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SAŽETAK: 
Pritegnuta platforma spada u tip podatljivih pomorskih konstrukcija koje se 
koriste za istraživanje nafte u dubokom moru. Usidrena je vrlo fleksibilnim 
pritegama koje omogućuju relativno velike amplitude zanošenja. Trup 
platforme smatra se krutim tijelom sa šest stupnjeva slobode gibanja. U 
dinamičkom odzivu pritegnute platforme važnu ulogu ima ukupna povratna 
krutost. Iako u literaturi postoji nekoliko formulacija povratne krutosti, 
nijedna od njih nije potpuno adekvatna, pri čemu je osnovni problem 
realistične definicije centra rotacije. U ovom radu prikazana je konzistentna 
formulacija matrice krutosti, izvedena iz općeg rješenja za hidroelastičnu 
analizu brodskih konstrukcija, kao poseban slučaj. Ukupna krutost 
pritegnute platforme u dinamičkoj analizi sastoji se od hidrostatičke krutosti 
trupa (s komponentama gravitacijske sile i sile vanjskog tlaka), te 
konvencionalne i geometrijske krutosti pritega. Analizirane su i obrazložene 
razlike između nove i od prije poznatih formulacija krutosti. 
Ključne riječi: pritegnuta platforma, povratna krutost, geometrijska krutost 
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ABSTRACT: 
The tension leg platform (TLP) is a type of compliant offshore structures 
generally used for deep water oil exploration. It is moored by very flexible 
tendons so that surge amplitude can achieve large value. The platform hull 
is considered as a rigid body with six d.o.f. The total restoring stiffness 
plays very important role in the TLP dynamic behavior. Although there are 
several stiffness formulations available in the present literature, none of 
them is completely adequate. The issue is to define realistic centre of 
rotations. The consistent formulation of stiffness matrix is presented in this 
paper. It is derived from the general solution established for hydroelastic 
analysis of ship structures, as a specific case. Actually, the total TLP stiffness 
in dynamic analysis consists of hydrostatic hull stiffness (pressure and 
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gravity), and conventional and geometric tendon stiffness. The new stiffness 
is compared to the known ones, and discrepancies are analyzed and 
discussed. 
Key words: tension leg platform; restoring stiffness; geometric stiffness 
 
1. INTRODUCTION 
A tension leg platform (TLP) is a semi-submersible platform, moored by 
vertical pretensioned tendons or tethers [1]. The platform constitutive parts 
are pontoon, columns and deck with drilling equipment [2]. Heave, roll and 
pitch have high natural frequencies due to high tendon axial stiffness. 
Surge, sway and yaw are compliant modes due to quite low tendon 
geometric stiffness. Vertical motions are excited by the first order wave 
forces, while horizontal motions appear due to the second order wave forces 
with very low frequency [3]. 
Stiffness plays very important role in dynamic analysis of TLPs [4]. Platform 
can be considered as a rigid body with tendons as massless quasi-static 
springs. The hydrodynamic coefficients can be determined by Morison’s 
equation or the radiation-diffraction theory, depending on the ratio of 
diameters of platform cylindrical segments and the wave length. 
Since even linear stiffness is not formulated in the relevant literature in a 
consistent way, the new formulation is presented in Section 2, and its 
comparison with the known formulations is elaborated in Section 3. 
Additional comparison is done via numerical example, Section 4. 
 
2. LINEAR STIFFNESS 
2.1. Definition of total stiffness 
Let us consider a double symmetric TLP with N tendons, Figure 1. The origin 
of the coordinate system is located in the middle of the waterplane, and the 
motion components are shown in Figure 2. The platform is treated as a rigid 
body due to very high stiffness compared to that of tendons. The total 
stiffness consists of three parts: 
[ ] [ ] [ ] [ ]C G

P
K K C K= + +        (1) 

where [ ]CK is the conventional tendon stiffness, [ ]C  is the platform 
restoring stiffness with influence of tendons included, and [ ]GK is the 
tendon geometric stiffness. 
 
2.2. Conventional stiffness 
The tendons are steel pipes with negligibly small bending stiffness. Heave 
changes the tension of tendons so that the stiffness is the relation between 
vertical force and displacement: 
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The tension of tendons is also changed by roll and the corresponding 
stiffness is found from the moment as function of the roll angle. Since  

1
,  ,  and 

N
n n n nn

x z n z z z n x
n

EAM F y F y
L

δ δ ϕ
=

= = =∑ ,    (3) 

one gets: 
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In the similar way, the pitch stiffness is: 
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where A, Ix, and Iy are the total cross-section area and moments of inertia 
about x and y axis of all tendons, respectively. Hence, set of tendons is 
considered as a beam with distinct fibers. 
 
2.3. Restoring stiffness 
Hydroelastic analysis of a deformable floating body is usually performed by 
the modal superposition method. The ordinary restoring stiffness consists 
of variation of hydrostatic pressure, variation of normal vector and natural 
mode and gravity part respectively, [5]: 

o p nh m
ij ij ij ijC C C C= + + ,        (6) 

3 dp i j
ij k k

S

C g h h n Sρ= ∫∫ ,        (7) 

, dnh i j
ij k l l k

S

C g Zh h n Sρ= ∫∫ ,       (8) 

3, dm i j
ij S k k

V

C g h h Sρ= ∫∫∫ ,       (9) 

where, according to the index notation, ,
i
k lh  is the l-th derivative of the k-th 

component of the natural mode hi, S is the wetted surface, nk are 
components of its normal vector, V is the structure volume, while ρ and ρs 
are the water and structure density, respectively. 
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Figure 1. Double symmetric TLP. 
 
For the TLP platform only rigid body natural modes are of interest, and the 
general restoring stiffness is reduced to the formulas of ship hydrostatics 
for the floating and stability conditions, [6]. In the case of double symmetric 
platform, the centroid of waterplane is located at the vertical line of the 
buoyancy and gravity centre and the restoring stiffness matrix is diagonal 
with the following heave, roll and pitch coefficients: 

0 0
33 WLC gAρ= ,         (10) 

( )0 0 0 0 0
44 WLX B GC g I V z zρ ⎡ ⎤= + −⎣ ⎦ ,      (11) 

( )0 0 0 0 0
55 WLY B GC g I V z zρ ⎡ ⎤= + −⎣ ⎦ ,      (12) 

where, AWL0, IWLX0 and IWLY0 are the waterplane area and its moments of 
inertia about x and y axis, respectively, V0 is the buoyancy volume while zB0 
and zG0 are coordinates of buoyancy and gravity centre, respectively. 
The buoyancy, U, is larger than the platform weight, Q, due to tendon 
pretension forces, Tn, which, only for this purpose, can be treated as virtual 
lumped weights, Figure 3: 

1

N

n
n

T U Q
=

= −∑ .        (13) 

The stiffness coefficients, Eqs. (10), (11) and (12) take the following form: 
33 WLC gAρ= ,         (14) 

44
1

N

WLX B G n T
n

C gI Uz Qz T zρ
=

= + − −∑ ,      (15) 

55
1

N

WLY B G n T
n

C gI Uz Qz T zρ
=

= + − −∑ ,      (16) 

where all quantities are related to the increased platform immersion due to 
the tendon forces. 
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Figure 2. Motion components 

 
2.4. Geometric stiffness 
TLP can be translated horizontally in x and y direction and rotated about 
vertical z axis. External forces are equilibrated with internal forces which 
depend on the tendon geometric stiffness. The stiffness can be determined 
by the general formulation of geometric stiffness written in the index 
notation [7, 8]: 

, , dG i j
ij kl m k m l

V

k h h Vσ= ∫∫∫ ,       (17) 

where klσ  is the stress tensor. In the considered case 

1 1

, d d
N N
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zz n

n nn

T V A z
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σ
= =

= =∑ ∑        (18) 

and the surge mode 
( )1

x

L d z
h

L
+ +

=         (19) 

is defined in domain -(L+d) ≤ z ≤ - d, Figure 4a. Thus, one finds hx,z1=1/L 
and further 

11 22
1

N
G Gn

n

TK K
L=

= =∑ .        (20) 

 The yaw mode of the n-th tendon, according to Figure 4b, is: 

( ) ( )6 n
r

L d z r
h n

L
+ +

=         (21) 

with components 

( ) ( )6 n
x

L d z y
h n

L
+ +

=        (22) 

( ) ( )6 n
y

L d z x
h n

L
+ +

= .       (23) 

In this case, Eq. (17) gives 
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( )2 2
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+
=∑ .        (24) 

 
2.5. Total stiffness and mass matrix 
By summing up the terms of conventional, restoring and geometric stiffness, 
determined in previous sections, elements of the total stiffness matrix [K]P, 
Eq. (1), are obtained: 

11 22 33
1

,
N

n
WL

n

T EAK K K gA
L L

ρ
=

= = = +∑ ,          (25a, b) 

44
1

N
x

WLX B G n T
n

EIK gI Uz Qz T z
L

ρ
=

= + − − +∑ ,     (26) 
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1

N
y

WLY B G n T
n

EI
K gI Uz Qz T z

L
ρ

=

= + − − +∑ ,     (27) 

( )2 2
66

1

N
n

n n
n

TK x y
L=

= +∑ .        (28) 

The total stiffness matrix is a diagonal one because the middle point of hull 
bottom is used as pole P, Figure 4, for the platform rotations. As a result, 
there is no coupling between degrees of freedom through the stiffness. 
On the other side, the mass matrix has some off-diagonal elements since 
the following inertia forces (designated with i) depend on both 
displacements and rotations: 

( )i
x x G T yF m m z zδ ϕ= + −        (29) 

( )i
y y G T xF m m z zδ ϕ= − −        (30) 

( )i P
x G T y x xM m z z Jδ ϕ= − − +        (31) 

( )i P
y G T x y yM m z z Jδ ϕ= − +        (32) 

where 
( )2P G

x x G TJ J m z z= + −        (33) 

( )2P G
y y G TJ J m z z= + −        (34) 

are the mass moments of inertia. The mass matrix with respect to the pole 
P, reads: 
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Figure 3. Stiffness model of TLP 

 
where zGT = zG - zT. Due to the off-diagonal terms of matrix [M]P, the 
vibrations are coupled through the mass matrix. 
If the center of gravity G is used as the reference point, the following 
relations between displacements exist: 

( ) ( ),P G P G
x x G T y y y G T xz z z zδ δ ϕ δ δ ϕ= − − = + − .               (36 a, b) 

Hence, the displacement transformation matrix reads: 

[ ]

1
1

1
1

1
1

GT

GT

z
z

T

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

.      (37) 

Now, the stiffness and mass matrix can be adapted to the new coordinate 
system in the way well known in the finite element method, which is based 
on the fact that the total energy of a structure does not depend on the 
chosen coordinate system, [9]: 
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ],T T

G P G P
K T K T M T M T= = .          (38 a, b) 

Thus, one finds: 
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   (39) 

 
while the mass matrix becomes diagonal. 
 In direct analysis of ship motion in seaway, it is assumed that vessel 
rotates about the centroid of the waterplane. If the same assumption is 
accepted for TLP, the stiffness and mass matrix can be transformed in the 
same manner and both have off-diagonal elements. 

 
Figure 4. Surge and sway of TLP 

 
3. COMPARISON OF THE KNOWN STIFFNESS MATRICES WITH THE NEW ONE 
3.1. Stiffness from Malenica, 2003 
The linear stiffness matrix is derived for the tendon top points and arbitrary 
origin of the coordinate system [10]. 
 One can write for diagonal elements 

11 22 33
1

,  
N

on
WL

n

T EAC C C gA
L L

ρ
=

= = = +∑ ,     (40) 

2
44

1 1 1

,
N N N

o n X
WLX B G n T n BG TG

n n n

T EIC gI Uz Qz T z T z z
L L
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= + − − − + +∑ ∑ ∑    (41) 

2
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N N N

o n Y
WLY B G n T n BG TG
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T EIC gI Uz Qz T z T z z
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= +∑ ,        (43) 

and for off-diagonal elements 
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 15 24 42 51
1 1 1 1

,  ,  ,  
N N N N

n n n n
TG TG TG TG

n n n n

T T T TC z C z C z C z
L L L L= = = =

= = − = − =∑ ∑ ∑ ∑ .(44) 

By comparing Eqs. (40) – (44) with Eq. (39) some differences can be noticed. 
The 5th term in Eqs. (41) and (42) is additional. The off-diagonal elements 
(44) are identical as those in (39) since zTG=- zGT. 
 
3.2. Stiffness from Jain, 1997 
Nonlinear stiffness matrix presented in [11] is ordinary used for dynamic 
analysis of TLP. It is specified with respect to the centre of gravity. Its linear 
part reads: 
 

[ ]

11

22

33

42 44

51 55

66

L

L

L
L

L LG

L L

L

K
K

K
K

K K
K K

K

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

,     (45) 

 
where elements K11L, K22L, K33L and K66L are equal to Eqs. (25a,b) and (28), 
while the remaining elements are 

44
1

N
L X

WL G G n T
n

EIK gA Uz Qz T z
L

ρ
=

= + − − +∑ ,     (46) 

55
1

N
L Y

WL G G n T
n

EIK gA Uz Qz T z
L

ρ
=

= + − − +∑ .     (47) 

By comparing Eqs. (46) and (47) with Eq. (39) it is noticed that the 
coordinate of the gravity center zG is accompanied to the buoyancy U 
instead of its own zB. Since Eq. (45) is derived with respect to the gravity 
center it should have additional terms K15L and K24L like Eq. (39). 
 
3.3. Stiffness from Low, 2009 
Recently, a new formulation of nonlinear stiffness matrix, based on energy 
approach, is presented in [12]. Its linear part reads 
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where 

0 1
1

,  
N

n

n

TEAk k
L L=

= =∑ .        (49) 

It is obvious that only the tendon contribution is taken into account, while 
the restoring stiffness is ignored. 
 
4. NUMERICAL EXAMPLE 
Outlined theory is illustrated by analyzing a TLP spar floater without the 
installed wind turbine [13]. Hydrodynamic part of fluid loading (added mass, 
radiation damping, Froude-Krylov and diffraction loads) and the equations 
of motion (solved for the centre of gravity of the floater) are calculated using 
the Bureau Veritas HYDROSTAR software [14]. 
 

Spar diameter 4 m Water depth 200 m
Spar draft 10 m Mass 49002.3 kg
Thickness 25.3 mm Buoyant mass 149887.8 kg
Spoke length 5 m COG -6.698 m
Spoke width 1 m COB -5.687 m
Line diameter 50 mm Jxx 1140080.9 kg m^2
Number of lines 1 per spoke Jyy 1140080.9 kg m^2
Line length 190 m Jzz 451478 kg m^2  

Table 1. Particulars of a TLP spar floater 
 
The mean wetted surface of a TLP spar floater is discretized into 2272 
panels. Tendons were not included in the hydrodynamic model, and their 
influence on the platform is taken into account via stiffness matrix. Two 
distinctive cases were analyzed, one using high modulus polyester tendons 
(HMPE, E=2.5 1010 N/m2) and the other using the usual steel tendons 
(STEEL, E=2.06 1011 N/m2). HMPE tendons are used in order to lower the 
stiffness and thus allow larger oscillation amplitudes. Frequency domain 
responses (1st order motion transfer functions) were calculated for a range 
of frequencies in 1m head waves (180 deg wave heading). Please note that 
the ratio between the response amplitude and wave amplitude is called 
transfer function in this paper. 
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Figure 5. Panel  model of TLP 
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Figure 6. TLP surge transfer function (HMPE tendons) 
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Figure 7. TLP heave transfer function (HMPE tendons) 
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Figure 8. TLP pitch transfer function (HMPE tendons) 
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Figure 9. TLP pitch transfer function (STEEL tendons) 

 
In Figure 6 one can see that there are almost no differences in the surge due 
to different stiffness formulations and obviously these is the most important 
mode for TLP’s. Low’s stiffness formulation results with slightly larger 
values for the heave response, Figure 7, than the other ones that are again 
very close to each other. The largest differences are obtained for the 
rotational modes of motion as can be noted from the Figure 8. That 
particular case corresponds to HMPE tendons and the lower elasticity 
obviously will pronounce differences (as compared to steel tendons in Figure 
9 were the different formulations give practically identical results). One 
should also note that the coupling between the modes of motion is 
influenced by the distance between the center of gravity and the center of 
buoyancy, so one would expect slightly larger differences between the 
stiffness formulations by Senjanovic and Malenica for the rotational modes, 
if the wind turbine itself was included in the model. 
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5. CONCLUSION 
In this paper, the consistent linear stiffness for dynamic analysis of TLP’s is 
derived in a systematic and physically transparent way. It comprises 
platform restoring stiffness, tendon conventional stiffness and tendon 
geometric stiffness. The first two components are important for the vertical 
motions, while the third one is related to the horizontal motions. 
Comparison of the known stiffness matrices with the new one shows some 
differences of the former. Their influence on response will be analyzed in 
further investigation by numerical examples. In general there is a good 
agreement between different formulations, especially if steel tendons are 
used. Therefore, in analyzing TLP’s one should use formulation which 
appears to be physically consistent. In future work nonlinear TLP’s stiffness 
should be derived in a consistent and transparent way. 
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ABSTRACT: 
Ship grounding is a complex event determined by ship speed and heading, 
type of the obstacle in a way, hydrodynamic effects and other factors. Non-
linear finite element method (NFEM) analysis is a sophisticated tool for 
modeling and analysis of such events. Obtaining realistic results, however, 
requires careful modeling.  
This paper presents a concept for ship grounding numerical model. The 3D 
model of a ship was generated. Hull is modeled using beam elements, while 
fore peak is modeled in detail. Nonlinear buoyancy is taken into account. 
Several types of fixed ground were considered. Ship particulars and mass, as 
well as basic kinetic parameters were chosen to resemble Marko Polo, 
grounded on Sit island in October 2009. Results are presented and comment 
is made on possible application and improvement of the method. 
Keywords: ship grounding, hard grounding, non-linear finite element method, 3D FEM model 
 
1. INTRODUCTION 
Ship grounding is a marine accident that occurs rarely, but often with 
serious consequences. Not only that ship gets damaged in certain extent, 
but people's lives and cargo may be endangered. Also, an imminent risk for 
environment pollution is present in all but lightest groundings.  
Although numerous measures are taken to prevent grounding (as well as 
collision) of the ships, they continue to happen due to various reasons. 
Because of that each maritime country takes notes and evidence of 




