One review of McShane-type inequalities

Božidar Ivanković
University of Zagreb,
Faculty of Transport and Traffic Sciences, Zagreb, Croatia
ivankovb@fpz.hr

Abstract

In this paper Diaz-Metcalf inequality is refined upon the conversion of McShane-type inequality. Extension of generalized Hadamard inequality on functions of two variable is reviewed. The inverse of Hölder's inequality is proven using the property of two-variable function. One estimation of Jensen's functional is rewritten.

Keywords: Concave functions, Linear mean, McShane inequality, Diaz-Metcalf inequality, Hadamard inequality, Inverse Hölder inequality

I. Introduction

Throughout this paper Ω will denote a nonempty set and L will denote a linear class of real-valued functions $f: \Omega \rightarrow \mathbb{R}$ and a linear mean $A: L \rightarrow \mathbb{R}$ will be considered as linear, positive and normalized functional (see [1, p. 47] and [5]). Mathematical expectation $E[X]$ is a linear mean for random variable X as a function on a probability space (Ω, Σ, P).

McShane's generalization of the Jensen's inequality is presented in [1, p. 49].

Theorem 1 (McShane): Let φ be a continuous convex function on a closed convex set K in \mathbb{R}^{n} and A be a linear mean on L. Let g_{i} be a function in $L, i=1, \ldots, n$, such that $\mathbf{g}(x)=$ $\left(g_{1}(x), \ldots, g_{n}(x)\right)$ is in K for all $x \in \Omega$ and the components of $\varphi(\mathbf{g})$ are in the class L. Then $A(\mathbf{g})=\left(A\left(g_{1}\right), \ldots, A\left(g_{2}\right)\right)$ is in K and $\varphi(A(\mathbf{g})) \leq A(\varphi(\mathbf{g}))$.

Following the tag of the relationship between Jensen's functionals of the shape
$J_{n}(\varphi, \mathbf{x}, \mathbf{p}):=\sum_{i=1}^{n} p_{i} \varphi\left(x_{i}\right)-\varphi\left(\sum_{i=1}^{n} p_{i} x_{i}\right)$, given in [3] for different weights $p_{i}, q_{i}>0, \sum_{i} p_{i}=\sum_{i} q_{i}=1$ and for x_{i} as vectors from the vector space X, we have obtained relations for Hölder and Minkowski type inequalities.

II. CONVERSIONS ON A RECTANGULAR

In this section we consider Theorem for a concave function φ defined on $K=D \subset \mathbb{R}^{2}$ to obtain a conversion of inequality $A(\varphi(\mathbf{g})) \leq \varphi(A(\mathbf{g}))$ for two variables.

For the statement of the next Theorem that has been proved in [5] we now consider continuous functions
$M_{i j}, m_{i j}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined by

$$
\begin{align*}
M_{i j}(t, s)= & \frac{\left(\lambda_{i}+\lambda_{j}\right) t+\left(\mu_{i}+\mu_{j}\right) s+\nu_{i}+\nu_{j}}{2} \\
& +\frac{\left|\left(\lambda_{i}-\lambda_{j}\right) t+\left(\mu_{i}-\mu_{j}\right) s+\nu_{i}-\nu_{j}\right|}{2} \\
m_{i j}(t, s)= & \frac{\left(\lambda_{i}+\lambda_{j}\right) t+\left(\mu_{i}+\mu_{j}\right) s+\nu_{i}+\nu_{j}}{2} \\
& -\frac{\left|\left(\lambda_{i}-\lambda_{j}\right) t+\left(\mu_{i}-\mu_{j}\right) s+\nu_{i}-\nu_{j}\right|}{2} \tag{1}
\end{align*}
$$

with the coefficients:

$$
\begin{gather*}
\lambda_{1,4}=\frac{\varphi(A, b)-\varphi(a, b)}{A-a} ; \quad \mu_{1,3}=\frac{\varphi(a, B)-\varphi(a, b)}{B-b} ; \\
\lambda_{2,3}=\frac{\varphi(A, B)-\varphi(a, B)}{A-a} ; \quad \mu_{2,4}=\frac{\varphi(A, B)-\varphi(A, b)}{B-b} ; \\
\nu_{1}=\varphi(a, b)-\lambda_{1} a-\mu_{1} b ; \quad \nu_{2}=\varphi(A, B)-\lambda_{2} A-\mu_{2} B \\
\nu_{3}=\varphi(a, B)-\lambda_{3} a-\mu_{3} B ; \quad \nu_{4}=\varphi(A, b)-\lambda_{4} A-\mu_{4} b . \tag{2}
\end{gather*}
$$

Theorem 2.1: Let $A: L \rightarrow \mathbb{R}$ be a linear mean and $g_{1}, g_{2} \in$ L are functions with $g_{1}(t) \in[a, A], g_{2}(t) \in[b, B]$ for all $t \in \Omega$. Functions M_{12}, M_{34}, m_{12} and m_{34} are defined by (1).

Suppose that $\varphi: D \rightarrow \mathbb{R}$ is a continuous and concave function.
(i) If $\Delta \varphi \geq 0$, then

$$
M_{12}\left(A\left(g_{1}\right), A\left(g_{2}\right)\right) \leq A\left(m_{34}\left(g_{1}, g_{2}\right)\right) \leq A\left(\varphi\left(g_{1}, g_{2}\right)\right)
$$

(ii) If $\Delta \varphi \leq 0$, then

$$
M_{34}\left(A\left(g_{1}\right), A\left(g_{2}\right)\right) \leq A\left(m_{12}\left(g_{1}, g_{2}\right)\right) \leq A\left(\varphi\left(g_{1}, g_{2}\right)\right)
$$

The well-known inequality of Hadamard is given in [9, p.11] and [8] An extension of the weighted Hadamard's inequality proved by Fejér is given in [1, p.138] and [8].

As application of Theorem 2.1 for a linear mean defined as weighted integral over the rectangle D, we obtain in [5] a refinement of Feyér's inequalities calculated by $O(|\Delta \varphi|)$.

Theorem 2: Let $w: D=[a, A] \times[b, B] \rightarrow \mathbb{R}$ be a nonnegative integrable function such that $w(s, t)=u(s) v(t)$, where $u:[a, A] \rightarrow \mathbb{R}$ is an integrable function, $\int_{a}^{A} u(s) d s=1$, $u(s)=u(a+A-s)$, for all $s \in[a, A]$ and $v:[b, B] \rightarrow \mathbb{R}$ is an integrable function, $\int_{b}^{B} v(t) d t=1, v(t)=v(b+B-t)$, for all $t \in[b, B]$. If $\varphi: D \rightarrow \mathbb{R}$ is a continuous concave function, then

$$
\begin{aligned}
& \max \left\{\frac{\varphi(a, b)+\varphi(A, B)}{2}, \frac{\varphi(A, b)+\varphi(a, B)}{2}\right\}-O(|\Delta \varphi|) \\
& \leq \int_{D} w(\mathbf{x}) \varphi(\mathbf{x}) d \mathbf{x} \leq \varphi\left(\frac{a+A}{2}, \frac{b+B}{2}\right)
\end{aligned}
$$

where $O(|\Delta \varphi|)=$

$$
\begin{gathered}
=\frac{|\Delta \varphi|}{2}\left[\frac{1}{A-a} \int_{a}^{A} s u(s)\left(\int_{b+\frac{B-b}{A-a}(s-a)}^{B-\frac{B-b}{A-a}(s-a)} v(t) d t\right) d s\right. \\
\left.\quad+\frac{1}{B-b} \int_{b}^{B} t v(t)\left(\int_{a+\frac{A-a}{B-b}(t-b)}^{A-\frac{A-a}{B-b}(t-b)} u(s) d s\right) d t\right]
\end{gathered}
$$

Similar enlargements on two-variables functions and their refinements are given in [8] and [5], for the inequalities given by Lupaş and Petrović for functions of one variable.

Well-known inequality of Schwarz-Cauchy- Buniakowsky for mathematical expectation of random variables ξ, η defined on a probability space (Ω, Σ, P) is given with $(E[\xi \eta])^{2} \leq$ $E\left[\xi^{2}\right] E\left[\eta^{2}\right]$. If $X=\xi^{2}$ and $Y=\eta^{2}$, then it turns into $E[\sqrt{X Y}] \leq \sqrt{E[X] E[Y]}$.

For $P\left(m_{1} \leq \xi \leq M_{1}\right)=P\left(m_{2} \leq \eta \leq M_{2}\right)=1$,
$m_{1}, m_{2}>0$, Diaz and Metcalf have proved a conversion in [7]:
$m_{2} M_{2} E\left[\xi^{2}\right]+m_{1} M_{1} E\left[\eta^{2}\right] \leq\left(m_{1} m_{2}+M_{1} M_{2}\right) E[\xi \eta]$.
Csiszár and Móri in [2] obtained
$\lambda E\left[\xi^{2}\right]+\mu E\left[\eta^{2}\right]+\nu \leq E[\xi \eta]$ with coefficients $\lambda_{(1)}, \mu_{(1)}$, $\nu_{(1)}$ and respectively $\lambda_{(2)}, \mu_{(2)}, \nu_{(2)}$, calculated from (2). Theorem 2.1 refined the result of Csiszár and Móri.

Corollary 2.1: Suppose (Ω, Σ, P) is a probability space and $g_{1}=\xi^{2}$ and $g_{2}=\eta^{2}$ to be random variables with $P\left(m_{1} \leq\right.$ $\left.\xi \leq M_{1}\right)=1$ and $P\left(m_{2} \leq \eta \leq M_{2}\right)=1$, for $m_{1}, m_{2}>0$. Taking $\varphi(x, y)=\sqrt{x y}$ and taking mathematical expectation E as linear mean, we obtain $\lambda E\left[\xi^{2}\right]+\mu E\left[\eta^{2}\right]+\nu \leq E[\xi \eta]$ calculating (2).

$$
\text { If }\left(M_{2}^{2}-m_{2}^{2}\right) E\left[\xi^{2}\right]-\left(M_{1}^{2}-m_{1}^{2}\right) E\left[\eta^{2}\right] \leq m_{1}^{2} M_{2}^{2}-M_{1}^{2} m_{2}^{2}
$$ then

$\lambda_{(3)}=\frac{M_{2}}{m_{1}+M_{1}}, \mu_{(3)}=\frac{m_{1}}{m_{2}+M_{2}}$ and
$\nu_{(3)}=\left(M_{1} m_{2}-m_{1} M_{2}\right) \lambda_{(3)} \mu_{(3)}$.
In opposite,
$\left(M_{2}^{2}-m_{2}^{2}\right) E\left[\xi^{2}\right]-\left(M_{1}^{2}-m_{1}^{2}\right) E\left[\eta^{2}\right] \geq m_{1}^{2} M_{2}^{2}-M_{1}^{2} m_{2}^{2}$ gives the coefficients

$$
\begin{aligned}
& \lambda_{(4)}=\frac{m_{2}}{m_{1}+M_{1}}, \mu_{(4)}=\frac{M_{1}}{m_{2}+M_{2}} \text { and } \\
& \nu_{(4)}=\left(m_{1} M_{2}-M_{1} m_{2}\right) \lambda_{(4)} \mu_{(4)} .
\end{aligned}
$$

Simple algebra ensures that
$\lambda_{(i)} E\left[\xi^{2}\right]+\mu_{(i)} E\left[\eta^{2}\right]+\nu_{(i)} \leq \lambda_{(j)} E\left[\xi^{2}\right]+\mu_{(j)} E\left[\eta^{2}\right]+\nu_{(j)}$, $i=1,2 ; j=3,4$.

III. AdVANCED CONVERSIONS ON RECTANGULAR

Conversions of the McShane inequality are obtained applying the functions of two variables according to the idea for conversions of Jensen's inequality given in [1, p.101].

Theorem 2.1, proved in [4], has inspired the following result.

Theorem 3.1: Let $\varphi, f: D \rightarrow \mathbb{R}$ such that φ is continuous and concave and assume that for $g_{1}, g_{2} \in L$, compositions $\varphi\left(g_{1}, g_{2}\right), f\left(g_{1}, g_{2}\right) \in L . A$ is a linear mean on L. After Theorem 1, $A\left(\varphi\left(g_{1}, g_{2}\right)\right) \leq \varphi\left(A\left(g_{1}\right), A\left(g_{2}\right)\right)$.

Suppose $\mathcal{F}: U \times V \subset \mathbb{R}^{\overline{2}} \rightarrow \mathbb{R}$ increases in the first variable and $\varphi(D) \subset U, f(D) \subset V$.
(i) If $\Delta \varphi \geq 0$, then

$$
\begin{array}{rl}
\min _{(t, s) \in D} & \mathcal{F}\left(M_{12}(t, s), f(t, s)\right) \\
& \leq \mathcal{F}\left(A\left(\varphi\left(g_{1}, g_{2}\right)\right), g\left(A\left(g_{1}\right), A\left(g_{2}\right)\right)\right)
\end{array}
$$

(ii) In the case $\Delta \varphi \leq 0$, we have

$$
\begin{array}{rl}
\min _{(t, s) \in D} & \mathcal{F}\left(M_{34}(t, s), g(t, s)\right) \\
& \leq \mathcal{F}\left(A\left(\varphi\left(g_{1}, g_{2}\right)\right), g\left(A\left(g_{1}\right), A\left(g_{2}\right)\right)\right)
\end{array}
$$

Proof: (i) Condition $\Delta \varphi \geq 0$, after Theorem 2.1 entails

$$
M_{12}\left(A\left(g_{1}\right), A\left(g_{2}\right)\right) \leq E\left[\varphi\left(g_{1}, g_{2}\right)\right]
$$

From increasing $\mathcal{F}(\cdot, v)$ it follows that

$$
\begin{aligned}
& \mathcal{F}\left(A\left(\varphi\left(g_{1}, g_{2}\right)\right), g\left(A\left(g_{1}\right), A\left(g_{2}\right)\right)\right) \\
& \quad \geq \mathcal{F}\left(M_{12}\left(A\left(g_{1}\right), A\left(g_{2}\right)\right), g\left(A\left(g_{1}\right), A\left(g_{2}\right)\right)\right)
\end{aligned}
$$

Now $\left(A\left(g_{1}\right), A\left(g_{2}\right)\right) \in D$ ensures

$$
\begin{aligned}
& \mathcal{F}\left(M_{12}\left(A\left(g_{1}\right), A\left(g_{2}\right)\right), g\left(A\left(g_{1}\right), A\left(g_{2}\right)\right)\right) \\
& \geq \min _{(t, s) \in D} \mathcal{F}\left(M_{12}(t, s), g\left(A\left(g_{1}\right), A\left(g_{2}\right)\right)\right)
\end{aligned}
$$

and the Theorem is proved.
The next statements follow from Theorem 3.1 for specially defined function \mathcal{F}.

Corollary 3.1: Assume $g_{1}, g_{2} \in L$ such that for $\varphi: D \rightarrow \mathbb{R}$ we have $\varphi\left(g_{1}, g_{2}\right) \in L$ and suppose φ is a continuous concave function.
(i) If $\Delta \varphi \geq 0$ then

$$
\begin{array}{r}
\varphi\left(A\left(g_{1}\right), A\left(g_{2}\right)\right)+\min _{(t, s) \in D}\left(M_{12}(s, t)-\varphi(t, s)\right) \\
\leq A\left(\varphi\left(g_{1}, g_{2}\right)\right)
\end{array}
$$

(ii) If $\Delta \varphi \leq 0$, then

$$
\begin{array}{r}
\varphi\left(A\left(g_{1}\right), A\left(g_{2}\right)\right)+\min _{(t, s) \in D}\left(M_{34}(s, t)-\varphi(t, s)\right) \\
\leq A\left(\varphi\left(g_{1}, g_{2}\right)\right)
\end{array}
$$

(iii) If $\Delta \varphi \geq 0$ and $\varphi(D)>0$, then

$$
\min _{(t, s) \in D} \frac{M_{12}(t, s)}{\varphi(t, s)} \cdot \varphi\left(A\left(g_{1}\right), A\left(g_{2}\right)\right) \leq A\left(\varphi\left(g_{1}, g_{2}\right)\right)
$$

(iv) In opposite, if $\Delta \varphi \leq 0$ together with $\varphi(D)>0$, then

$$
\min _{(t, s) \in D} \frac{M_{34}(t, s)}{\varphi(t, s)} \cdot \varphi\left(A\left(g_{1}\right), A\left(g_{2}\right)\right) \leq A\left(\varphi\left(g_{1}, g_{2}\right)\right)
$$

Proof: To prove (i) and (ii) use $\mathcal{F}(x, y)=x-y$. For (iii) and (iv) take $\mathcal{F}(x, y)=\frac{x}{y}$. Then apply Theorem 3.1.

The next Lemma is a consequence of the fact that $\alpha x+\beta y \leq$ $\max \{x, y\}$ for $\alpha, \beta \geq 0, \alpha+\beta=1$.

Lemma 3.1: Let $g_{1}, g_{2} \in L$ such that for continuous concave function $\varphi: D \rightarrow \mathbb{R}, \varphi\left(g_{1}, g_{2}\right)$ belongs to L. If $\alpha, \beta \geq 0$ and $\alpha+\beta=1$, then
(i) For $\Delta \varphi \geq 0$ we have:

$$
\begin{array}{r}
\left(\alpha \lambda_{1}+\beta \lambda_{2}\right) A\left(g_{1}\right)+\left(\alpha \mu_{1}+\beta \mu_{2}\right) A\left(g_{2}\right)+\alpha \nu_{1}+\beta \nu_{2} \\
\leq A\left(\varphi\left(g_{1}, g_{2}\right)\right)
\end{array}
$$

(ii) In the case $\Delta \varphi \leq 0$, there is

$$
\begin{array}{r}
\left(\alpha \lambda_{3}+\beta \lambda_{4}\right) A\left(g_{1}\right)+\left(\alpha \mu_{3}+\beta \mu_{4}\right) A\left(g_{2}\right)+\alpha \nu_{3}+\beta \nu_{4} \\
\leq A\left(\varphi\left(g_{1}, g_{2}\right)\right)
\end{array}
$$

For the next results we take assumption that ν_{1} and ν_{2} from (2) are of the opposite sign.

Proposition 3.1: Let $\varphi: D \rightarrow \mathbb{R}$ be a continuous concave function, let $g_{1}, g_{2} \in L$ such that $\varphi\left(g_{1}, g_{2}\right) \in L$ and A as a linear mean on L.
(i) Condition $\Delta \varphi \geq 0$ together with presumption $\nu_{1} \cdot \nu_{2}<0$ ensures

$$
U_{12} A\left(g_{1}\right)+V_{12} A\left(g_{2}\right) \leq A\left(\varphi\left(g_{1}, g_{2}\right)\right)
$$

whereby:

$$
U_{12}=\frac{\nu_{2} \lambda_{1}-\nu_{1} \lambda_{2}}{\nu_{2}-\nu_{1}}, V_{12}=\frac{\nu_{2} \mu_{1}-\nu_{1} \mu_{2}}{\nu_{2}-\nu_{1}} .
$$

(ii) Condition $\Delta \varphi \leq 0$ with $\nu_{3} \cdot \nu_{4}<0$ gives

$$
U_{34} A g_{1}+V_{34} A g_{2} \leq A\left(\varphi\left(g_{1}, g_{2}\right)\right)
$$

whereby

$$
U_{34}=\frac{\nu_{4} \lambda_{3}-\nu_{3} \lambda_{4}}{\nu_{4}-\nu_{3}}, \quad V_{34}=\frac{\nu_{4} \mu_{3}-\nu_{3} \mu_{4}}{\nu_{4}-\nu_{3}} .
$$

Proof: For (i) it is enough to solve the system

$$
\left\{\begin{array}{ccc}
\alpha+\beta & = & 1 \\
\alpha \nu_{1}+\beta \nu_{2} & = & 0 .
\end{array} \text { and apply Lemma } 3.1\right.
$$

Specially defined function \mathcal{F} appears in the next corollaries:
Corollary 3.2: Let $\varphi: D \rightarrow \mathbb{R}$ be continuous concave positive function. Let $g_{1}, g_{2} \in L$ such that $\varphi\left(g_{1}, g_{2}\right) \in L$ and A is a linear mean on L.
(i) Case $\Delta \varphi \geq 0$ under the condition $\nu_{1} \cdot \nu_{2}<0$ gives

$$
\min _{(t, s) \in D} \frac{U_{12} t+V_{12} s}{\varphi(t, s)} \cdot \varphi\left(A\left(g_{1}\right), A\left(g_{2}\right)\right) \leq A\left(\varphi\left(g_{1}, g_{2}\right)\right)
$$

(ii) Case $\Delta \varphi \leq 0$ under the condition $\nu_{3} \cdot \nu_{4}<0$ gives

$$
\min _{(t, s) \in D} \frac{U_{34} t+V_{34} s}{\varphi(t, s)} \cdot \varphi\left(A\left(g_{1}\right), A\left(g_{2}\right)\right) \leq A\left(\varphi\left(g_{1}, g_{2}\right)\right)
$$

IV. An Example

Using results given in the previous section, as an example, a conversion of Hölder inequality is proved.

Theorem 4.1 (General Gheorghiu inequality): Let $g_{1}(\Omega) \subset[a, A]$ and $g_{2}(\Omega) \subset[b, B]$ for positive real numbers a, b and take positive real numbers p, q such that $\frac{1}{p}+\frac{1}{q}=1$ holds. Under these presumptions the following is valid:

$$
\begin{array}{r}
p^{\frac{1}{p}} q^{\frac{1}{q}}(a b A B)^{\frac{1}{p q}}\left((A B)^{\frac{1}{p}}-(a b)^{\frac{1}{p}}\right)^{\frac{1}{p}}\left((A B)^{\frac{1}{q}}-(a b)^{\frac{1}{q}}\right)^{\frac{1}{q}} \\
A B-a b \\
\cdot\left(A\left(g_{1}\right)\right)^{\frac{1}{p}}\left(A\left(g_{2}\right)\right)^{\frac{1}{q}} \leq A\left(g_{1}^{\frac{1}{p}} g_{2}^{\frac{1}{q}}\right)
\end{array}
$$

Proof: Function $\varphi(x, y)=x^{\frac{1}{p}} y^{\frac{1}{q}}$ is continuous, concave and $\varphi(x, y)>0$ for all $(x, y) \in D=[a, A] \times[b, B]$. Furthermore, $\left(A^{\frac{1}{p}}-a^{\frac{1}{p}}\right)\left(B^{\frac{1}{q}}-b^{\frac{1}{q}}\right)>0$.

Presumption $\nu_{1} \cdot \nu_{2} \leq 0$ from Theorem 2.1 is a consequence of Lagrange mean-value theorem for differentiable function, ensuring
and

$$
\begin{equation*}
\frac{1}{p} a^{\frac{1}{p}-1} \geq \frac{A^{\frac{1}{p}}-a^{\frac{1}{p}}}{A-a} \geq \frac{1}{p} A^{\frac{1}{p}-1} \tag{3}
\end{equation*}
$$

$$
\frac{1}{q} b^{\frac{1}{q}-1} \geq \frac{B^{\frac{1}{q}}-b^{\frac{1}{q}}}{B-b} \geq \frac{1}{p} A^{\frac{1}{p}-1}
$$

The inequalities in (3) give:
$\nu_{2} \leq A^{\frac{1}{p}} B^{\frac{1}{q}}-\frac{A^{\frac{1}{p}} B^{\frac{1}{q}}}{p}-\frac{A^{\frac{1}{p}} B^{\frac{1}{q}}}{q}=A^{\frac{1}{p}} B^{\frac{1}{q}}\left(1-\frac{1}{p}-\frac{1}{q}\right)=0$.
and
$\nu_{1} \geq a^{\frac{1}{p}} b^{\frac{1}{q}}-\frac{a^{\frac{1}{p}} b^{\frac{1}{q}}}{p}-\frac{a^{\frac{1}{p}} b^{\frac{1}{q}}}{q}=a^{\frac{1}{p}} b^{\frac{1}{q}}\left(1-\frac{1}{p}-\frac{1}{q}\right)=0$.
It remains to minimize the function $\frac{U_{12} t+V_{12} s}{\varphi(t, s)}$:

$$
\min _{(t, s) \in D} \frac{U_{12} t+V_{12} s}{t^{\frac{1}{p}} s^{\frac{1}{q}}}=\min _{(t, s) \in D}\left(U \cdot\left(\frac{t}{s}\right)^{\frac{1}{q}}+V \cdot\left(\frac{s}{t}\right)^{\frac{1}{p}}\right) .
$$

Differential calculus renders the minimum in $\left(\frac{t}{s}\right)_{\min }=$ $\frac{V \cdot q}{U \cdot p}$, the points on the straight-line $\frac{t}{s}=\frac{V q}{U p}$ inside rectangular D.

The minimum value is $U^{\frac{1}{p}} V^{\frac{1}{q}} p^{\frac{1}{p}} q^{\frac{1}{q}}$. Substituting U_{12} and V_{12} from Remark 3.1 gives as follows:

$$
\begin{aligned}
& U_{12}=\frac{B^{\frac{1}{q}} b^{\frac{1}{q}}\left((A B)^{\frac{1}{p}}-(a b)^{\frac{1}{p}}\right)}{A B-a b} \\
& V_{12}=\frac{A^{\frac{1}{p}} a^{\frac{1}{p}}\left((A B)^{\frac{1}{q}}-(a b)^{\frac{1}{q}}\right)}{A B-a b}
\end{aligned}
$$

and proof is finished.
Direct consequence of Theorem 4.1 is presented in [6] and [8] as Gheorghiu inequality for specially boarded values of random variables.

V. Estimations of Jensen's functionals

In [4] we have considered Jensen's functional:
$J(\varphi, \mathbf{f}, \gamma ; A):=A(\gamma \varphi(\mathbf{f}))-A(\gamma) \varphi\left(\frac{A(\gamma \mathbf{f})}{A(\gamma)}\right)$, where φ is continuous, convex function on a convex set $K \subseteq \mathbb{R}^{n}$. For a linear mean A and $f_{1}, \ldots, f_{n} \in L$ in [1, p. 48] is defined: $A(\mathbf{f})=A\left(f_{1}, \ldots, f_{n}\right)=\left(A\left(f_{1}\right), \ldots, A\left(f_{n}\right)\right) . \gamma \in L$ is a non-negative weight function. Real constants m and M are such that for non-negative $p, q \in L$ and for all $t \in \Omega$ the next inequalities hold

$$
\begin{align*}
& p(t)-m q(t) \geq 0, \quad M q(t)-p(t) \geq 0 \\
& A(p)-m A(q)>0, M A(q)-A(p)>0 \tag{4}
\end{align*}
$$

Next we rewrite the main Theorem from [4] as Theorem 5.1.
Theorem 5.1: Besides the mentioned above, assume that for all functions $f_{i} \in L, i=1, \ldots, n$, mapping $\mathbf{f}(x)=$ $\left(f_{1}(x), \ldots, f_{n}(x)\right)$ is in K for all $x \in \Omega$. If the components of $p \mathbf{f}, q \mathbf{f}, \varphi(\mathbf{f}), q \varphi(\mathbf{f}), p \varphi(\mathbf{f})$ are in the class L, then $\varphi\left(\frac{A(q \mathbf{f})}{A(q)}\right)$ and $\varphi\left(\frac{A(p \mathbf{f})}{A(p)}\right)$ are well defined if $A(p) \neq 0$, and $A(q) \neq 0$. And the next inequalities hold:

$$
M J(\varphi, \mathbf{f}, q ; A) \geq J(\varphi, \mathbf{f}, p ; A) \geq m J(\varphi, \mathbf{f}, q ; A)
$$

The inequalities are reversed if the function φ is concave.

In [4] we consider generalized means $M_{\chi}(\varphi(\mathbf{f}), w ; A)$ for a function $\mathbf{f}=\left(f_{1}, f_{2}, \ldots, f_{n}\right): \Omega \rightarrow \mathbb{R}^{n}$, function φ of n variables, with respect to the isotonic positive linear functional A and a continuous and strictly monotonic function $\chi: I \rightarrow \mathbb{R}$.
$M_{\chi}(\varphi(\mathbf{f}), w ; A)=\chi^{-1}\left(\frac{A(w \chi(\varphi(\mathbf{f})))}{A(w)}\right), \quad \chi(\varphi(\mathbf{f}(x))) \in L$.
The next Theorem is also proved in [4].
Theorem 5.2: Let $A: L \rightarrow \mathbb{R}$ be a linear mean. Let $\chi, \psi_{i}: I \rightarrow \mathbb{R}, i=1, \ldots, n$ be continuous and strictly monotonic functions, and let φ be a function of n variables. Moreover, let m and M be real constants such that the (4) hold for $p, q \in L$. If we suppose that the function
$H\left(s_{1}, s_{2}, \ldots, s_{n}\right)=\chi \circ \varphi\left(\psi_{1}^{-1}\left(s_{1}\right), \ldots, \psi_{n}^{-1}\left(s_{n}\right)\right)$ is convex then for every $\mathbf{g}=\left(g_{1}, g_{2}, \ldots, g_{n}\right): \Omega \rightarrow \mathbb{R}^{n}$, such that the functions $\psi_{i}\left(g_{i}\right), p \psi_{i}\left(g_{i}\right), q \psi_{i}\left(g_{i}\right), \chi(\varphi(\mathbf{g}))$ are in L, we have
that $H\left(\frac{A\left(p \psi_{1}\left(g_{1}\right)\right)}{A(p)}, \ldots, \frac{A\left(p \psi_{n}\left(g_{n}\right)\right)}{A(p)}\right)$ and $H\left(\frac{A\left(q \psi_{1}\left(g_{1}\right)\right)}{A(q)}, \ldots, \frac{A\left(q \psi_{n}\left(g_{n}\right)\right)}{A(q)}\right)$ are well defined.
And the next inequalities hold:

$$
\begin{aligned}
& M A(q) \cdot\left[\chi\left(M_{\chi}(\varphi(\mathbf{g}), q ; A)\right)\right. \\
& \left.-\chi\left(\varphi\left(M_{\psi_{1}}\left(g_{1}, q ; A\right), . ., M_{\psi_{n}}\left(g_{n}, q ; A\right)\right)\right)\right] \\
\geq & A(p) \cdot\left[\chi\left(M_{\chi}(\varphi(\mathbf{g}), p ; A)\right)\right. \\
& \left.-\chi\left(\varphi\left(M_{\psi_{1}}\left(g_{1}, p ; A\right), . ., M_{\psi_{n}}\left(g_{n}, p ; A\right)\right)\right)\right] \\
\geq & m A(q) \cdot\left[\chi\left(M_{\chi}(\varphi(\mathbf{g}), q ; A)\right)\right. \\
& \left.-\chi\left(\varphi\left(M_{\psi_{1}}\left(g_{1}, q ; A\right), . ., M_{\psi_{n}}\left(g_{n}, q ; A\right)\right)\right)\right]
\end{aligned}
$$

The inequalities are reversed if the function H is concave.
In the following two corollaries of Theorem 5.2 we give extensions of the multiplicative type inequality and the additive type inequality investigating in [10] and [4].

Corollary 5.1: Assume that $\varphi(x, y, z)=x+y+z$. Let $M, m, p, q, \chi, g_{i}, \psi_{i}$ be as in Theorem 5.2 for $n=3$ and $H\left(s_{1}, s_{2}, s_{3}\right)=\chi\left(\psi_{1}^{-1}\left(s_{1}\right)+\psi_{2}^{-1}\left(s_{2}\right)+\psi_{3}^{-1}\left(s_{3}\right)\right)$. Moreover, let

$$
F_{1}=\frac{\psi_{1}^{\prime}}{\psi_{1}^{\prime \prime}}, \quad F_{2}=\frac{\psi_{2}^{\prime}}{\psi_{2}^{\prime \prime}}, \quad F_{3}=\frac{\psi_{3}^{\prime}}{\psi_{3}^{\prime \prime}} \quad \text { and } \quad G=\frac{\chi^{\prime}}{\chi^{\prime \prime}}
$$

If $\psi_{1}^{\prime}, \psi_{2}^{\prime}, \psi_{3}^{\prime}, \chi^{\prime}$ are positive and $\psi_{1}^{\prime \prime}, \psi_{2}^{\prime \prime}, \psi_{3}^{\prime \prime}, \chi^{\prime \prime}$ are negative, then $H\left(s_{1}, s_{2}, s_{3}\right)$ is convex and

$$
\begin{aligned}
& M A(q) \cdot\left[\chi\left(M_{\chi}\left(g_{1}+g_{2}+g_{3}, q ; A\right)\right)\right. \\
& \left.-\chi\left(M_{\psi_{1}}\left(g_{1}, q ; A\right)+M_{\psi_{2}}\left(g_{2}, q ; A\right)+M_{\psi_{3}}\left(g_{3}, q ; A\right)\right)\right] \\
\geq & A(p) \cdot\left[\chi\left(M_{\chi}\left(g_{1}+g_{2}+g_{3}, p ; A\right)\right)\right. \\
& \left.-\chi\left(M_{\psi_{1}}\left(g_{1}, p ; A\right)+M_{\psi_{2}}\left(g_{2}, p ; A\right)+M_{\psi_{3}}\left(g_{3}, p ; A\right)\right)\right] \\
\geq & m A(q) \cdot\left[\chi\left(M_{\chi}\left(g_{1}+g_{2}+g_{3}, q ; A\right)\right)\right. \\
& \left.-\chi\left(M_{\psi_{1}}\left(g_{1}, q ; A\right)+M_{\psi_{2}}\left(g_{2}, q ; A\right)+M_{\psi_{3}}\left(g_{3}, q ; A\right)\right)\right]
\end{aligned}
$$

hold iff $G\left(g_{1}+g_{2}+g_{3}\right) \leq F_{1}\left(g_{1}\right)+F_{2}\left(g_{2}\right)+F_{3}\left(g_{3}\right)$.
If all of $\psi_{1}^{\prime}, \psi_{2}^{\prime}, \psi_{3}^{\prime}, \chi^{\prime}, \psi_{1}^{\prime \prime}, \psi_{2}^{\prime \prime}, \psi_{3}^{\prime \prime}, \chi^{\prime \prime}$ are positive, then $H\left(s_{1}, s_{2}, s_{3}\right)$ is concave and the inequalities are reversed iff $G\left(g_{1}+g_{2}+g_{3}\right) \geq F_{1}\left(g_{1}\right)+F_{2}\left(g_{2}\right)+F_{3}\left(g_{3}\right)$.

Corollary 5.2: Assume the function $\varphi(x, y)=x \cdot y \cdot z$. Let $M, m, p, q, \chi, g_{i}, \psi_{i}$ be as in Theorem 5.2 for $n=3$ and $H\left(s_{1}, s_{2}, s_{3}\right)=\chi\left(\psi_{1}^{-1}\left(s_{1}\right) \cdot \psi_{2}^{-1}\left(s_{2}\right) \cdot \psi_{3}^{-1}\left(s_{3}\right)\right)$. Moreover, let

$$
\begin{aligned}
& B_{1}(x)=\frac{\psi_{1}^{\prime}(x)}{\psi_{1}^{\prime}(x)+x \psi_{1}^{\prime \prime}(x)}, B_{2}(x)=\frac{\psi_{2}^{\prime}(x)}{\psi^{\prime}(x)+x \psi_{2}^{\prime \prime}(x)} \\
& B_{3}(x)
\end{aligned}=\frac{\psi_{3}^{\prime}(x)}{\psi^{\prime}(x)+x \psi_{3}^{\prime \prime}(x)} \text { and } C(x)=\frac{\chi^{\prime}(x)}{\chi^{\prime}(x)+x \chi^{\prime \prime}(x)} .
$$

If $g_{1}, g_{2}, g_{3}, \chi^{\prime}$ are positive and $B_{1}\left(g_{1}\right), B_{2}\left(g_{2}\right), B_{3}\left(g_{3}\right)$ and $C\left(g_{1} g_{2} g_{3}\right)$ are negative, then the function $H\left(s_{1}, s_{2}, s_{3}\right)$ is convex and

$$
\begin{aligned}
& M A(q) \cdot\left[\chi\left(M_{\chi}\left(g_{1} \cdot g_{2} \cdot g_{3}, q ; A\right)\right)\right. \\
& \left.-\chi\left(M_{\psi_{1}}\left(g_{1}, q ; A\right) \cdot M_{\psi_{2}}\left(g_{2}, q ; A\right) \cdot M_{\psi_{3}}\left(g_{3}, q ; A\right)\right)\right] \\
\geq & A(p) \cdot\left[\chi\left(M_{\chi}\left(g_{1} \cdot g_{2} \cdot g_{3}, p ; A\right)\right)\right. \\
& \left.-\chi\left(M_{\psi_{1}}\left(g_{1}, p ; A\right) \cdot M_{\psi_{2}}\left(g_{2}, p ; A\right) \cdot M_{\psi_{3}}\left(g_{3}, p ; A\right)\right)\right] \\
\geq & m A(q) \cdot\left[\chi\left(M_{\chi}\left(g_{1} \cdot g_{2} \cdot g_{3}, q ; A\right)\right)\right. \\
& \left.-\chi\left(M_{\psi_{1}}\left(g_{1}, q ; A\right) \cdot M_{\psi_{2}}\left(g_{2}, q ; A\right) \cdot M_{\psi_{3}}\left(g_{3}, q ; A\right)\right)\right]
\end{aligned}
$$

hold iff $C\left(g_{1} \cdot g_{2} \cdot g_{3}\right) \leq B_{1}\left(g_{1}\right)+B_{2}\left(g_{2}\right)+B_{3}\left(g_{3}\right)$.
If $g_{1}, g_{2}, g_{3}, \chi^{\prime}, B_{1}\left(g_{1}\right), B_{2}\left(g_{2}\right), B_{3}\left(g_{3}\right), C\left(g_{1} g_{2} g_{3}\right)$ are positive then the function $H\left(s_{1}, s_{2}, s_{3}\right)$ is concave and the inequalities are reversed iff $C\left(g_{1} \cdot g_{2} \cdot g_{3}\right) \geq B_{1}\left(g_{1}\right)+B_{2}\left(g_{2}\right)+$ $B_{3}\left(g_{3}\right)$.

Applications of two-variables cases are presented in [4] for some elementary functions. Further studies can be taken in the direction of expanding the function φ on more than variables.

Acknowledgment

The author acknowledges to the project Mathematics models in mechanic of fluids, 135-0372787-2819 and Faculty of Transport and Traffic Sciences from the University of Zagreb, Croatia.

REFERENCES

[1] J. E. Pečarić, F. Proschan, and Y. L.Tong, Convex functions, partial orderings, and statistical applications, Academic Press, Inc, 1992.
[2] V. Csiszár and T. F. Móri, The convexity method of proving moment-type inequalities, Statistics and Probability Letters, 66 (2004), 303-313.
[3] S. S. Dragomir, Bounds for the normalised Jensen functional, Bulletin of Austalian Mathematical Society, 74 (2006), 471-478.
[4] V. Čuljak, B. Ivanković and J. E. Pečarić, On Jensen-McShane’s inequality, Periodica Mathematica Hungarica, Vol. 58 (2009), Issue 2, 139-154.
[5] V. Čuljak, B. Ivanković and J. E. Pečarić, On some Inequalities of Jensen-McShane's type on Rectangle and Applications, Croatian Academy of Art and Science (Rad Hrvatske akademije znanosti i umjetnosti) 503 Book (Knjiga) LI. Mathematical sciences (Matematičke znanosti) (2009), 87-106.
[6] S. Izumino and M. Tominaga, Estimations in Hölder's type inequalities, Mathematical Inequalities and Applications, 4 (2001), 163-187.
[7] J. B. Diaz and F. T. Metcalf, A complementary triangle inequality in Hilbert and Banach spaces, Proceedings of the American Mathematical Society, 17(1966), 88-97.
[8] B. Ivanković, S. Izumino, J. E. Pečarić and M. Tominaga, On an Inequality of V. Csiszár and T. F. Möri for Concave Functions of Two Variables, Journal of Inequalities in Pure and Applied Mathematics, Vol 8 (2007), Issue 3, Article 88, 10pp.
[9] D. Mitrinović, J.E. Pečarić and A.M. Fink, Classical and New Inequalities in Analysis, Kluwer. Acad. Pub., Boston, London 1993.
[10] E. Beck, Ein Satz über umerdnungs-ungleichungen.Univ. Beograd, Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 320-328, (1970), 1-14.

