lie in the current and previous “mini-blocks”,
see line 4.4 in Algorithm 2. Thus, an update from the right of the entire next “mini-
block” and the appropriate part of the matrix Y may be computed after all columns
in the current “mini-block” have been annihilated.

The details are worked out in Algorithm 6 which, for m > 1, makes better use of
BLAS 3 operations than the original Algorithm 1 and thus provides better perfor-
mance. The minimum size of m where this variant is more effective depends on the
user’s machine setup – on our machine, for m ≥ 3 the speedup was already notable.
(See subsection 5.1 for timing results that illustrate a considerable improvement
due to the modification described in Algorithm 6.)
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Fig. 4: Updating the matrix A from the right, A = A− Y V τ .

This completes the description of the block processing algorithm. We now turn
our attention to the global algorithm on the block level.

2.2 The outer loop

Figure 4 shows the update A = A−Y V τ , where Y and V are computed during the
last block processing (the last block A(i) is shaded). This update only affects the
columns k + 1 : n of A – the ones to the right of the vertical dashed line. Only the
elements of A that are encircled or boxed have yet to be updated, since the block
processing has already updated A(i)(k + 1 : n, 1 : b).

The boxed elements of A will be updated by subtracting the product of Y with
the boxed part of V . Since the elements of V above the ones are all zeros and V is
stored in A(i), the appropriate part of A(i) has to be replaced with zeros and ones
in order to use the xGEMM routine for the multiplication. The encircled elements of
A will be updated by subtracting the product of encircled elements of Y with the
triangular matrix of encircled elements in V .

The Block Algorithm 7 at first just stores all of the block’s reflectors, instead of
annihilating columns one by one and applying the resulting reflector to the entire
matrix A each time. Only after a block is processed, the whole batch of its reflectors
is applied to A, first from the left and then from the right.

This brings several important performance benefits into play. The first one is
the localization of memory referencing: in the point version, the algorithm has to
reference elements of A that are “far away” (in terms of memory addresses) from
the current column when applying the reflectors, for each column being annihilated.
On the other hand, the block version mostly references only elements local to the
block being processed. Elements “far away”, i.e. the ones outside of that block are
referenced only after all of the block’s reflectors have already been computed. If
the block size is chosen to fit into the cache memory, there will be much less cache
misses during the computation of all the reflectors and less data fetching from the
slower main memory. The second advantage is the more effective transformation
A 7→ QτAQ. If Q were a single Householder reflector, one could only use BLAS
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Algorithm 7: Block algorithm for reduction to the m-Hessenberg form

Input: n× n matrix A, block size b, bandwidth m
Output: A converted to m-Hessenberg form

1 for z = 1, 1 + b, 1 + 2 · b, 1 + 3 · b, . . . do
2 i = (z − 1)/b+ 1;

3 Process block A(i) = A(1 : n, z : z + b− 1) with k = z +m− 1 by
Algorithm 6;

// Apply block reflector from the right:

4 Backup the upper triangle of A(i)(k + b−m+ 1 : k + b, b−m+ 1 : b) into
matrix temp and replace it with the upper triangle of identity matrix;

5 Call xGEMM to compute

A(1 : n, z+ b : n) = A(1 : n, z+ b : n)− Y ·
(
A(i)(k + b−m+ 1 : n, 1 : b)

)τ
;

6 Restore temp to upper triangle of A(i)(k + b−m+ 1 : k + b, b−m+ 1 : b);

7 Call xTRMM to compute

temp = Y (1 : k, 1 : b−m) ·
(
A(i)(k + 1 : k + b−m, 1 : b−m)

)τ
;

8 A(1 : k, k + 1 : z + b− 1) = A(1 : k, k + 1 : z + b− 1)− temp;

// Apply block reflector from the left:

9 Call xLARFB to apply block reflector (V, T ) from left onto
A(k + 1 : n, z + b : n);

10 end

2 operations to apply the transformation, whereas transformation routines such
as xLARFB use the more efficient BLAS 3 operations (e.g. xGEMM, xTRMM), taking
advantage of the underlying block reflector structure of Q.

3. THE STAIRCASE FORM

The m-Hessenberg form can be used for efficient computation of other useful canon-
ical forms. For instance, the controller Hessenberg form of (A,B) ∈ Rn×n ×Rn×m
is easily computed in two steps: first compute the QR factorization B = Q1 (R0 ),
update A to A(1) = QT1 AQ1, and compute the m-Hessenberg form H = QT2 A

(1)Q2.
Then, the transformation Q = Q1Q2 produces QTAQ = H, QTB = (R0 ). We now
turn our attention to detecting whether the system is controllable and to deter-
mining its controllable part. A numerically reliable method for such task is the
computation of a staircase form.

Theorem 3. [Dooren 1979] For a pair (A,B), where A ∈ Rn×n and B ∈ Rn×m,
there exists an orthogonal matrix Q ∈ Rn×n such that

(
QτB QτAQ

)
equals

(
B̄ Ā11 Ā12

0 0 Ā22

)
≡


X1 Â11 Â12 . . . Â1k Â1,k+1

0 X2 Â22 . . . Â2k Â2,k+1

...
...

. . .
...

...
...

0 0 . . . Xk Âkk Âk,k+1

0 0 . . . 0 0 Âk+1,k+1

 ,
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Algorithm 8: Computing a staircase form with a full system matrix A

Input: the system (A,B)
Output: the system (Â, B̂) in the staircase form

1 Compute RRD B = U
(
B̄
0

)
, where B̄ has full row rank ρ1;

2 Update A = UτAU ;
3 Set prev = 0, curr = ρ1, i = 1;
4 while curr < n do
5 Set Z = A(curr + 1 : n, prev + 1 : prev + ρi);
6 if Z is a zero matrix then
7 break: the system is uncontrollable;
8 end

9 Compute RRD Z = U
(
Z̄
0

)
, where Z̄ has full row rank ρi+1;

10 Update from left:
A(curr + 1 : n, prev + 1 : n) = UA(curr + 1 : n, prev + 1 : n);

11 Update from right: A(1 : n, curr + 1 : n) = A(1 : n, curr + 1 : n)Uτ ;
12 prev = curr, curr = curr + ρi+1, i = i+ 1;

13 end

14 Set Â = A, B̂ =
(
B̄
0

)
;

where each matrix Xi is of order ρi × ρi−1 and has a full row rank ρi (we set
ρ0 = m). The initial system (A,B) is controllable if and only if Ā22 = Âk+1,k+1 is

void, i.e.
∑k
i=1 ρi = n. Otherwise, (Ā11, B̄) is the controllable part of (A,B).

If the matrix A has no structure, then a common way of computing the staircase
form is shown in the Algorithm 8. A series of rank-revealing decompositions of the
sub-matrices is computed. By a rank-revealing decomposition (RRD) of the matrix
Z ∈ Rp×q, p ≥ q, we consider any factorization Z = U

(
Z̄
0

)
, where U is orthog-

onal and Z̄ has a full row rank. To make the staircase algorithm more efficient,
usually a rank-revealing QR-factorization is used instead of the more reliable, but
slower singular value decomposition. The SLICOT routine AB01ND implements a
staircase algorithm which uses the classical QR-factorization with Businger–Golub
pivoting and an incremental rank estimator. Note that most of those pivoted QR
factorizations run on tall matrices. To compute Xi (line 9), the factorization of a
matrix with at least n−(i−1)m rows is required. The corresponding updates (lines
10 and 11) transform the sub-matrix of order at least (n−(i−1)m)×(n−(i−1)m).
Assuming the usual case m � n, we see that many of these updates are actually
on O(n)×O(n) sub-matrices.

3.1 A new scheme

We propose a novel algorithm for computing the staircase form in which the system
is first transformed into the controller Hessenberg form using the blocked algorithm
described in §2. Then, we use Algorithm 9, specially tailored for the generalized
Hessenberg structure. Compared to the Algorithm 8, performance is gained because
of these differences, which are due to the m-Hessenberg form of the system matrix:

—RRDs in line 9 are computed on matrices with h rows. The number h is initially
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equal to m, and may increase by at most m− 1 in each pass through the while-
loop. Therefore, we expect that RRDs are computed on matrices having only
O(m) rows.

—Update in line 10 transforms a submatrix of order O(m)×O(n).

—Update in line 11 transforms a submatrix of order O(n)×O(m).

�����FFFF������

�����FFFF������

�����FFFF������

�����FFFF������

����FFFF������

uuF5F5F5F5EEEEEE

uuF5F5F5F5EEEEEE

uuF5F5F5F5EEEEEE

uuF5F5F5F5EEEEEE

FFF������

FF������

F������

������

�����

����

Fig. 5: A typical situation in the loop of Algorithm 9. RRD is computed on the submatrix •;
elements ◦ are updated from the left, and elements � are updated from the right. Here n = 15,

m = ρ0 = ρ1 = 3, ρ2 = 2.

4. SHIFTED SYSTEMS AND TRANSFER FUNCTION

Hessenberg reduction is known to be an excellent preprocessing tool in solving
shifted linear systems, in particular for evaluating the transfer function G(σ) =
C(σI −A)−1B +D of a LTI system (A,B,C,D) ∈ Rn×n ×Rn×m ×Rp×n ×Rp×m
at many values of complex scalar σ. Recently, it has been shown that using the
controller Hessenberg form of (A,B) or (AT , CT ) allows for more efficient and
numerically more consistent computation in the case min(m, p) = 1; for details
and references see [Beattie et al. 2011]. Here we extend those ideas to the case
min(m, p) > 1, where it is tacitly assumed that max(m, p) is small compared to n.

Henry [Henry 1994] introduced the idea of using the RQ factorization (A−σI)U =
T , where U is n × n unitary, and T is n × n upper triangular. Then, C(σI −
A)−1B = −(CU)(T−1B), and the original problem reduces to matrix multiplication
and backward substitutions using the upper triangular matrix T . It is immediately
clear how the controller Hessenberg structure of (A,B) simplifies this computation.
First, performing many RQ factorizations is more efficient if the matrix A is in
Hessenberg form simply because part of the matrix is already zero. Next,

T−1B =

(
T̂−1B̂

0

)
, B =

(
B̂
0

)
, T =

(m n−m
m T̂ ∗
n−m 0 ∗

)
,
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Algorithm 9: Computing a staircase form of a system in controller Hessenberg
form

Input: the system (A, (B0 )) in the controller Hessenberg form

Output: the system (Â,
(
B̂
0

)
) in the staircase form

1 Compute RRD B = U
(
B̄
0

)
, where B̄ has full row rank ρ1;

2 Update A from left: A(1 : m, 1 : n) = UτA(1 : m, 1 : n);
3 Update A from right: A(1 : 2m, 1 : m) = A(1 : 2m, 1 : m)U ;
4 Set h = m, prev = 0, curr = ρ1, i = 1;
5 while curr < n do
6 Set Z = A(curr + 1 : curr + h, prev + 1 : prev + ρi);
7 if Z is a zero matrix then
8 break: the system is uncontrollable;
9 end

10 Compute RRD Z = U
(
Z̄
0

)
, where Z̄ has full row rank ρi+1;

11 Update from left: A(curr + 1 : curr + h, prev + 1 : n) =
UA(curr + 1 : curr + h, prev + 1 : n);

12 Update from right: A(1 : curr + h+m, curr + 1 : curr + h) =
A(1 : curr + h+m, curr + 1 : curr + h)Uτ ;

13 h = h+m− ρi+1, prev = curr, curr = curr + ρi+1, i = i+ 1;

14 end

15 Set Â = A, B̂ = B̄;

and C(σI − A)−1B = −Ĉ(T̂−1B̂), where Ĉ = (CU)(1 : p, 1 : m). Note that only
the leading m×m matrix T̂ of T is needed, which further simplifies the computation
of the RQ factorization (both in number of flops and memory management); also,
only a part of the transformed C is needed. In short, for each σ the computation
is organized to compute only T̂ and Ĉ.

The RQ factorization is computed by Householder reflectors, U = H1H2 · · ·Hn−1,
where the i-th reflector Hi annihilates all subdiagonal elements in the (n− i+ 1)-
th row. The reduction starts at the last and finishes at the second row. For
i = n −m + 1, . . . , n − 1, during the update of the rows m, . . . , 2, the matrix T̂ is
built bottom-up and the back-substitution is done on the fly.

4.1 A point algorithm

We first describe an algorithm in which the Householder reflectors are computed and
applied one by one. Since the matrix A is in the m-Hessenberg form, in each row we
have to annihilate m entries. This means that the corresponding Householder vector
has at most m+ 1 nonzero elements. Further, the application of the corresponding
Householder reflector affects only m + 1 columns of the matrices A − σI and C.
Since we need only a part of the RQ factorization, at no point we need more than
m + 1 columns of the transformed A − σI and of the transformed C. (The role
of C is rather passive – it just gets barraged by a sequence of reflectors, designed
to produce triangular structure of A− σI, and only Ĉ is wanted.) For this reason
we introduce an auxiliary (p+ n)× (m+ 1) array Z which, at any moment, stores
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m+ 1 columns of the thus far transformed matrices C and A− σI. We can think
of Z as a sliding window, moving from the last m+ 1 columns to the left.

Algorithm 10: A point algorithm for computing G(σ), where A and B are in
the controller Hessenberg form.

Input: (A,B,C,D) ∈ Rn×n × Rn×m × Rp×n × Rp×m ((A,B) in the controller
Hessenberg form); complex scalar σ

Output: G(σ) ≡ C(σI −A)−1B +D

1 Z(1 : p, 1 : m) = C(1 : p, n−m+ 1 : n);
2 Z(p+ 1 : p+ n, 1 : m) = (A− σI)(1 : n, n−m+ 1 : n);
3 for k = n : −1 : m+ 1 do
4 Z(1 : p+ k, 2 : m+ 1) = Z(1 : p+ k, 1 : m);
5 Z(1 : p, 1) = C(1 : p, k −m);
6 Z(p+ 1 : p+ k, 1) = (A− σI)(1 : k, k −m);
7 Determine (m+ 1)× (m+ 1) Householder reflector H̄ such that

Z(p+ k, 1 : m+ 1)H̄ = ( 0 0 · · · 0 ∗ );
8 Transform

Z(1 : p+ k − 1, 1 : m) = Z(1 : p+ k − 1, 1 : m+ 1)H̄(1 : m+ 1, 1 : m);

9 end

10 X̂ = B̂;
11 for k = m : −1 : 2 do
12 Determine k × k Householder reflector H̄ such that

Z(p+ k, 1 : k)H̄ = ( 0 0 · · · 0 ∗ );
13 Transform Z(1 : p+ k − 1, 1 : k) = Z(1 : p+ k − 1, 1 : k)H̄;

14 Compute X̂(k, k : m) = X̂(k, k : m)/Z(p+ k, k);
15 Compute

X̂(1 : k−1, k : m) = X̂(1 : k−1, k : m)−Z(p+ 1 : p+k−1, k) · X̂(k, k : m);

16 end

// Ĉ(1 : p, 1 : m) is now stored in Z(1 : p, 1 : m)

// T̂ is now stored in Z(p+ 1 : p+m, 1 : m).

17 X̂(1, 1 : m) = X̂(1, 1 : m)/Z(p+ 1, 1);

18 G(σ) = D − Z(1 : p, 1 : m) · X̂;

4.2 A block algorithm

Block algorithm for the RQ factorization by Householder reflectors is based on a
special block representation of aggregated product of several reflectors. It is a well-
known technology, and we will adjust it to our concrete structure. We will use a
“reversed” WY representation of the aggregated Householder reflectors, which is a
modification of the WY form from [Bischof and Loan 1987].

Proposition 4. Let Hi = I − τiviv∗i be a Householder reflector, and let Uj =
H1H2 · · ·Hj. Then Uj can be represented as Uj = I − YjV ∗

j , where

V1 = v1, Y1 = τ1v1; Vi =
(
vi Vi−1

)
, Yi =

(
τiUi−1vi Yi−1

)
, i = 2, . . . , j.
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The correctness of the above representation is easily checked, and we will see later
why this particular form is practical in our framework.

Let nb denote the block size, i.e. the number of aggregated reflectors. Since
nb consecutive transformations on nb rows touch m + nb consecutive columns of
A− σI and C, we extend our auxiliary array Z, and define it as (p+n)× (m+nb)
to accommodate m+ nb columns of the transformed matrices C and A− σI. The
sliding window (array Z) will move to the left now with step nb: its last nb columns
will be discarded, the leading m columns shifted to the right, and new nb columns
from A−σI and C will be brought as the leading columns of Z. During this sliding,
the number of rows of Z shrinks by nb at each step. Only the last nb rows of the
current Z are needed to generate the reflector, and these pivotal parts of the sliding
window are trapezoidal matrices sliding upwards along the diagonal of A− σI.

The last m − 1 Householder reflectors which reduce the rows m,m − 1, . . . , 2 of
the matrix A−σI compute the dense RQ factorization and for small m are applied
as in the point algorithm.

4.2.1 Auxiliary: Trapezoidal to triangular reduction. We use an auxiliary RQ
routine to reduce an nb × (m+ nb) upper trapezoidal matrix to triangular form by
right multiplication by a sequence of Householder reflections,(

x x x x x x x
0 x x x x x x
0 0 x x x x x
0 0 0 x x x x

)
−→

(
0 0 0 x x x x
0 0 0 0 x x x
0 0 0 0 0 x x
0 0 0 0 0 0 x

)
. (5)

In the global scheme, this trapezoidal matrix is an nb × (m + nb) pivotal block of
the auxiliary matrix Z. Most of the time we are not interested in the resulting
triangle, but in the aggregated product of the reflectors, which will be packed in
the reversed WY form and applied to only the part of the copy of the global array
(stored in Z) that is needed in subsequent steps.

Updates with Householder reflectors within the auxiliary routine are also done in
the blocked manner. The current row which determines current Householder reflec-
tor, is not updated by previous reflectors from the block until it is needed. Prior to
computing the current Householder vector, aggregated Householder reflectors from
previous steps have to be applied to the current row. Moreover, we update only
the part of the row that carries information needed to construct the reflector for
the next step.

Since the deployed reflectors are determined by Householder vectors with at most
m+ 1 nonzero elements (occupying consecutive positions), the matrix V is banded
with bandwidth m+ 1 and Y is lower trapezoidal:

V =


• 0 0 0
• • 0 0
• • • 0
• • • •
0 • • •
0 0 • •
0 0 0 •

 , Y =


? 0 0 0
? ? 0 0
? ? ? 0
? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?

 (6)

Since an application of the block transformation I − Y V ∗ involves V ∗, it is
convenient to store V ∗ instead of V . Each time a new (m+ 1)-dimensional House-
holder vector v is determined, the first m components of v∗ are stored in places of
m subdiagonal elements that are annihilated by the corresponding reflector. The
Householder vector is scaled so that its last component is equal to one, and there
is no need for storing it. This procedure is implemented in the LAPACK routine
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xLARFG. Hence, combining (5) and (6), the normalized V ∗ is placed in the last nb
rows of Z as follows:

Z(n+ p− nb + 1 : n+ p, 1 : m+ nb) ≡ Zblock =

( • • • x x x x
0 • • • x x x
0 0 • • • x x
0 0 0 • • • x

)
,

where Z contains the last m+ nb columns of A and C.

Algorithm 11: Reduction of an nb × (m+ nb) upper trapezoidal block to the
triangular form.

Input: nb × (m+ nb) matrix block Zblock
Output: V and Y such that Zblock(I − Y V ∗) is triangular as in (5)

1 V = 0(m+nb)×nb
; Y = 0(m+nb)×nb

;
2 for k = nb : −1 : 1 do
3 if k = nb then
4 Determine (m+ 1)× (m+ 1) Householder reflector H̄ = I − τ v̄v̄∗ such

that Zblock(k, k : k +m)H̄ = ( 0 0 · · · 0 ∗ );
5 Set V (k : k +m, k) = v̄;
6 Set Y (k : k +m, k) = τ · v̄;

7 else
8 mb = min{nb − k,m};
9 Update of the current row: Call xGEMM twice to compute

Zblock(k, k + 1 : k +m) = Zblock(k, k + 1 : k +m)− (Zblock(k, k + 1 : nb +m)·
Y (k + 1 : nb +m, k + 1 : k +mb)) · V (k + 1 : k +m, k + 1 : k +mb)

∗;
10 Determine (m+ 1)× (m+ 1) Householder reflector H̄ = I − τ v̄v̄∗ such

that Zblock(k, k : k +m)H̄ = ( 0 0 · · · 0 ∗ );
11 Set V (k : k +m, k) = v̄;
12 Set Y (k : k +m, k) = τ · v̄;
13 Call xGEMV twice to compute

Y (k + 1 : nb +m, k) = Y (k + 1 : nb +m, k)− Y (k + 1 : nb +m, k + 1 : k +mb)·
(V (k + 1 : k +m, k + 1 : k +mb)

∗ · Y (k + 1 : k +m, k));

14 end

15 end

The banded structure of the matrix V has been used to derive the lines 9 and 13
of Algorithm 11 from their original forms:

line 9 of Algorithm 11. Zblock(k, k + 1 : k + m) = Zblock(k, k + 1 : k + m)−
(Zblock(k, k+ 1 : nb+m) ·Y (k+ 1 : nb+m, k+ 1 : nb)) ·V (k+ 1 : k+m, k+ 1 : nb)

∗

line 13 of Algorithm 11. Y (k + 1 : nb +m, k) = Y (k + 1 : nb +m, k)− Y (k + 1 :
nb +m, k + 1 : nb) ·(V (k + 1 : k +m, k + 1 : nb)

∗ · Y (k + 1 : k +m, k))

In both cases, we have multiplication of some submatrices of V and Y :
Y (k + 1 : nb +m, k + 1 : nb) · V (k + 1 : k +m, k + 1 : nb)

∗

Since, for nb − k > m, V (k + 1 : k +m, k +m+ 1 : nb) = 0m×(nb−k−m), we obtain
the forms of these lines as presented in Algorithm 11. A similar modification will
be used in Algorithm 12.
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4.2.2 The outer loop. The global structure of the block algorithm is given in
Algorithm 12.

Algorithm 12: Block algorithm for computing G(σ), where A and B are in
the controller Hessenberg form.

Input: matrices A, B, C, D ((A,B) in the controller Hessenberg form);
complex scalar σ, and block dimension nb

Output: matrix G(σ)

1 lb = (n−m)/nb;
2 mink = n− (lb − 1) · nb;
3 Z(1 : p, 1 : m) = C(1 : p, n−m+ 1 : n);
4 Z(p+ 1 : p+ n, 1 : m) = (A− σI)(1 : n, n−m+ 1 : n);
5 for k = n : −nb : mink do
6 Z(1 : p+ k, nb + 1 : m+ nb) = Z(1 : p+ k, 1 : m);
7 Z(1 : p, 1 : nb) = C(1 : p, k −m− nb + 1 : k −m);
8 Z(p+ 1 : p+ k, 1 : nb) = (A− σI)(1 : k, k −m− nb + 1 : k −m);
9 Compute V and Y by Algorithm 11, such that

Z(p+ k − nb + 1 : p+ k, 1 : m+ nb)(I − Y V ∗) is upper triangular;
10 Call xTRMM and xGEMM to compute

Z(1 : p+ k − nb, 1 : m) = Z(1 : p+ k − nb, 1 : m)− Z(1 : p+ k − nb, 1 : m+ nb)·
(Y (1 : m+ nb, 1 : m) · V (1 : m, 1 : m)∗);

11 end
12 l = n− lb · nb;
13 for k = l : −1 : m+ 1 do
14 Perform lines 4–8 of Algorithm 10;
15 end

16 X̂ = B̂;
17 for k = m : −1 : 2 do

18 Compute X̂(2 : m, 1 : m) as in lines 12–15 of Algorithm 10;
19 end

20 X̂(1, 1 : m) = X̂(1, 1 : m)/Z(p+ 1, 1);

21 G(σ) = D − Z(1 : p, 1 : m) · X̂;

In the implementation of the Algorithm 12 we can also exploit the fact that V is
banded with bandwidth m + 1 and Y is lower trapezoidal, hence the form of the
implementation of line 10, which in the original reads:

line 10 of Algorithm 12. Z(1 : p+k−nb, 1 : m)← Z(1 : p+k−nb, 1 : m)−Z(1 :
p+ k − nb, 1 : m+ nb) · (Y · V (1 : m, 1 : nb)

∗)

Here we also assumed that nb ≥ m. Otherwise, V (1 : m, 1 : m) does not exist and
we have the product Y V (1 : m, 1 : nb)

∗ with smaller inner dimension.
An estimate of additional workspace is as follows:

• Two-dimensional array of dimension (m+ nb)× nb for storing the matrix Y .
• One-dimensional array of dimension m for storing intermediate results in lines 9
and 13 of Algorithm 11
• Two-dimensional array of dimension (p + n − nb) × m for storing intermediate
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result in line 10 of Algorithm 12
• One-dimensional array of dimension p+m+nb−1 for storing intermediate results
occurring in application of Householder reflector to a matrix in lines 14 and 17 of
Algorithm 12 (lines 8 and 13 of Algorithm 10)
• Two-dimensional m×m array for storing the matrix X̄. Depending on m/n, X̄
may be stored in place of Y , since X̄ appears after Y becomes obsolete.

4.2.3 Batch processing in case of multiple shifts. The second level of aggregation
in the algorithm for solving shifted systems is processing the shifts in batches, see
[Beattie et al. 2011]. There are several reasons for introducing this technique. First,
we have to access the elements of the same matrices A and C for every shift. In
each step of the outer loop, lines 7 and 8 are the same for every shift: the same
nb columns of A and C are copied to the auxiliary array Z (except that different
shifts are subtracted from the diagonal elements of A). Second, the most expensive
operation in the algorithm, which is the update of Z with the Householder reflectors
generated in Zblock (line 10), involves large amount of the same data for different
shifts. These data are the first nb columns of Z, containing original elements of A
and C, copied in lines 7 and 8.

The main goal of shift aggregation is to avoid all these redundant operations.
Let us assume that we evaluate the transfer function G(σi) for ns different shifts
σi, i = 1, . . . , ns. For all these shifts we will access all the elements of A and C only
once, and we will perform one part of the update for all shifts simultaneously, as
one call to xGEMM. Such approach will require much more memory for storing the
auxiliary arrays, but it will reduce communication between different parts of the
memory. The original array Z is now split in two parts:

—The first part consists of the first nb columns of Z and is denoted by Z1. This
part is (almost) the same for all shifts and relates to the original elements of A
and C. The “small” differences will be dealt with later.

—The second part consists of the last m columns of Z that are specific to the shift
σi, and is denoted by Z2(i). These submatrices are the result of the update from
the previous outer loop step, and are different for different shifts.

We do not need to store the pivotal block Zblock after its reduction in Algorithm
11, and the Householder vectors which are generated in that block can be exploited
immediately after the auxiliary routine implementing Algorithm 11 completes exe-
cution. Hence, we use the same nb × (m + nb) array Zblock for all shifts. Finally,
we will need the matrices Y (i) obtained from Algorithm 11 for different shifts σi.
The actual placing of these matrices in the workspace will be described later, after
some details of the new algorithm are explained.

The update in line 10 of Algorithm 12 is now divided into two parts: one part
dealing with shift specific arrays Z2(i) and the other part dealing with Z1 which
is common to all updates (for all shifts). Actually there is a “small” difference
between the array Z1 and the first nb columns of the array Z from Algorithm 12,
that was mentioned before. For Z1 to be identical in all updates it cannot include
shifts, and that is not the case with Z. A shift is subtracted from the diagonal
elements of Z(p+ k − nb −m+ 1 : p+ k − nb, 1 : m), which is m×m bottom-left
submatrix of the part of Z involved in update in the k-th outer loop step. Thus,
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nb m

Zi Z1 Z2(i), i = 1, . . . , ns

Zblock

Y Y (i), i = 1, . . . , ns shifts

post-process

single shift multiple shifts

Fig. 6: The layout of the auxiliary arrays within the working space.

Z1 will contain only elements of the original matrices A and C, and the shifts in
the first m columns will be processed separately. The details of the update after
reduction of the pivot block in case of multiple shifts are given in Algorithm 13.

Line 10.4 in Algorithm 13 suggests the layout of the auxiliary arrays within the
working space. We need only the first m columns of the matrices Y (i), so there is
no need for storing all nb columns (under assumption nb ≥ m). Thus, submatrices
Y (i)(1 : m + nb, 1 : m) should occupy m · ns consecutive columns as well as the
matrices Z2(i). We should also note that the result of the update (lines 10.1–10.4)
is already placed on the right position for the next outer loop step, so that copying
operation in line 6 of Algorithm 12 can be omitted.

Similar techniques can be applied to the non-blocked part of the algorithm.

4.3 Descriptor systems

Algorithm 12 can be easily adapted for computing the transfer function G(σ) =
C(σE − A)−1B +D of a descriptor system. Here E ∈ Rn×n. For Algorithm 12 to
be efficient, the matrices A, B and E have to be in the m-Hessenberg–triangular–
triangular form. An efficient block algorithm for the m-Hessenberg–triangular–
triangular reduction is described in [Bosner 2011].

The only changes required for descriptor systems in them-Hessenberg–triangular–
triangular form are in the lines 4, 8 and 14 (line 6 of Algorithm 10) of Algorithm
12 where specific columns of A− σI are copied to the auxiliary array Z. What we
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Algorithm 13: Details of the update in case of aggregated shifts.

for k = n : −nb : mink do
Initialize data;
for 1 = 1 : ns do

Perform necessary copying;
9 Compute V (i) and Y (i) by Algorithm 11, such that

Zblock(I − Y (i)V (i)∗) is upper triangular;
10.1 Call xTRMM to compute

Y (i)(1 : m+ nb, 1 : m) = Y (i)(1 : m+ nb, 1 : m) · V (i)(1 : m, 1 : m)∗;
10.2 Call xGEMM to compute

Z2(i)(1 : p+ k − nb, 1 : m) = Z1(1 : p+ k − nb, 1 : m)
−Z2(i)(1 : p+ k − nb, 1 : m) · Y (i)(nb + 1 : nb +m, 1 : m);

10.3 Z2(i)(p+ k−nb−m+ 1 : p+ k−nb, 1 : m) = Z2(i)(p+ k−nb−m+ 1 :
p+ k − nb, 1 : m) + σ(i)Y (i)(1 : m, 1 : m)− σ(i)Im;

end
10.4 Call xGEMM to compute

( Z2(1) Z2(2) · · · Z2(ns) )(1 : p+ k − nb, 1 : m · ns) =
( Z2(1) Z2(2) · · · Z2(ns) )(1 : p+k−nb, 1 : m ·ns)−Z1(1 : p+k−nb, 1 : nb)
·( Y (1)(1 : nb, 1 : m) Y (2)(1 : nb, 1 : m) · · · Y (ns)(1 : nb, 1 : m) );

end

actually do here is copying the specific columns of the matrix A to Z first, and then
subtracting σ from the diagonal elements of A. We have to change only the second
step and subtract the corresponding columns of E multiplied with σ in order to
obtain columns of A − σE. Since E is upper triangular, this means that we have
to update all elements in the current column of A except subdiagonal ones.

5. NUMERICAL EXPERIMENTS

We have run a series of tests in order to assess the performances of the new soft-
ware. Our machine was a Intel R© XeonTM X5470 (quad-core), running at 3.33GHz
with 8 GB RAM and 6+6MB of Level 2 cache memory, under Ubuntu Linux 8.10.
The compiler was Intel R© Fortran Compiler 11.0. We used -O3 optimization and
the BLAS and LAPACK from the Intel R© Math Kernel Library 10.1. All tests
were run using the IEEE double precision and double complex arithmetic. The
code was tested for correctness by computing the appropriate residuals and using
SLICOT routines for reference values.

5.1 The m-Hessenberg reduction

We have compared the default point implementation found in the routine TB01MD

from SLICOT with our new algorithms: blocked versions with and without the
“mini-blocks”. Only the reduction of the matrix A to the m-Hessenberg form is
tested, and the code for the QR-factorization of the matrix B is removed from
the SLICOT routine, along with the corresponding similarity transformation of
the matrix A. We note that the blocked implementation of these transformations
would increase the gap between the algorithms even more.
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(a) Speedup factors of the new (mini)blocked

CPU routine relative to TB01MD.
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(b) The blocked algorithm: computation

with mini-blocks is faster

Fig. 7: Comparisons of the new m-Hessenberg algorithms and TB01MD from SLICOT .

Figure 7a shows the speedup factors obtained by the the “mini-block” version of
the CPU algorithm versus the SLICOT routine. The tests were run for a batch
of matrices A with orders up to 6500 and various bandwidths m. The block size
that performed well on our testing hardware was b = 64. As Figure 7a shows,
the new algorithm can be more than 50 times faster than TB01MD. The significance
of using the “mini-blocks” is shown in Figure 7b, where we compare two versions
of our algorithms: the one using “mini-reflectors” and “mini-blocks” and the one
updating each column of the block from the right prior to its annihilation.

The blocking has more effect whenm is larger. In fact, to compute 100-Hessenberg
form of a 6000×6000 matrix our algorithm needs only about 1/9 of the time needed
for computing the 1-Hessenberg form! One could use this fact to design an algo-
rithm for successive band removal: in order to reduce a matrix to 1-Hessenberg, it
is first very quickly reduced to e.g. 100-Hessenberg, and then using a similar pro-
cess this intermediate matrix is further reduced to a 1-Hessenberg form. However,
our attempts to design such an algorithm have failed so far: reduction from a 100-
Hessenberg form to a 1-Hessenberg form simply takes too long! In the symmetric
case, this scheme is successful; see [Bischof et al. 2000]. (See also [Karlsson 2011].)

5.2 Reduction to the staircase form

We ran a number of numerical tests to demonstrate the efficiency of the Algorithm
9 compared to the Algorithm 8. Both algorithms used the same SLICOT routine
MB03OY for RRDs; this routine implements a blocked rank-revealing QR algorithm
using the Businger–Golub pivoting. We randomly generated systems (A B) of
various orders and ran the staircase reduction algorithms. Figure 8 shows that the
new algorithm performs up to 19 times faster than the original one. (The timings
for the new algorithm include both the reduction to the controller–Hessenberg form
and the subsequent transformation into the staircase form.)

5.3 Evaluation of the transfer function

Extensive numerical testing was performed for random systems with various values
of n and m; in our tests we set p = m. We have compared the SLICOT routine
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Fig. 8: The staircase reduction: comparison of Algorithm 9 and AB01ND from SLICOT .

TB05AD to our new blocked CPU algorithm for transfer function computation, using
r = 1000 random complex shifts. The routines were executed as follows:

our routines. CPU implementation of the reduction to the controller Hessenberg
form was executed once followed by 1000 executions of our blocked CPU algorithm
for computing G(σ);

SLICOT routine TB05AD. at first the routine TB05AD was executed with the pa-
rameter INITIA=’G’, indicating that the matrix A is a general matrix, and without
balancing and eigenvalues calculations (parameter BALEIG=’N’). This was followed
by 999 executions of TB05AD with INITIA=’H’ indicating that the matrix A is in
the upper Hessenberg form, which is computed using DGEHRD from LAPACK.
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(a) Speedup factors of the new blocked CPU

routine relative to TB05AD.
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(b) Aggregation of shifts improves the block

algorithm.

Fig. 9: Comparisons of the new transfer function algorithm and TB05AD from SLICOT .

The block size in our CPU algorithm was set to nb = 64, which was in most
cases the optimal block size for our routine. The results presented in Figure 9a
confirm that our block algorithm for evaluating the transfer function is generally
faster than the corresponding SLICOT routine TB05AD. Figure 9b demonstrates
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that aggregation of shifts significantly contributes to the efficiency (we aggregated
ns = 256 shifts). Although its efficiency decreases as m increases, we can conclude
that, as the dimension n grows, the efficiency of our routines is increasing. We
finally note that obvious modifications apply for the cases of purely real shifts, or
complex conjugate pairs of shifts.

5.4 Results on a different machine

We run the same test on the different machine with 2 × Intel R© XeonTM E5620
(4 cores), running at 2.40GHz with 23.5 GB RAM and 12+12MB of Level 3 cache
memory, under Scientific Linux release 6.0. The compiler was Intel R© Fortran
Composer 2011.4.191 with multithreaded Intel R© Math Kernel Library 10.3. We
obtained slightly weaker speedups than previously shown. The new m-Hessenberg
algorithm was up to 32 times faster than TB01MD from SLICOT, for m = 100.
When comparing the new staircase reduction algorithm to AB01ND from SLICOT,
the best speedup factors were 8.7 for m = 1 and 16 for m = 20. The best achieved
speedup factors of the new blocked transfer function routine relative to TB05AD

from SLICOT were 3.7 for m = 20 and 10 for m = 1.
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