Posters

Magnetic ordering of Co_{0.33}NbS₂ under pressure

Petar Popčević¹, Igor Smiljanić¹, Ante Bilušić^{1,2}, Ana Smontara¹, Ivo Batistić³, Helmuth Berger⁴, Jaćim Jaćimović⁴, László Forró⁴, Neven Barišić¹, Edo Tutiš¹

¹Institu za fiziku, Zagreb, Croatia ²University of Split, Croatia ³Faculty of Science, University of Zagreb, Croatia ⁴École polytechnique fédérale de Lausanne, Switzerland

2H-NbS₂ is a layered material that has a superconducting transition at 6 K and this transition is pressure independent.[1] Upon intercalation of Co atoms between NbS₂ metallic layers superconductivity is suppressed. Co atoms in Co_{0.33}NbS₂ form triangular lattice and at ambient pressure there is antiferromagnetic ordering at 26 K. Hidrostatic pressure suppresses the ordering to lower temperatures[2] and at p = 2 GPa magnetic ordering disappears. The ordering mechanism is not fully understood yet, although super-exchange and RKKY interactions are natural candidates. At pressures above 3 GPa minimum in resistivity followed by logarithmic rise of resistivity with lowering temperature appears. This indicates Kondo screening of magnetic moments on Co ions and Kondo spin liquid formation. No superconductivity was found between these two phases down to dilution temperatures.[3] Disappearance of magnetic ordering with pressure is confirmed with elastic neutron scattering experiment and phase diagram of Co_{0.33}NbS₂ is presented.

[1] R. E. Jones, et al., Phys. Rev. B 6 (1972) 835.

[2] N. Barišić, et al., Phys. Rev. B 84 (2011) 075157.

[3] J. Jaćimović, et. al., to be published.

Æ