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Abstract—In this paper Diaz-Metcalf inequality is refined
upon the conversion of McShane-type inequality. Extension of
generalized Hadamard inequality on functions of two variable
is reviewed. The inverse of Holder’s inequality is proven using
the property of two-variable function. One estimation of Jensen’s
functional is rewritten.
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I. INTRODUCTION

Throughout this paper €2 will denote a nonempty set and L
will denote a linear class of real-valued functions f: Q2 — R
and a linear mean A : L — R will be considered as linear,
positive and normalized functional (see [1, p. 47] and [5]).
Mathematical expectation E[X] is a linear mean for random
variable X as a function on a probability space (2, ¥, P).

McShane’s generalization of the Jensen’s inequality is pre-
sented in [1, p. 49].

Theorem 1 (McShane): Let ¢ be a continuous convex func-
tion on a closed convex set K in R™ and A be a linear mean
on L. Let g; be a function in L,i = 1, ..., n, such that g(z) =
(91(x), ..., gn(x)) isin K for all z € Q and the components of
¢(g) are in the class L. Then A(g) = (A(q1),...,A(g2)) is
in K and ¢(A(g)) < A((g))-

Following the tag of the relationship between Jensen’s
functionals of the shape

Jn(p.x,p) = 200 pip(@s) — (3o, piws), given in [3]
for different weights p;,¢; >0, >, p; = >, ¢; = 1 and for z;
as vectors from the vector space X, we have obtained relations
for Holder and Minkowski type inequalities.

II. CONVERSIONS ON A RECTANGULAR

In this section we consider Theorem for a concave function
¢ defined on K = D C R? to obtain a conversion of inequality
A(p(g)) < ¢(A(g)) for two variables.

For the statement of the next Theorem that has been proved
in [5] we now consider continuous functions
Mij,mij : RQ — R defined by

(Xi + )t + (pi + pj)s +vi+ v

Mij(t,s) = 9
Q= At (s = py)s + vi — v
2 )
(Ni 4 M)t + (s + pg)s + v + v
mii(t,s) = J 5 J J

Q= A (s — py)s v vl
2 )

with the coefficients:

_ @(A’b) B @(aab)_ (p(a,B) — (P(a’b)_

/\1,4 = Ta H1,3 = B_1 ;
28 = A—a P He = B—b ’

v = @(a,b) — \a — pab; vo = @(A, B) — \A — 2B
vs = p(A,b) — Ay A — ugbd.
(@)

v3 = p(a, B) — Aza — u3B;

Theorem 2.1: Let A : L — R be a linear mean and g, g €
L are functions with g,(t) € [a, 4], g2(t) € [b, B] for all
t € Q. Functions M12, M34, m12 and mgy are defined by (1).

Suppose that ¢ : D — R is a continuous and concave
function.

(i) If Ay > 0, then

Mi2(A(g1), A(ge)) < A(maa(g1,92)) < Alp(g1, 92))-

(i1) If Ap <0, then

M34(A(g1), A(g2)) < A(maz(g1,92)) < Alp(g1, 92))-

The well-known inequality of Hadamard is given in [9, p.11]
and [8] An extension of the weighted Hadamard’s inequality
proved by Fejér is given in [1, p.138] and [8].

As application of Theorem 2.1 for a linear mean defined
as weighted integral over the rectangle D, we obtain in [5] a
refinement of Feyér’s inequalities calculated by O(]A¢p)).

Theorem 2: Let w : D = [a, A] x [b, B] — R be a nonneg-
ative integrable function such that w(s,t) = u(s)v(t), where
u : [a,A] — R is an integrable function, [ u(s)ds = 1,
u(s) =ula+A—s), forall s €[a,A]l and v : [b, B] - R is
an integrable function, be v(t)dt = 1, v(t) = v(b+ B—t), for
allt € [b, B]. If ¢ : D — R is a continuous concave function,

then
mas 28D+ L) ¢(A1) + ole, )

< [ wixpxax < pLtA LD
D

2 72
where O(|Ay|) =

1 A Bff:s (s—a)
T / su(s)( /b o(t)dt)ds

+E£=2(s—a)

1 B A—£=%(t=b)
—}—7/ to(t / u(s)ds)dt| .
g5, PO o) ]
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Similar enlargements on two-variables functions and their
refinements are given in [8] and [5], for the inequalities given
by Lupas and Petrovi¢ for functions of one variable.

Well-known inequality of Schwarz-Cauchy- Buniakowsky
for mathematical expectation of random variables &, n defined
on a probability space (£2,%, P) is given with (E[¢n])? <
E[2EM?). If X = €2 and Y = 7?, then it turns into
ElVXY]) < E[X]E[Y].

For P(my <{ < M) =P(my <n< M) =1,
mq, mg > 0, Diaz and Metcalf have proved a conversion in
[7]:

szgE[gﬂ + mlMlE[n2] < (m1m2 + MlMg)E[fT}}

Csiszar and Moéri in [2] obtained

AE[E%] + pEn?] + v < E[&n] with coefficients A1), f1(1),
v(1y and respectively M), p2), V(2), calculated from (2).
Theorem 2.1 refined the result of Csiszar and Méri.

Corollary 2.1: Suppose (2, X, P) is a probability space and
g1 = &2 and go = n? to be random variables with P(m; <
E < M;)=1and P(me <n < M) =1, for my,mg > 0.
Taking ¢(z,y) = /Zy and taking mathematical expectation
E as linear mean, we obtain AE[¢%] + uE[n?] + v < E[¢n)]
calculating (2).

If (M3 —m3) B[] — (ME —m?) El2] < m2M — Mm3,

then
mi

2
)\(3) my + M’ K@) mo + My an
l/(3) = (M1m2 — m1M2)>\(3)/,L(3).

In opposite,
(M3 —m3)E[€?] — (M} — m)E[n?] = miM3 — Mim3
gives the coefficients
M,

_ = ——— a
mq + My H) me + Mo
V(ay = (m1Ma — Myma) gy p(a).-
Simple algebra ensures that
Ao ElE+ @ Eln?] +viy < XG) EIE+ o) Eln?] + v,
1=1,2; j =3,4.

d

)\(4) = nd

III. ADVANCED CONVERSIONS ON RECTANGULAR

Conversions of the McShane inequality are obtained apply-
ing the functions of two variables according to the idea for
conversions of Jensen’s inequality given in [1, p.101].

Theorem 2.1, proved in [4], has inspired the following
result.

Theorem 3.1: Let , f : D — R such that ¢ is continuous
and concave and assume that for g;,g2 € L, compositions
©(91,92), f(91,92) € L. A is a linear mean on L. After
Theorem 1, A(¢(g1, 92)) < ¢(A(g1), A(g2))-

Suppose F : UxV C R? — R increases in the first variable
and (D) C U, f(D) C V.

(1) If Ap >0, then

(tr,?)lélD F (M12(ta 8)7 f(tv S))

< F(Alp(g1,92)): 9(A(g1), Alg2))) -
(#4) In the case Ap < 0, we have

i Msy(t t
(tgl)lgD]:( 34(t,8),9(t, 9))

< F (A(p(91,92)), 9(A(g1), A(g2))) -

Proof: (i) Condition Ay > 0, after Theorem 2.1 entails

M12(A(g1), A(g2)) < Elp(g1,92)]-

From increasing F(-,v) it follows that

F (A(e(91,92)), 9(A(g1), Ag2)))
> F (Mi2(A(g1), A(g2)), 9(A(g1), A(g2))) -

Now (A(g1), A(g2)) € D ensures

F (Mi2(A(g1), A(92)), 9(A(g1), A(g2)))

> min F (Mot ). 9(Al0). Als2))

and the Theorem is proved. [ ]
The next statements follow from Theorem 3.1 for specially
defined function F.
Corollary 3.1: Assume g1, g2 € L such thatforp : D — R
we have ¢(g1, g2) € L and suppose ¢ is a continuous concave
function.

(i) If Ay > 0 then
©(A(g1), Ag2)) + (tfil)igD (Mia(s,t) — (1, s))
< A(e(g1,92))-
(7i) If Ap <0, then
©(A(g1), Alg2)) + (tfil)igD (Mza(s, t) — (1, s))
< A(e(g1,92))-
(791) If Ap >0 and p(D) > 0, then
Mis(t, s)
(9D @(t,s)
(iv) In opposite, if Ap < 0 together with (D) > 0, then

M34(t, 8)
min ——1~.
t.s)eD  (t,s)

“p(A(g1), Alg2)) < Alp(g1, 92))-

©(A(g1), A(g2)) < A(p(91,92))-

Proof: To prove (i ) and (ii ) use F(x,y) = x — y. For
(iii) and (iv) take F(z,y) = i Then apply Theorem 3.1. W
The next Lemma is a consequence of the fact that axz+8y <
max{z,y} for a, 6 >0, a+ = 1.
Lemma 3.1: Let g1,g2 € L such that for continuous con-
cave function ¢ : D — R, ©(g1,g2) belongs to L. If a, § > 0
and o + 8 =1, then

(i) For Ay > 0 we have:

(a1 4 BA2)A(g1) + (ap + Bu2) A(g2) + avy + Bra
< A(e(g1, 92))-

(#4) In the case Ay < 0, there is

(aA3 + BA1)A(g1) + (aps + Bra)A(ge) + avs + Buy
< A(p(91, 92))-

For the next results we take assumption that 1, and v from
(2) are of the opposite sign.

Proposition 3.1: Let o : D — R be a continuous concave
function, let g1, g2 € L such that ¢©(g1,92) € L and A as a
linear mean on L.



(i) Condition Ay > 0 together with presumption
vy - vy < 0 ensures

Ui2A(g1) + Vi2A(g2) < A(p(91,92)),
whereby:

_ Voly — V12

Vo =11 Vo —1n

(i)

Condition Ap < 0 with v3 - vy < 0 gives
UssAgr + V3 Aga < Ae(91,92)),
whereby

_ Vapiz — V34
Vg — U3 Vg — V3 '

Proof: For (i) it is enough to solve the system
{ a+ B

= 1
avy + By = 0. and apply Lemma 3.1 ]

Specially defined function F appears in the next corollaries:

Corollary 3.2: Let ¢ : D — R be continuous concave
positive function. Let g1,g2 € L such that ¢(g1,92) € L
and A is a linear mean on L.

(i) Case Ay > 0 under the condition v - vy < 0 gives
Uiot + Vigs
plt,s)
(73) Case Ap < 0 under the condition v5 - v4 < 0 gives
Usat + Vags
(t, )

(tl,gl)lélD ©(A(g1), Ag2)) < A(p(g1,92))-

i P(A(g1), Alg2)) < Alp(g1, 92))-

IV. AN EXAMPLE

Using results given in the previous section, as an example,
a conversion of Holder inequality is proved.
Theorem 4.1 (General Gheorghiu inequality): Let

91(©Q) C [a,4] and g2(2) C [b,B] for positive real
numbers a,b and take positive real numbers p,q such that
— 4+ — =1 holds. Under these presumptions the following is
p

valid:

D=
Q=

PPt (abAB)% ((AB)F - (ab)?)
AB — ab
(Ag)} (Alg2))h < 4 (9592) .

((4B)? — (ab)7)

Q=

|=

Proof: Function p(z,y) = xpy% is continuous, concave
and o(z,y) > 0 for all (z,y) € D = [a,A] x [b, B].
Bi —ba) > 0.
Presumption v; - v < 0 from Theorem 2.1 is a consequence
of Lagrange mean-value theorem for differentiable function,
ensuring

1 1
Furthermore, ( A» — aP?

1 1_q a 1_9q
—ar > > —Ap 3
pa - A—-a " p )
1 Bi—bs _ 1
and “hrl> 2T AP

The inequalities in (3) give:

1 1 1 1
A»Bs ArBa 1 1
vy < AvBi— - — A» B (1——):0,
p q p q
and
R L (BB
p q p q
t+ V;
It remains to minimize the function ———= + Vi2s
o(t,s)
Upat + V; "\ 1
p Uit Vies (U. () v (2) )
(t,s)eD trsa (t,s)eD s t

. . .. . t
Differential calculus renders the minimum in () =
S .
mwn

V. . . .t Vg . .
U—q7 the points on the straight-line — = U—q inside rect-
P s P
angular D.
1 1 1 1
The minimum value is U? Vaprga. Substituting U;o and

V1o from Remark 3.1 gives as follows:

Bibi ((AB)% - (ab)%)

bro = AB — ab
A¥a¥ ((AB)T - (ab)7)
Y1z = AB — ab
and proof is finished. [ ]

Direct consequence of Theorem 4.1 is presented in [6] and
[8] as Gheorghiu inequality for specially boarded values of
random variables.

V. ESTIMATIONS OF JENSEN’S FUNCTIONALS

In [4] we have considered Jensen’s functional:

(o, £,7;A) = A(ye(f)) — A(7)e (é&p, where ¢ is
continuous, convex function on a convex set C R"™. For a
linear mean A and fy,...,f, € L in [1, p. 48] is defined:
A(f) = A(fla s '7fn) = (A(fl)a s 7A(fn)) RS Lisa
non-negative weight function. Real constants m and M are
such that for non-negative p,q € L and for all ¢ € ) the next
inequalities hold

p(t) —mq(t) >0, Mq(t) —p(t) >0,
A(p) —mA(q) >0, MA(q) — A(p) >0. (4

Next we rewrite the main Theorem from [4] as Theorem 5.1.

Theorem 5.1: Besides the mentioned above, assume that
for all functions f; € L,i = 1,..,n, mapping f(z) =
(f1(x), ..., fn(x)) isin K for all x € €. If the components of

A(qf
PE. 0, (0. o (8). () are i the las L. then (5415 )
d ﬁ(éﬁ)) are well defined if A(p) # 0, and A(q) # 0.
p

And the next inequalities hold:
M J(e,f,q;A) = J(o,£,p; A) =2 m J(p,f,q; A).

The inequalities are reversed if the function ¢ is concave.



In [4] we consider generalized means M, (¢(f),w; A) for
a function f = (fy, fa,..., fn) : & — R, function ¢ of n
variables, with respect to the isotonic positive linear functional
A and a continuous and strictly monotonic function

x:I—R
Mol w4) = (HAED) o) e

The next Theorem is also proved in [4].

Theorem 5.2: Let A : L — R be a linear mean. Let
X, I = R, i = 1,...,n be continuous and strictly
monotonic functions, and let ¢ be a function of n variables.
Moreover, let m and M be real constants such that the (4)
hold for p,q € L. If we suppose that the function
H(s1,82,00r8n) = X © @(th7 (51), .ot (s50)) s convex
then for every g = (g1,92,...,9n) : € — R™, such that the
functions v;(g;), p¥i(9:), ¢¥i(g:), x(¢(g)) are in L, we have

that H <A(p¢1(gl))’“"A(p¢n(gn))> -

Al(p) A(p)
Alqi(g1)) Alqn(gn))
H < Alq Aq) ) are well defined.

And the next inequalities hold:

MA(q) - [x(My(v(g),¢: A))
—X(p(My, (91,4, A), .., My, (gn, ¢; A)))]

> Alp) - [X(My(p(8),p; A))
—x(p(My, (91,05 A)s s My, (gn, p; A)))]
> mA(q) - [x(My(¢(g), ¢; A))

—X(p(My, (91,6, A), .., My, (gn, ¢; A)))]

The inequalities are reversed if the function H is concave.

In the following two corollaries of Theorem 5.2 we give
extensions of the multiplicative type inequality and the additive
type inequality investigating in [10] and [4].

Corollary 5.1: Assume that o(z,y,2) = x + y + 2. Let
M,m,p,q,x,9i,%¥; be as in Theorem 5.2 for n = 3 and

H(s1,89,53) = x (7 (51) + 15 *(s2) + 13 *(s3)). Moreover,
let
! ! ’ /
F = w/l/, = ¢,/, F3 = £§ and G= X,,
7/’ y 770 X

If 1/)171/&71/)3,)( are positive and wl ,1/}2 , ¢37X are nega-
tive, then H(s1, s2, 83) is convex and
MA(q) - [x(Mx (g1 + g2 + g3, 4; A))
—X(My, (91,43 A) + My, (92,43 A) + My, (95,43 A))]
> Alp) - [Xx(My (g1 + g2 + 93,03 4))
—X(My, (91,95 A) + My, (92, p; A) + My, (g3, p; A))]
> mA(q) - [X(My (g1 + 92 + g3, 4: A))
—X(My, (91,43 A) + My, (92,43 A) + My, (93,43 A))]

hold iff G(g1 + g2 + g3) < Fi(g1) + Fa(g2) + F3(g3)-

If all of 1y, 1y, Ps, X' 1,1y, 05, X" are positive, then
H(s1, $2,53) is concave and the inequalities are reversed iff

G(g1 + 92+ 93) > Fi(g1) + F2(92) + F3(g3)-

Corollary 5.2: Assume the function p(x,y) = = -y - 2.
Let M, m,p,q, X, gi,¥; be as in Theorem 5.2 for n = 3 and

H(s1,52,53) = x(¥1 " (s1) - ¥5 " (s2) - 13 '(s3)). Moreover,

let
S S p— -
BT R M T T ey
S {C) N T C N

If g1, g2, g3, X’ are positive and B;(g1), B2(g2), B3(g3) and
C(g19293) are negative, then the function H(s1, s2,s3) is
convex and

MA(q) - [x(M (91 92 93,4 A))
—x(My, (91,4 ) My, (92, ¢; A) - My, (93,45 A))]
> A(p) - [X(My(g1 - 92 - 93,3 A))
—X(My, (91, p; ) sz(gz,p, A) - My, (g3,p; A))]
> mA(q) - [x(Mx (91 - 92 - g3, 4; A))
A)-

7X(M1111 (glaq;A) M¢2(927q, M¢3(937Qa A))}
hold iff C(g1 - g2 - 93) < Bi(g1) + B2(g2) + Bs(g3)-

If g1,92,9s, X', B1(91), Ba(g2), B3(9gs), C(91929s) are pos-
itive then the function H (s, s2,s3) is concave and the in-

equalities are reversed iff C(g1-g2-g3) > B1(g1) + B2(g2) +
Bs(gs3)-

Applications of two-variables cases are presented in [4] for
some elementary functions. Further studies can be taken in the
direction of expanding the function ¢ on more than variables.
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