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Abstract A high level of autonomy is a prerequisite for
achieving robotic presence in a broad spectrum of work
environments. If there is more than one robot in a given
environment and the workspaces of robots are shared, then
the robots present a dynamic obstacle to each other, which
is a potentially dangerous situation. This paper deals with
the problem of motion planning for two six-degrees-of-
freedom (DOF) industrial robots whose workspaces
overlap. The planning is based on a novel hall of fame -
Pareto-based co-evolutionary algorithm. The modification
of the algorithm is directed towards speeding-up co-
evolution, to achieve real-time implementation in an
industrial robotic system composed of two FANUC
LrMate 200iC robots. The results of the simulation and
implementation show the great potential of the method in
terms of convergence, robustness and time.

Keywords Evolutionary Algorithms, Motion Planning,
Multi Robot Systems, Optimization

1. Introduction

Symmetrically distributed limbs are a trait of higher
primates. This fact can be observed as an optimum
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achieved by a long evolutionary process, or as a result of
an optimization process. The limbs enable humans, for
example, to complete tasks, which require the use of both
hands and cannot be completed by using only one hand.
In this line of thought, placing two robots next to each
other enables the robots to be more flexible, to help each
other and mutually increase their scope of work.
Moreover, by placing robots so that their workspaces
overlap, their DOFs are shared. Thus, the flexibility of the
system increases. A standard industrial robot has a six
DOF structure, whereas a human hand has 27 degrees of
freedom in total, with 8 of them located in the wrist. The
disparity is obvious and the consequence is that today
robots, even the most sophisticated ones, have problems
with opening a door, for example.

One could ask why a robot or a robotic hand with more
than six degrees of freedom has not been built. It has, but
the problems associated with controlling such a system
are complex and limit its application. Problems with
accuracy and repeatability limit implementation even
more seriously [1, 2]. Building robots with a higher
number of degrees of freedom is not the only way to
increase their work scope. We adopt an anthropomatic
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approach, where a system consists of more than one
robot, but the kinematics of the robots is relatively
simple. This way, the control of each robot is simpler, but
favourable traits of high flexibility, increased scope of
work and autonomy result from the combination of
several simple structures.

This paper deals with the problem of motion coordination
for two standard six DOF industrial robots whose
workspaces are shared (Figure 1).

Figure 1. Robot setup. Spheres indicate the corresponding
workspaces.

The idea behind arranging robots this way is to increase
the work scope of the robotic system with respect to the
set of actions that can be performed by two separate
robots. It is immediately possible to conclude that two
robots in such a setup cannot work completely
independently. The occurrence of collision is almost
certain if one robot does not take into account the motion
of the other one. The simplest way to tackle this problem
is to ensure a safety envelope for each robot and to ensure
that the other robot never enters the safety envelope of
the first one. This is actually a very common way to solve
this problem in industrial applications but limits the
performance of the robots as a system working together
and achieving synergy. Another common approach is to
give a role of “master” to one of the robots and declare
the other robot a “slave”. The slave robot constantly
tracks the position of the master and adapts its movement
so that no interference between the robots’ links occurs.
The problem is that such a scenario results in intermittent
motion of the robots and time delays. There are also
approaches that utilize simple breakaway screws or
external shock sensors. In such applications, collision
actually occurs, with all the physical consequences,
replacement and restart procedures and the results in a
production delay.

The issues mentioned above have resulted in an increased
focus by the research community on finding suitable
solutions for autonomous motion planning for a single
robot, or in recent times, in the multi-robot domain. A
comprehensive overview on robot motion planning can
be found in [3]. If a path planning problem is presented in
the optimization context, robust optimization techniques,
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such as evolutionary algorithms [4], swarm intelligence
concepts [5] etc. have proven suitable, even though the
problem is NP-complete and PSPACE-hard even in its
simplest form. Its complexity increases exponentially
with the dimensions of the robot’s configuration space
[6]. In [7] a special genetic algorithm (GA) for optimized
robot trajectories is proposed. The main characteristics of
this algorithm are the use of dynamic chromosomes
structures and a modified crossover operator called an
analogous crossover. The goal of the proposed GA is to
minimize the accumulative deviation between the actual
and the desired path. A multi-objective GA for the
evolution of joint-space strings for manipulator
configurations is proposed in [8]. Five indices, namely the
travelling distance of the manipulator joints, the joint
velocity, the Cartesian distance, the Cartesian velocity
and energy are used to qualify the evolving trajectories.
In [9] the preliminary results of the Constructive Solid
Geometry-based approach to path planning of multiple
robot arms are presented. The authors use a two phase
GA to obtain a plan for robotic arms by using a strategy
that combines the exploration of free space, while looking
for the target position from each previously explored
area.

The majority of papers dealing with the application of
evolutionary algorithm-based methods for path planning
consider significant simplifications, such as a single robot
in an environment without obstacles or a robot
surrounded by a set of stationary obstacles.

An approach to the path planning of a dual arm
reconfigurable robot is presented in [10]. The paper deals
with a SCARA configuration dual arm robot controlled
by a single controller. The algorithm is based on the
configuration space exploration for the given initial and
final configuration of two hands, carried out in a
horizontal plane.

A coupled dual arm system is a system composed of two
robots with a point of contact between them. The contact
is usually realized between the end-effectors of the two
robots. In this scenario, impedance control-based
methods may be used to solve the coordination of the two
robots [11].

This paper presents a co-evolutionary approach to
solving the path planning of two robots that share their
workspace and are controlled by separate controllers. The
input variables are the current positions of the two
robots, given by the end-effector coordinates and the
desired positions of the two robots, again given by the
reference point coordinates in a reference coordinate
system. The main characteristics of the proposed
algorithm are: real value encoded chromosomes with
joint angles on the loci, two coevolving populations (each
population represents a set of potential solutions to path
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planning for one robot), the Pareto-based selection used
for the evaluation of a multi objective inter-population
fitness function and the hall of fame procedure for the
preservation of the cross-population best collaborators
(since the quality of each individual from one population
depends on individuals from the other population).

The performance of the algorithm is tested through a
number of simulation experiments and compared to the
generic co-evolutionary algorithm without the Pareto-
based selection and the hall of fame preservation. After
the fine-tuning of the parameter space, the algorithm is
implemented in a real robotic system, at this point limited
to planning in a vertical or horizontal plane.

2. The proposed co-evolutionary algorithm

The purpose of this paper is not to outperform the
existing heuristic approaches or to find better solutions to
the problem of dual arm robot motion planning. Its
purpose is to show how co-evolutionary algorithms may
be efficiently applied to this problem and to describe how
to doit.

Co-evolutionary algorithms offer great potential for
concurrent multiagent domains [12 - 14]. Concepts of co-
evolution were also successfully coupled with other
heuristic optimization techniques [15 - 17] to solve
complex optimization problems when search-spaces are
connected. The main problems reported concerning co-
algorithms are their game-theoretic
background and resulting pathologies, namely cyclic
dynamics, loss of fitness gradient and evolutionary
forgetting [18].

evolutionary

1. for population ps €P, all populations
1.1 Initialize population ps
2. for population ps €P, all populations
2.2 Evaluate population ps
3. t:=0
4.do
4.1 for population ps €P, all populations
4.1.1 Select parents from population ps
4.1.2 Generate offspring from parents
4.1.3 Select collaborators from P
4.1.4 Evaluate offspring with collaborators
4.1.5 Select survivors for new population Ps
4.2 t:=t+1
until Terminating criteria is met.

Figure 2. Pseudo-code for a sequential co-evolutionary algorithm

The motivation for using co-evolutionary algorithms to
solve the defined problem is the distributed nature of the
problem itself. Prior to this research, we experimented
with standard evolutionary algorithms and realized [19]
that the explicit fitness function for the evaluation of a
system composed of a single robot with several
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optimization criteria becomes increasingly complex. The
consequence is that the time required for finding feasible
solutions is unacceptably long if the algorithm is to be
implemented with real robots.

Co-evolution is by nature a distributed process, which
can be applied to two separate controllers, making the
computation parallel and thus reducing the time required
for finding feasible solutions. Moreover, the definition of
co-evolution is the adaptation of one species triggered by
a change in the other species, which is directly applicable
to the adaptation of the behaviour of one robot to the
behaviour of another one. The abstract pseudo-code of a
co-evolutionary algorithm is presented in Figure 2. The
interaction between the two coevolving populations
naturally mimics the solution of the problem described in
this paper.

Physical domain

---Response}»-

Population i Population j
(left robot) (right robot)
Fast
ethernet,
100 Mbit/s

Simulation and
calculation domain

Figure 3. System architecture

The setup wused for the purpose of experimental
evaluation in this paper is given in Figure 3. The two
robots are arranged so as to ensure the overlapping of
corresponding workspaces.

Motion planning is based on two coevolving populations.
Each population consists of a set of potential solutions to
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the problem of path planning from the given initial to the
given final configuration for the left and right robot,
respectively.

An individual in the population encodes a set of
transitional configurations of the robot. At this time the
planning is executed in the vertical or horizontal plane,
limiting the search space only to two DOF for each robot.
An individual in a population is represented as a
chromosome containing a real-valued vector in the joint
space of the robot (Equation 1):

[{ql(ly,c),“’qgm,c) } ’{ql(lzm,c) /",qi(fzm,c) } "',{qfl(n—Z)Af,G)’“’q’(i(n—z)Al,G) }:‘ 1)

where i denotes the robot i=1, 2, j is the number of DOF
(since the problem is reduced to the planar plane, j =2 but
generally it is expandable to the full six DOF space), at is
the sampling time between
configurations, g is the angle between the link and the
positive x-axis and G is the current generation.

two  consecutive

Adopting the form of an individual in the population
according to (1), which is a discrete form of an individual
resulting in discrete information given to the robot
controller, there is a trade off between the granularity of
the discretization and the real time computational
requirements. There is an important question — how can
we decide what is the appropriate length of the
chromosome representing the individual and defining the
granularity of discretization?

l2

o

Figure 4. Calculation of the chromosome length

It is assumed for this calculation that the robot moves as
shown in Figure 4: if the second joint of the robot is static,
the joint displacement of the first joint is A, ; if the first
joint of the robot is static, the joint displacement of the
second joint is Ag, . In both cases the distance travelled
by the reference point equals AS.

The
Ag,-(I; +1y) = Ap, -1, = AS, where I and L2 are the lengths
of the robot links. If T is assumed to be sampling time, the
distance travelled by the reference pointis AS=V__ -T
and the angles travelled can be obtained from Equation 2:

following formula can be derived:
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where Vi is for the maximum velocity of the Tool Centre
Point (TCP). For this calculation we will assume that Vinax
=5m/s, T=001 s and 1 = 2 = 025 m. The angles
Ap <115°,Ap,<23°. Thus, the
discretization space is bounded. The calculation of the
chromosome length L is as follows:

calculated are:

ABC
L>2. 2% JeN Al20 3)
Ag01,max
—G (n—Z,G) (1,(3) . .
where Ag;” =|p; -0 is the difference between

the initial and the final angle of rotation of the i-th robot
link and L is the length of the chromosome rounded up to
the first larger integer. Number 2 in equation (3) is for the
pairs of values in the chromosome, two angles for one
configuration. The worst case, when the initial and the
final configuration of the robot are on the boundaries of
the upper semi-plane, will actually never happen in
reality. The resulting chromosome length is L = 32, which
means 16 configurations are needed at the upper
boundary.

Since the evaluation of populations composed of
chromosomes whose length is 32 is computationally
complex and therefore is impossible to perform in real
time, we keep the length at L.<10, which is experimentally
proven to be achievable in real time, calculating a lower
number of intermediate points. A simple interpolation
procedure is developed to reconstruct the missing
configurations, based on the polynomial of at least the
third order. In that case, solutions are obtainable in real
time.

3. Fitness evaluation

It is obvious that fitness evaluation has to take into
account the number of collisions between the links of the
robots and the trajectory length. Both of these criteria
have to be minimized. After the initial simulation it was
determined that these two parameters are not enough
and that additional criteria are required to obtain
satisfactory behaviour of the robots, so velocity profile
and total joint rotation angle are added. By adding these
two parameters smooth motions of the robots, free of
unnecessary joint rotations were obtained. The criteria are
described in details as follows:

Collision penalty

The collision penalty, depending on a collision between
Robot 1 and Robot 2 in corresponding configurations, is
given by:

www.intechopen.com



k=n-2

C =Y C,C - min 4)
k=1
where:

©)

_ {1 if R; and R, collide in ith generation
=

0 otherwise.

Since the initial and final configurations are known in
advance and by definition, a collision cannot exist, to save
calculation time, these two configurations are omitted
from the search, thus k = n-2. This criterion is the most
important one. In order to accept the solution and to
implement it in real robots, the value has to be equal to
zero, which physically means that there is no collision
between the two potential solutions. It is important to
note that for the evaluation of the expression defined in
Eq. (4), individuals of both co-evolving populations are
required. This is where the co-evolution takes place, since
the quality of an individual from population 1 depends
on all the individuals from the population 2. An
individual from the first population has to be evaluated
against every individual from the other population. The
total number of collisions involving an individual from
the first population is summed and then this number
must be minimized. This sum is not necessarily required
to equal zero, rather it is important to find one good
match from the other population for the given individual
from the first population, for which the collision number
equals zero. This is a cross-population criterion and is
thus the most complex. Also, it cannot be computed
independently in each population or executed in parallel.

The total distance of the end-effector movement is as
follows:

k=n

C, = dist(p,,p;,),C, »>min (6)
k=1

where p, is the intermediate position of the end-effector
and dist is the
consecutive intermediate positions. The optimal value of
this criterion is known in advance and equals the length
of the straight line that connects the initial and final end-
effector positions. This is obtainable only in a limited set
of scenarios where no obstacle is present in the
environment of the robot. For all other cases, C, >C

Euclidean distance between two

20pt *
This is an inter-population criterion and possibly can be

calculated in parallel, similarly to the following two
criteria.

Total angle of rotation

Since the robots are redundant systems even in this
simple form of 2 DOF, resulting in the possibility of
reaching the same point in the space in elbow-up and
elbow-down configurations, criteria that minimize the

www.intechopen.com

total distance are not enough. Additionally, it is necessary
to minimize the total rotation angle, to ensure no
oscillations between the elbow-up and elbow-down
configurations occur. The following expression defines
the total angle for one joint of one robot. Each robot’s
total angle should be minimized:

n
C;=Y |e —a,_ | > min,C, > min 7)
i=1

where ai is the angle between the link of the robot and
the positive horizontal axis in the discrete time step is i.

End-effector velocity distribution

To enable an even distribution when going through
points p; of the end-effector, the distance between two
adjoining points in unit time should be equal.

C,= {dist(p}.,p}fl )max —disi‘(p].,pjf1 )min} — min,C, - min (8)

where dist is calculated as a Euclidean distance between
the previous and current position of the end-effector. The
optimal value for this criterion is known in advance to be
0, which means that all the points that are gone through
are equally distant from each other. The fitness itself is
calculated as a sum of criteria C1 — Cs+ and has to be
minimized.

Regarding other evolutionary operators, a simple single
point crossover showed good results. Standard values of
crossover in the range 7. €[0607] were used. When
considering mutation, the situation is not so simple. An
higher rate of mutation was shown to be beneficial in the
early phase of the evolution, whereas at the later stage it
was beneficial to decrease mutation probability. Details
regarding this effect and its impact on convergence were
analysed in methods MI-MVIIL. The mutation was
performed using the following expression:

(a1G+1) qism,c) +rand e (O,ir / 5]

y

qi(jm,cn) < (9)

The mutation operator replaces one allele with a given
probability using Eq. 9.

The size of the populations is also an important part of
successful convergence. It is said that one part of the
problem of any evolutionary algorithm is creating the
algorithm itself [20]. The other part of the problem is fine-
tuning the whose
interconnections are nonlinear, so often a significant
effort is necessary to make the algorithm work well. This

algorithms parameters,

surely holds also for the co-evolutionary algorithms that
have even more complex natures compared to standard
evolutionary algorithms [21]. The problem with large
populations is the time required to find satisfactory
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solutions. Note that in this problem, the best possible
solution is not always searched for, since time is a critical
factor. Rather any feasible solution that solves the
problem in terms of collision free trajectory is accepted if
there is not enough time to continue searching. Therefore,
the sizes of the populations are 100 individuals. To
increase the speed of the convergence, we modify the co-
evolution to approach the real-time usability of the
system, developing methods of selecting the best
collaborators based on a combination of the Pareto front
exploration and the hall of fame creation to save the best
collaborators from the co-evolving populations.

The Pareto front exploration aims to identify the best
individuals from a given population. The individuals
forming the Pareto front are also known as non-
dominated solutions. This front is a 4 -dimensional one,
partial fronts are illustrated in Figure 5. It is a very
significant and positive trait of the proposed algorithm
that it is able to identify the Pareto fronts.

We want to employ this trait to keep the best solutions
that form the Pareto front and allow these solutions
unconditioned transition to the following generation.

Nonuniformity vs distance
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These solutions might serve as a good seed to direct the
evolution in the desired direction in a shorter period of
time.

This is analogous to the elitism in a simple evolutionary
algorithm, but different in the way that the elitism is not
directly employable in co-evolutionary algorithms since
the performance of each individual from one population
depends on each individual from the other, co-evolving
population, as already described.

It is obvious that the proposed algorithm can find
solutions on the Pareto front in an early phase of
evolution, after only 30 generations (Figure 5). This is an
advantage of the algorithm, with the consequence of an
increased likelihood of finding the global-optimal area of
the multi objective search space. The red dots indicate
individuals on the Pareto front, or non-dominated
solutions, whereas blue dots indicate inferior, dominated
solutions. Red, non-dominated solutions are the highest
quality ones, i.e., the ones that are kept in the hall of fame
until replaced with fitter ones.
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Figure 5. Pareto fronts in an early phase of evolution (G=30) for various pairs of evaluation criteria

The hall of fame is an operator that determines how many
of the individuals are to be kept and directly copied to the
following generation. The depth of the hall of fame is a
percentage of the individuals in respect to the size of the
original population that are directly copied to the next
generation. The members of the hall of fame are only
replaced when better (fitter) solutions on the Pareto front
are identified.
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The problem analysed in this paper represents a multi
objective optimization problem with conflicting criteria.
All the criteria are to be minimized, but they are
conflicting in nature.

The time required to find a feasible solution becomes a

critical parameter once the algorithm is implemented in
the real physical system. In this paper, the convergence
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time is accepted if it is in the range of <10s. However,
since the algorithm is heuristic, it is possible that no
feasible solution is found in the predefined time range
(<10s). The good thing is that it is easy to check whether
the algorithm has converged, based on the critical
criterion of a collision. If no convergence has occurred,
and collision is present, the algorithm generates new
populations and the search starts again. Since planning is
done only once, at the beginning of the motion, a pause of
10 s max can occur during the calculation. Often, the time
is significantly shorter than the maximally acceptable
time, i.e. 10 s. Actually, every motion solution is
acceptable if the resulting number of collisions equals to
zero. This solution might not be optimal in terms of all
optimization criteria, but if time is critical, it can be
adopted and executed.

Regarding the number of generations required for
convergence, we have compared several variations of the
standard approach based on the roulette wheel selection,
methods I-IV, Fig. 6. To speed of
convergence, we introduced the Pareto-based selection.
The idea is to keep not only the best collaborators, as
pairs of values from both populations in the hall of fame,
but also to include the whole Pareto front of the current
generation for evaluation. The methods based on the
Pareto domination are the labelled methods V-VIII in Fig.
6. It is visible that a significant impact on the speed of
convergence is achieved by introducing the new selection
method.

increase the

The differences between methods are as follows: I — IV
are individuals of the standard roulette wheel selection
process, with different values of evolutionary parameters,
such as size of populations, mutation and crossover
probabilities.

Number of generations for methods M | - M VIII
T T T T T T T T

4000 A

30001 -

20001 A

Generation

1000~ 4

T
o Q ]
3000~ - — g

o T i ]
1000 = g - g

Generation

ol L I I L
1 2 3 4 5 3

Method, M I~ M VIl

Figure 6. Impact of the modified co-evolution on the
convergence speed

Methods V-VIII are based on the Pareto selection, with
different parameters of population sizes, crossover and
mutation operator values. The methods are evaluated
with 20 runs for each method and the corresponding
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results are illustrated, with standard deviation, in the
upper part of Fig. 6 and the box-plot in the lower part of
the same figure. We experimented with the depth of the
hall of fame procedure. Namely, if the hall of fame is not
changed during the process of evolution, an opposite
effect in terms of convergence speed can occur, since the
number of good individuals tends to grow. A
consequence is that more calculations per generation are
required. In an early phase of evolution, this is not
important since the hall of fame is empty, or contains a
small number of solutions. The parameter depth of the
hall of fame indicates the memory effect, which
determines the new
members will start to replace the old ones. For our
purposes, we obtained the best results when a hard limit
of 15% of the population size was set to limit the size of
the hall of fame. It is important to note that the size of the
front changes during evolution, since the global optimum
for some criteria might be found, which means the front

is actually reduced to a single point.

after how many generations

Regarding the mutation, as mentioned already, we
experimented with a simple,
probability. It was determined that problems with a
constant mutation rate occur in the later phase of
evolution, when higher mutation rates have a devastating
impact on the individuals. To overcome this issue the
following procedure was designed and implemented. Eq.
10: higher mutation rates are beneficiary in an early phase
of a search in order to quickly sample the search space.
Once “good” parts of the search space are identified, the
mutation should decrease in order to not destroy good
individuals.

constant mutation

P =1-09-= (10)

where pm is mutation probability, t is the current
generation or iteration step and G is them maximally
acceptable number of generations. To sum the
evolutionary parameters for the methods yielding the
best results (methods MV-MVIII) the Pareto front is
copied to the next generation. The size of the front is
limited to 15% of the size of the original population.

The mutation rate is variable, according to Eq. 10, when
roulette wheel selection is implemented and individuals
are encoded as real-valued vectors with joint angles at the
loci. Since the number of evaluations per generation is
large, it is important to identify the operation that is
most-time consuming. It was identified that the collision
check procedure is the most time-consuming operation.
At first, we used a simple method of calculating
intersections between robot links defined as lines. For a
population of size 100 and two robots with two links
each, the number of calculations for only these criteria is
100x100x2x2 and the same number of calculations has to
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be carried out for each discrete time step. This is a large
number with a high impact on calculation time. We have
analysed the problem and were able to significantly
reduce this time by introducing dimensionless
parameters and by transposing the calculation to only the
angle of the rotation space. The procedure is as follows:
Dimensionless parameters x and v are introduced. Their
values define the existence of the intersection point P. The
intersection exists if and only if {4 v} 6(0,1] .

H

he dimensionless parameters are defined as

P = ,ug; O,P = vd , as illustrated in Fig. 7.

Figure 7. Analysis of intersection P between the top links of the
robots

Solving the following equation:
+ub=vd+c+di (11)
we can obtain the values for parameters # and v .

L= sin((p3 —¢4)—sin((p1 —¢4)—§-sin(go4)
sin((p2 —(/74)

. (12

. sin(@2 —(p1)+sin((p3 —wz)—g-sin((oz)
Sin(% —¢4)

Parameter £=d /L

The consequence of this procedure is a significantly less
complex calculation than the calculation of the
intersections of a set of lines, with the beneficial
consequence of increasing the speed of the calculation.
Analogously, the collisions between two arbitrary links of
the robots can be checked.

4. Implementation and experimental results

The proposed algorithm was examined through multiple
simulations in Matlab (Fig. 8 and 9) and finally on the real
robots. Fig. 8 presents the result of the motion of the two
robots in the vertical plane with 2 DOF each. The red
cross stands for the end position of the end-effector of the
corresponding robot, whereas the black circle stands for
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the start position of the end-effector. The configurations
of the robots are chosen so as to lead to collision if each
robot follows the shortest path from the start position of
the end-effector to the end position of the end-effector. In
this setup, each robot has to adapt its motion in order to
avoid the collision with the other robot occupying the
workspace.

Robot motions in simulation environment
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Robot 2 end Robot 1 Start

Y coordinate, m
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Figure 8. Motion of two robots in the Matlab simulation
environment
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Figure 9. Interpolated joint rotation values for discrete values
obtained by the co-evolutionary algorithm

This is the reason why a blank space is visible between
the set of points describing consecutive positions of the
end-effector positions of each robot. The picture itself
describes the trail of the robot, starting from the initial
configuration and ending with the final one.

Fig. 9 describes the interpolated values for the discrete
joint rotation values obtained as a result of the co-
evolutionary algorithm. The interpolation is performed
using a polynomial of the third order to ensure second
order derivability and thus smooth transitions. Also, it is
necessary to check the gradient of the interpolating
polynomial to physically enable the robot to perform the
motion.

The PC that runs Matlab performs all the calculations
upon receiving the actual and desired configurations of
the robot. To enable communication protocols in the
system, we assigned the following IP addresses: Robot 1
(left robot): 192.168.123.26; Robot 2: 192.168.123.25 and
PC: 192.168.123.40. Two communication channels were
opened. The first channel is for sending data from a robot
to the PC. In that case, the robot has the role of the server,
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while the PC is a client receiving the desired data. The
second channel is for sending the response from the PC to
the robot controller.

Now the PC has the role of the server and the robot
controller is the client receiving the desired data.
Messages that are sent are coded and can have different
forms. They indicate whether the motion is possible or
not (i.e., whether the intersection of the robot links in the
initial or final configurations). If the motion is possible, a
list of coordinates and going-through positions of the
end-effector is sent.

It is important to ensure that the time delay between the
start of the motion of both robots is kept to minimum.
This is done through directly connected 1/O signals
between the two robot controllers.

The role of these signals is to trigger the motion at a
desired moment in both robots. The algorithm was tested
for various scenarios: different initial and final conditions,
one robot moving while the other one is waiting,
stationary obstacles present in the workspace, etc.

Fig. 10 and 11 present the final checks prior to
implementation in the real robot setup. The pictures are
from the Roboguide physical simulator developed by
Fanuc Robotics. Fig. 10 is for two Lr Mate robots, for a
simple scenario when one robot is stationary. In this case,
the problem boils down to avoiding a stationary obstacle.

hE QBEFe e BEOBE e iuna 1Y)

-
Fe te BRABE e nna DakB

Figure 10. Motion execution in the Roboguide physical simulator

This is a simple scenario, but a problem was noticed after
implementation in the physical simulator. Namely, since
the robots are defined as a set of lines, the collision can
actually occur due to the physical dimensions of the real
robot, even if the solution from the simulator is collision-
free. To tackle this problem, we described each link of the
robot as a set of two boundary lines.

A circle with a variable radius size parameter is defined
around the TCP to enable tuning according to the current
tool the robot is carrying (as illustrated in Fig. 11). Since
the robots are to have various tools attached to the flange,
we immediately noticed the problem of the fixed
geometry of the robot as implemented in Matlab.
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The three trajectories in Fig. 11, implemented in the M10
robot, in this case illustrate how the safety factor works,
forcing the robot to move away from a potentially
dangerous zone by various amounts depending on the
robot’s current setup. In order to implement the
algorithm in our M10 robot, we had to adapt the lengths
of the links and global coordinate systems in the Matlab
simulation environment. Note also that this motion was
executed in the horizontal plane, providing robots with
only the desired position of the end-effector and using
robots internal kinematics model to calculate everything
else.

Figure 11. Safety factor for the end-effector

The distance between the lines describing the robot and
the sides of the rectangle experimentally
determined to fit the configurations of the robots used in
our laboratory. This way the problems of inconsistencies
between the model and the real robot were eliminated.

were

5. Conclusions

In industrial environments where several autonomous
robots work in a shared environment, it is essential to
find feasible, collision-free motions.

In this paper, we have presented a method based on co-
evolutionary algorithms that finds optimal or near—
optimal trajectories for two industrial robots that share a
workspace. Exact values for the granularity of calculation,
through chromosome length, are calculated, based on the
physical limitations of the robotic system used for
experimental verification. This approach is scalable in
terms of adapting it to different dimensions of robots.
Also, it is general and implies the possibility of adding
new degrees of freedom or new robots to the system.
Standard approaches to co-evolutionary algorithms are
implemented and evaluated and modifications, including
the Pareto-based selection and the transition of
collaborations to the new generations, are presented. The
methods are compared and experimentally verified. The
result of the modifications is the increase in speed of the
convergence in the case of the modified algorithm. A
formal model analysis of the dual arm robot is performed
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to simplify the time-consuming operation of collision
detection. The computational complexity is reduced by
means of a collision check conducted only by
corresponding angles of rotation, instead of using the
exhaustive line intersections procedure.

The algorithm developed in this research is expected to
serve as a low-level procedure ensuring the safe motion
of robots requested to perform high-level tasks. To solve
the problem, we have developed a simulation
environment that analyses movements of simplified robot
models. The next step is implementation in the physical
simulation environment, where the interaction between
physical constraints and the simplified model occurs and
the tuning of the model can be performed to satisfy real-
world constraints. Finally, the full implementation is
performed on two Fanuc Lr Mate 200iC robots.

We anticipate further work in adding more robots and
more degrees of freedom to the model. The model is
developed to be scalable and allows the inclusion of
additional features, although important questions
regarding the computational power are expected. The
main bottleneck of the approach remains its
computational complexity, despite the effort to include
algorithmic simplification.

A possible way to overcome this problem is to apply the
co-evolutionary process to the distributed computer
architecture and to make independent evolutionary
operators perform in parallel.

At this point in the research, planning is performed only
once, at the beginning of the motion of the two robots.
This is fine if nothing unexpected occurs during the
motion of the two robots. If one robot unexpectedly stops
during the motion, there would be a possibility of a
collision with the other robot, since the robots are not
aware of each other after the motion starts. This is a
limitation, but future work will consider permanent
motion sampling for the two robots. If a possibility of
collision is detected, the planning routine can be invoked
more than once to avoid collisions after initial planning.
Features for web-based, real time monitoring and control
of such a complex robotic setup, see for example [22, 23]
are also considered for future research. This would
further increase the safety of a system tending to be of a
high level of autonomy.
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