
One review of McShane-type inequalities
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Abstract—In this paper Diaz-Metcalf inequality is refined
upon the conversion of McShane-type inequality. Extension of
generalized Hadamard inequality on functions of two variable
is reviewed. The inverse of Hölder’s inequality is proven using
the property of two-variable function. One estimation of Jensen’s
functional is rewritten.
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I. INTRODUCTION

Throughout this paper Ω will denote a nonempty set and L
will denote a linear class of real-valued functions f : Ω→ R
and a linear mean A : L → R will be considered as linear,
positive and normalized functional (see [1, p. 47] and [5]).
Mathematical expectation E[X] is a linear mean for random
variable X as a function on a probability space (Ω,Σ, P ).

McShane’s generalization of the Jensen’s inequality is pre-
sented in [1, p. 49].

Theorem 1 (McShane): Let ϕ be a continuous convex func-
tion on a closed convex set K in Rn and A be a linear mean
on L. Let gi be a function in L, i = 1, ..., n, such that g(x) =
(g1(x), ..., gn(x)) is in K for all x ∈ Ω and the components of
ϕ(g) are in the class L. Then A(g) = (A(g1), . . . , A(g2)) is
in K and ϕ(A(g)) ≤ A(ϕ(g)).

Following the tag of the relationship between Jensen’s
functionals of the shape
Jn(ϕ,x,p) :=

∑n
i=1 piϕ(xi)−ϕ(

∑n
i=1 pixi), given in [3]

for different weights pi, qi > 0,
∑
i pi =

∑
i qi = 1 and for xi

as vectors from the vector space X , we have obtained relations
for Hölder and Minkowski type inequalities.

II. CONVERSIONS ON A RECTANGULAR

In this section we consider Theorem for a concave function
ϕ defined on K = D ⊂ R2 to obtain a conversion of inequality
A(ϕ(g)) ≤ ϕ(A(g)) for two variables.

For the statement of the next Theorem that has been proved
in [5] we now consider continuous functions
Mij ,mij : R2 → R defined by

Mij(t, s) =
(λi + λj)t+ (µi + µj)s+ νi + νj

2

+
|(λi − λj)t+ (µi − µj)s+ νi − νj |

2
,

mij(t, s) =
(λi + λj)t+ (µi + µj)s+ νi + νj

2

−|(λi − λj)t+ (µi − µj)s+ νi − νj |
2

, (1)

with the coefficients:

λ1,4 =
ϕ(A, b)− ϕ(a, b)

A− a
; µ1,3 =

ϕ(a,B)− ϕ(a, b)

B − b
;

λ2,3 =
ϕ(A,B)− ϕ(a,B)

A− a
; µ2,4 =

ϕ(A,B)− ϕ(A, b)

B − b
;

ν1 = ϕ(a, b)− λ1a− µ1b; ν2 = ϕ(A,B)− λ2A− µ2B

ν3 = ϕ(a,B)− λ3a− µ3B; ν4 = ϕ(A, b)− λ4A− µ4b.

(2)

Theorem 2.1: Let A : L→ R be a linear mean and g1, g2 ∈
L are functions with g1(t) ∈ [a,A], g2(t) ∈ [b, B] for all
t ∈ Ω. Functions M12,M34,m12 and m34 are defined by (1).

Suppose that ϕ : D → R is a continuous and concave
function.
(i) If ∆ϕ ≥ 0, then

M12(A(g1), A(g2)) ≤ A(m34(g1, g2)) ≤ A(ϕ(g1, g2)).

(ii) If ∆ϕ ≤ 0, then

M34(A(g1), A(g2)) ≤ A(m12(g1, g2)) ≤ A(ϕ(g1, g2)).

The well-known inequality of Hadamard is given in [9, p.11]
and [8] An extension of the weighted Hadamard’s inequality
proved by Fejér is given in [1, p.138] and [8].

As application of Theorem 2.1 for a linear mean defined
as weighted integral over the rectangle D, we obtain in [5] a
refinement of Feyér’s inequalities calculated by O(|∆ϕ|).

Theorem 2: Let w : D = [a,A]× [b, B]→ R be a nonneg-
ative integrable function such that w(s, t) = u(s)v(t), where
u : [a,A] → R is an integrable function,

∫ A
a
u(s)ds = 1,

u(s) = u(a+A− s), for all s ∈ [a,A] and v : [b, B]→ R is
an integrable function,

∫ B
b
v(t)dt = 1, v(t) = v(b+B−t), for

all t ∈ [b, B]. If ϕ : D → R is a continuous concave function,
then

max{ϕ(a, b) + ϕ(A,B)

2
,
ϕ(A, b) + ϕ(a,B)

2
} −O(|∆ϕ|)

≤
∫
D

w(x)ϕ(x)dx ≤ ϕ(
a+A

2
,
b+B

2
),

where O(|∆ϕ|) =

=
|∆ϕ|

2

[
1

A− a

∫ A

a

su(s)(

∫ B−B−b
A−a (s−a)

b+B−b
A−a (s−a)

v(t)dt)ds

+
1

B − b

∫ B

b

tv(t)(

∫ A−A−a
B−b (t−b)

a+A−a
B−b (t−b)

u(s)ds)dt

]
.



Similar enlargements on two-variables functions and their
refinements are given in [8] and [5], for the inequalities given
by Lupaş and Petrović for functions of one variable.

Well-known inequality of Schwarz-Cauchy- Buniakowsky
for mathematical expectation of random variables ξ, η defined
on a probability space (Ω,Σ, P ) is given with (E[ξη])2 ≤
E[ξ2]E[η2]. If X = ξ2 and Y = η2, then it turns into
E[
√
XY ] ≤

√
E[X]E[Y ].

For P (m1 ≤ ξ ≤M1) = P (m2 ≤ η ≤M2) = 1,
m1,m2 > 0, Diaz and Metcalf have proved a conversion in
[7]:
m2M2E[ξ2] +m1M1E[η2] ≤ (m1m2 +M1M2)E[ξη].

Csiszár and Móri in [2] obtained
λE[ξ2] + µE[η2] + ν ≤ E[ξη] with coefficients λ(1), µ(1),

ν(1) and respectively λ(2), µ(2), ν(2), calculated from (2).
Theorem 2.1 refined the result of Csiszár and Móri.

Corollary 2.1: Suppose (Ω,Σ, P ) is a probability space and
g1 = ξ2 and g2 = η2 to be random variables with P (m1 ≤
ξ ≤ M1) = 1 and P (m2 ≤ η ≤ M2) = 1, for m1,m2 > 0.
Taking ϕ(x, y) =

√
xy and taking mathematical expectation

E as linear mean, we obtain λE[ξ2] + µE[η2] + ν ≤ E[ξη]
calculating (2).

If (M2
2 −m2

2)E[ξ2]− (M2
1 −m2

1)E[η2] ≤ m2
1M

2
2 −M2

1m
2
2,

then
λ(3) =

M2

m1 +M1
, µ(3) =

m1

m2 +M2
and

ν(3) = (M1m2 −m1M2)λ(3)µ(3).
In opposite,
(M2

2 −m2
2)E[ξ2] − (M2

1 −m2
1)E[η2] ≥ m2

1M
2
2 −M2

1m
2
2

gives the coefficients

λ(4) =
m2

m1 +M1
, µ(4) =

M1

m2 +M2
and

ν(4) = (m1M2 −M1m2)λ(4)µ(4).
Simple algebra ensures that
λ(i)E[ξ2]+µ(i)E[η2]+ν(i) ≤ λ(j)E[ξ2]+µ(j)E[η2]+ν(j),

i = 1, 2; j = 3, 4.

III. ADVANCED CONVERSIONS ON RECTANGULAR

Conversions of the McShane inequality are obtained apply-
ing the functions of two variables according to the idea for
conversions of Jensen’s inequality given in [1, p.101].

Theorem 2.1, proved in [4], has inspired the following
result.

Theorem 3.1: Let ϕ, f : D → R such that ϕ is continuous
and concave and assume that for g1, g2 ∈ L, compositions
ϕ(g1, g2), f(g1, g2) ∈ L. A is a linear mean on L. After
Theorem 1, A(ϕ(g1, g2)) ≤ ϕ(A(g1), A(g2)).

Suppose F : U×V ⊂ R2 → R increases in the first variable
and ϕ(D) ⊂ U, f(D) ⊂ V .
(i) If ∆ϕ ≥ 0, then

min
(t,s)∈D

F (M12(t, s), f(t, s))

≤ F (A(ϕ(g1, g2)), g(A(g1), A(g2))) .

(ii) In the case ∆ϕ ≤ 0, we have

min
(t,s)∈D

F (M34(t, s), g(t, s))

≤ F (A(ϕ(g1, g2)), g(A(g1), A(g2))) .

Proof: (i) Condition ∆ϕ ≥ 0, after Theorem 2.1 entails

M12(A(g1), A(g2)) ≤ E[ϕ(g1, g2)].

From increasing F(·, v) it follows that

F (A(ϕ(g1, g2)), g(A(g1), A(g2)))

≥ F (M12(A(g1), A(g2)), g(A(g1), A(g2))) .

Now (A(g1), A(g2)) ∈ D ensures

F (M12(A(g1), A(g2)), g(A(g1), A(g2)))

≥ min
(t,s)∈D

F (M12(t, s), g(A(g1), A(g2)))

and the Theorem is proved.
The next statements follow from Theorem 3.1 for specially

defined function F .
Corollary 3.1: Assume g1, g2 ∈ L such that for ϕ : D → R

we have ϕ(g1, g2) ∈ L and suppose ϕ is a continuous concave
function.
(i) If ∆ϕ ≥ 0 then

ϕ(A(g1), A(g2)) + min
(t,s)∈D

(M12(s, t)− ϕ(t, s))

≤ A(ϕ(g1, g2)).

(ii) If ∆ϕ ≤ 0, then

ϕ(A(g1), A(g2)) + min
(t,s)∈D

(M34(s, t)− ϕ(t, s))

≤ A(ϕ(g1, g2)).

(iii) If ∆ϕ ≥ 0 and ϕ(D) > 0, then

min
(t,s)∈D

M12(t, s)

ϕ(t, s)
· ϕ(A(g1), A(g2)) ≤ A(ϕ(g1, g2)).

(iv) In opposite, if ∆ϕ ≤ 0 together with ϕ(D) > 0, then

min
(t,s)∈D

M34(t, s)

ϕ(t, s)
· ϕ(A(g1), A(g2)) ≤ A(ϕ(g1, g2)).

Proof: To prove (i ) and (ii ) use F(x, y) = x − y. For
(iii) and (iv) take F(x, y) = x

y . Then apply Theorem 3.1.
The next Lemma is a consequence of the fact that αx+βy ≤

max{x, y} for α, β ≥ 0, α+ β = 1.
Lemma 3.1: Let g1, g2 ∈ L such that for continuous con-

cave function ϕ : D → R, ϕ(g1, g2) belongs to L. If α, β ≥ 0
and α+ β = 1, then
(i) For ∆ϕ ≥ 0 we have:

(αλ1 + βλ2)A(g1) + (αµ1 + βµ2)A(g2) + αν1 + βν2

≤ A(ϕ(g1, g2)).

(ii) In the case ∆ϕ ≤ 0, there is

(αλ3 + βλ4)A(g1) + (αµ3 + βµ4)A(g2) + αν3 + βν4

≤ A(ϕ(g1, g2)).

For the next results we take assumption that ν1 and ν2 from
(2) are of the opposite sign.

Proposition 3.1: Let ϕ : D → R be a continuous concave
function, let g1, g2 ∈ L such that ϕ(g1, g2) ∈ L and A as a
linear mean on L.



(i) Condition ∆ϕ ≥ 0 together with presumption
ν1 · ν2 < 0 ensures

U12A(g1) + V12A(g2) ≤ A(ϕ(g1, g2)),

whereby:

U12 =
ν2λ1 − ν1λ2
ν2 − ν1

, V12 =
ν2µ1 − ν1µ2

ν2 − ν1
.

(ii) Condition ∆ϕ ≤ 0 with ν3 · ν4 < 0 gives

U34Ag1 + V34Ag2 ≤ A(ϕ(g1, g2)),

whereby

U34 =
ν4λ3 − ν3λ4
ν4 − ν3

, V34 =
ν4µ3 − ν3µ4

ν4 − ν3
.

Proof: For (i) it is enough to solve the system{
α+ β = 1

αν1 + βν2 = 0.
and apply Lemma 3.1

Specially defined function F appears in the next corollaries:
Corollary 3.2: Let ϕ : D → R be continuous concave

positive function. Let g1, g2 ∈ L such that ϕ(g1, g2) ∈ L
and A is a linear mean on L.
(i) Case ∆ϕ ≥ 0 under the condition ν1 · ν2 < 0 gives

min
(t,s)∈D

U12t+ V12s

ϕ(t, s)
· ϕ(A(g1), A(g2)) ≤ A(ϕ(g1, g2)).

(ii) Case ∆ϕ ≤ 0 under the condition ν3 · ν4 < 0 gives

min
(t,s)∈D

U34t+ V34s

ϕ(t, s)
· ϕ(A(g1), A(g2)) ≤ A(ϕ(g1, g2)).

IV. AN EXAMPLE

Using results given in the previous section, as an example,
a conversion of Hölder inequality is proved.

Theorem 4.1 (General Gheorghiu inequality): Let
g1(Ω) ⊂ [a,A] and g2(Ω) ⊂ [b, B] for positive real
numbers a, b and take positive real numbers p, q such that
1

p
+

1

q
= 1 holds. Under these presumptions the following is

valid:

p
1
p q

1
q (abAB)

1
pq

(
(AB)

1
p − (ab)

1
p

) 1
p
(

(AB)
1
q − (ab)

1
q

) 1
q

AB − ab

·(A(g1))
1
p (A(g2))

1
q ≤ A

(
g

1
p

1 g
1
q

2

)
.

Proof: Function ϕ(x, y) = x
1
p y

1
q is continuous, concave

and ϕ(x, y) > 0 for all (x, y) ∈ D = [a,A] × [b, B].
Furthermore,

(
A

1
p − a

1
p

)(
B

1
q − b

1
q

)
> 0.

Presumption ν1 ·ν2 ≤ 0 from Theorem 2.1 is a consequence
of Lagrange mean-value theorem for differentiable function,
ensuring

1

p
a

1
p−1 ≥ A

1
p − a

1
p

A− a
≥ 1

p
A

1
p−1 (3)

and
1

q
b

1
q−1 ≥ B

1
q − b

1
q

B − b
≥ 1

p
A

1
p−1.

The inequalities in (3) give:

ν2 ≤ A
1
pB

1
q−A

1
pB

1
q

p
−A

1
pB

1
q

q
= A

1
pB

1
q

(
1− 1

p
− 1

q

)
= 0.

and

ν1 ≥ a
1
p b

1
q − a

1
p b

1
q

p
− a

1
p b

1
q

q
= a

1
p b

1
q

(
1− 1

p
− 1

q

)
= 0.

It remains to minimize the function
U12t+ V12s

ϕ(t, s)
:

min
(t,s)∈D

U12t+ V12s

t
1
p s

1
q

= min
(t,s)∈D

(
U ·
(
t

s

) 1
q

+ V ·
(s
t

) 1
p

)
.

Differential calculus renders the minimum in
(
t

s

)
min

=

V · q
U · p

, the points on the straight-line
t

s
=

V q

Up
inside rect-

angular D.
The minimum value is U

1
pV

1
q p

1
p q

1
q . Substituting U12 and

V12 from Remark 3.1 gives as follows:

U12 =
B

1
q b

1
q

(
(AB)

1
p − (ab)

1
p

)
AB − ab

V12 =
A

1
p a

1
p

(
(AB)

1
q − (ab)

1
q

)
AB − ab

and proof is finished.
Direct consequence of Theorem 4.1 is presented in [6] and

[8] as Gheorghiu inequality for specially boarded values of
random variables.

V. ESTIMATIONS OF JENSEN’S FUNCTIONALS

In [4] we have considered Jensen’s functional:

J(ϕ, f , γ;A) := A(γϕ(f))−A(γ)ϕ

(
A(γf)

A(γ)

)
, where ϕ is

continuous, convex function on a convex set K ⊆ Rn. For a
linear mean A and f1, . . . , fn ∈ L in [1, p. 48] is defined:
A(f) = A(f1, . . . , fn) = (A(f1), . . . , A(fn)). γ ∈ L is a
non-negative weight function. Real constants m and M are
such that for non-negative p, q ∈ L and for all t ∈ Ω the next
inequalities hold

p(t)−mq(t) ≥ 0, Mq(t)− p(t) ≥ 0,

A(p)−mA(q) > 0, MA(q)−A(p) > 0. (4)

Next we rewrite the main Theorem from [4] as Theorem 5.1.
Theorem 5.1: Besides the mentioned above, assume that

for all functions fi ∈ L, i = 1, ..., n, mapping f(x) =
(f1(x), ..., fn(x)) is in K for all x ∈ Ω. If the components of

pf , qf , ϕ(f), qϕ(f), pϕ(f) are in the class L, then ϕ
(
A(qf)

A(q)

)
and ϕ

(
A(pf)

A(p)

)
are well defined if A(p) 6= 0, and A(q) 6= 0.

And the next inequalities hold:

M J(ϕ, f , q;A) ≥ J(ϕ, f , p;A) ≥ m J(ϕ, f , q;A).

The inequalities are reversed if the function ϕ is concave.



In [4] we consider generalized means Mχ(ϕ(f), w;A) for
a function f = (f1, f2, ..., fn) : Ω → Rn, function ϕ of n
variables, with respect to the isotonic positive linear functional
A and a continuous and strictly monotonic function
χ : I → R.

Mχ(ϕ(f), w;A) = χ−1
(
A(wχ(ϕ(f)))

A(w)

)
, χ(ϕ(f(x))) ∈ L.

The next Theorem is also proved in [4].

Theorem 5.2: Let A : L → R be a linear mean. Let
χ, ψi : I → R, i = 1, ..., n be continuous and strictly
monotonic functions, and let ϕ be a function of n variables.
Moreover, let m and M be real constants such that the (4)
hold for p, q ∈ L. If we suppose that the function
H(s1, s2, ..., sn) = χ ◦ ϕ(ψ−11 (s1), ..., ψ−1n (sn)) is convex
then for every g = (g1, g2, ..., gn) : Ω → Rn, such that the
functions ψi(gi), pψi(gi), qψi(gi), χ(ϕ(g)) are in L, we have

that H
(
A(pψ1(g1))

A(p)
, . . . ,

A(pψn(gn))

A(p)

)
and

H

(
A(qψ1(g1))

A(q)
, . . . ,

A(qψn(gn))

A(q)

)
are well defined.

And the next inequalities hold:

MA(q) · [χ(Mχ(ϕ(g), q;A))

−χ(ϕ(Mψ1(g1, q;A), ..,Mψn(gn, q;A)))]

≥ A(p) · [χ(Mχ(ϕ(g), p;A))

−χ(ϕ(Mψ1(g1, p;A), ..,Mψn(gn, p;A)))]

≥ mA(q) · [χ(Mχ(ϕ(g), q;A))

−χ(ϕ(Mψ1(g1, q;A), ..,Mψn(gn, q;A)))]

The inequalities are reversed if the function H is concave.
In the following two corollaries of Theorem 5.2 we give

extensions of the multiplicative type inequality and the additive
type inequality investigating in [10] and [4].

Corollary 5.1: Assume that ϕ(x, y, z) = x + y + z. Let
M,m, p, q, χ, gi, ψi be as in Theorem 5.2 for n = 3 and
H(s1, s2, s3) = χ(ψ−11 (s1)+ψ−12 (s2)+ψ−13 (s3)). Moreover,
let

F1 =
ψ
′

1

ψ
′′
1

, F2 =
ψ
′

2

ψ
′′
2

, F3 =
ψ
′

3

ψ
′′
3

and G =
χ′

χ′′
.

If ψ
′

1, ψ
′

2, ψ
′

3, χ
′ are positive and ψ

′′

1 , ψ
′′

2 , ψ
′′

3 , χ
′′ are nega-

tive, then H(s1, s2, s3) is convex and

MA(q) · [χ(Mχ(g1 + g2 + g3, q;A))

−χ(Mψ1
(g1, q;A) +Mψ2

(g2, q;A) +Mψ3
(g3, q;A))]

≥ A(p) · [χ(Mχ(g1 + g2 + g3, p;A))

−χ(Mψ1
(g1, p;A) +Mψ2

(g2, p;A) +Mψ3
(g3, p;A))]

≥ mA(q) · [χ(Mχ(g1 + g2 + g3, q;A))

−χ(Mψ1
(g1, q;A) +Mψ2

(g2, q;A) +Mψ3
(g3, q;A))]

hold iff G(g1 + g2 + g3) ≤ F1(g1) + F2(g2) + F3(g3).

If all of ψ
′

1, ψ
′

2, ψ
′

3, χ
′, ψ

′′

1 , ψ
′′

2 , ψ
′′

3 , χ
′′ are positive, then

H(s1, s2, s3) is concave and the inequalities are reversed iff
G(g1 + g2 + g3) ≥ F1(g1) + F2(g2) + F3(g3).

Corollary 5.2: Assume the function ϕ(x, y) = x · y · z.
Let M,m, p, q, χ, gi, ψi be as in Theorem 5.2 for n = 3 and
H(s1, s2, s3) = χ(ψ−11 (s1) · ψ−12 (s2) · ψ−13 (s3)). Moreover,
let
B1(x) =

ψ′1(x)

ψ′1(x) + xψ′′1 (x)
, B2(x) =

ψ′2(x)

ψ′(x) + xψ′′2 (x)
,

B3(x) =
ψ′3(x)

ψ′(x) + xψ′′3 (x)
and C(x) =

χ′(x)

χ′(x) + xχ′′(x)
.

If g1, g2, g3, χ′ are positive and B1(g1), B2(g2), B3(g3) and
C(g1g2g3) are negative, then the function H(s1, s2, s3) is
convex and

MA(q) · [χ(Mχ(g1 · g2 · g3, q;A))

−χ(Mψ1
(g1, q;A) ·Mψ2

(g2, q;A) ·Mψ3
(g3, q;A))]

≥ A(p) · [χ(Mχ(g1 · g2 · g3, p;A))

−χ(Mψ1
(g1, p;A) ·Mψ2

(g2, p;A) ·Mψ3
(g3, p;A))]

≥ mA(q) · [χ(Mχ(g1 · g2 · g3, q;A))

−χ(Mψ1
(g1, q;A) ·Mψ2

(g2, q;A) ·Mψ3
(g3, q;A))]

hold iff C(g1 · g2 · g3) ≤ B1(g1) +B2(g2) +B3(g3).

If g1, g2, g3, χ′, B1(g1), B2(g2), B3(g3), C(g1g2g3) are pos-
itive then the function H(s1, s2, s3) is concave and the in-
equalities are reversed iff C(g1 · g2 · g3) ≥ B1(g1) +B2(g2) +
B3(g3).

Applications of two-variables cases are presented in [4] for
some elementary functions. Further studies can be taken in the
direction of expanding the function ϕ on more than variables.
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