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~ EDiagnostic(s)
noun
- the art or practice of diagnosis

- EDiagnosis
noun
Investigation or analysis of the cause or
- nature of a condition, situation or problem
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Purpose of Fuel Cell Diagnostics

EDiagnostics in fuel cell development process
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Purpose of Fuel Cell Diagnostics

EDiagnostics in control development process
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Purpose of Fuel Cell Diagnostics

BEDiagnostics in operation
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Fuel Cell Diagnostic Methods

E Observe
(voltage/current, pressure drop, temperature)
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Fuel Cell Diagnostic Methods

E Observe
(voltage/current, pressure drop, temperature)

E Change a parameter and compare



First fuel cell law:
One cannot change only one parameter in a fuel cell —

change of one parameter causes a change in at least
two other parameters, and at least one of them has an
opposite effect of the one expected to be seen.

F. Barbir, PEM Fuel Cells Theory and Practice, Elsevier/Academic Press, 2005



Fuel cells: Problems at different scales

12700 km
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Fuel Cell Diagnostic Methods

E Observe
(voltage/current, pressure drop, temperature)

E Change a parameter and compare
B Disturb and observe

BESmall disturbances
ELarge disturbances (exaggerate or accelerate)



Role of Diagnostics in Fuel Cell Control £
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Purpose of Fuel Cell Diagnostics

EPost mortem diagnostics
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Catheaorization of Diagnostic Methods

E Online

B Offline

B Post mortem
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Fuel Cell Diagnostic Methods

Electrochemical techniques
m Polarization curve
m Current interruption
m Electrochemical Impedance
Spectroscopy
m Cyclic Voltammetry
m CO Stripping Voltammetry
. mLinear Sweep Voltammetry

Current Distribution Mapping
Partial MEA
Segmented Cells

Species Distribution Mapping
m Pressure Drop Measurements

m Gas Composition Analysis

m Neutron Imaging

m Magnetic Resonance Imaging

m X-ray Imaging

m Optically Transparent Fuel Cells

. m Embedded Sensors

Temperature Distribution Mapping
F IR Transparent Fuel Cells

- F Embedded Sensors
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Diagnostics as a desian tool

Polarization curve ]
Polarization curve hysteresis

Comparative polarization curves
Current interrupt

AC impedance spectroscopy
Pressure drop

Current density mapping
Temperature mapping

Flow visualization
Neutron/X-Ray imaging
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Fuel cell polarization curve
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Fuel cell polarization curve
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Fuel cell polarization curve

B Data should be taken at multiple current or voltage points.

B Typical points would be open circuit and 5 or 6 points between 600 mV/cell and
850 mV/cell,

B 15 minutes dwell at each point

B The data from the last five (5) minutes should be averaged and then plotted as
average current versus average voltage.

E US Fuel Cell Council Protocol on Fuel Cell Components Testing

www.usfcc.com



Polarization curve sweep
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PEM Fuel cell transient response
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Qiangu Yan, J. Power Sources, Vol 161, 2006, pp 492-502
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Unitized Regenerative Fuel Cell Cyclic Operétion
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Passive Self-Breathing Micro PEM Fuel Cell
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Passive Self-Breathing Micro PEM Fuel Cell
W Transient Voltage
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Diagnostics as a desian tool

B Polarization curve

Polarization curve hysteresis ]
Comparative polarization curves
Current interrupt

AC impedance spectroscopy
Pressure drop

Current density mapping
Temperature mapping

Flow visualization
Neutron/X-Ray imaging
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Polarization Curve Hysteresis
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Diagnostics as a desian tool

B Polarization curve

Polarization curve hysteresis
Comparative polarization curves]
Current interrupt

AC impedance spectroscopy
Pressure drop

Current density mapping
Temperature mapping

Flow visualization

Neutron/X-Ray imaging
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Comparative polarization curves
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Fig. 5 For air operation, in Ballard Mark 5E hardware, the kinetic benefit of a PtCr alloy cathode is masked by mass
transport losses. The comparative performance of the PtCr alloy and a pure Pt cathode electrocatalyst is shown using
air, helox (21% O, in helium) and O, as oxidants and H, as fuel. The MEAs (< 1 mg Pt cm™) are based on catalysed
substrates bonded to Nafion 115 membrane electrolyte. The cell is operated at 80°C, in hydrogen/air, helox, oxygen,
308/308 kPa, 1.5/2, 2, 10 stoichiometry, full internal membrane humidification

Source: T.P. Ralph and M.P. Hogarth, Platinum Metals Review, Vol. 46, No. 1, pp. 3-14, 2002
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Diagnostics as a desian tool

B Polarization curve

B Polarization curve hysteresis
Comparative polarization curves
Current interrupt ]

AC impedance spectroscopy
Pressure drop

Current density mapping
Temperature mapping

Flow visualization
Neutron/X-Ray imaging
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Current interrupt method for measurement of fuel cell resistance

o

—®
—= Fuel cell Load
! (%)
Digital osciloscope
voltage OoCvV

Slow rise to OCV
AVa.C'[

Cell voltage before voltage, AV
current interrupt |

time
Time of current interrupt



"

Current interrupt method for measurement of fuel cell resistance
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Diagnostics as a desian tool

Polarization curve

Polarization curve hysteresis
Comparative polarization curves
Current interrupt

AC impedance spectroscopy ]
Pressure drop

Current density mapping
Temperature mapping

Flow visualization
Neutron/X-Ray imaging
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Electrochemical Impedance Spectroscopy

F | Each of the losses has
their own rate (time
constant)

F | Apply an AC stimulus (on
top of DC) and observe
consequent AC result
(amplitude and phase)

B Deconvolute the
Impedance associated
with each process.

Voltage

E(w)
(@)

Z(w)=

Fuel cell
polarisation
curve

- ————— —— e b —

Voltage

parturbation . Gurrent

response

Current
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Electrochemical Impedance Spectroscopy

_ Freq. Response
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Fuel Cell Equivalent Circuit

Qathode GDL
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Wiring, Bulk,
Instrument™ contact
Key: GDL = gas diffusion layer, dl = double layer, ct = charge transfer, a = anode, ¢ = cathode.
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Fuel Cell EIS - Typical Results

HF Resistance
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The high, medium and low-frequency
features of PEFC EIS

E In a H,/O, (air) fuel cell, the spectra often have three
features, which are denoted as high-frequency, medium-
frequency, and low-frequency.

I High-frequency — internal ohmic resistance and the
contact capacitance in the granular electrode structure.

I Medium-frequency — charge transfer (kinetic) resistance.
I Low-frequency — mass transport resistance.
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Advantages and limitations of EIS for fuel cells

I Studying the entire frequency response can give information on:
~ Interfacial charge transfer resistance

~ Ohmic losses
= Electronic
= lonic conductivity of electrolyte membranes

~ Oxidant and fuel mass transport resistance
~ Double-layer capacitance

~ Water management

~ Adsorption processes

Measurement is relatively fast (slower than current interrupt).
Applicable across the whole current-voltage operating range.
Does not perturb the system (much) (cf. current interrupt).
Simple equivalent circuits can be used for analysis.
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Advantages and limitations of EIS for fuel cells

Relatively sophisticated instrumentation required.

» Care must be taken with the measurement and the interpretation of
the data.

~ Robust EIS measurements must show:

= Linearity — the AC signal must be low enough to ensure that the

electrochemical response is linear. |.e. response from the system must

be a linear function of the applied perturbation for meaningful
mathematical analysis.

AV = AiR

= For a non-linear system, the change in current is not proportional to the
voltage change

AV # AIR

~ in practice we use small signals (ca. 10 mV) to ensure that the system
behaves approximately linearly.

= Small signals lead to lower accuracy

= |n practice we have to consider a trade-off between linearity and
accuracy.



Comparison with Current

Interrupt

F3m

| pen proa vollage

Elecarmcherrical
e Lo e
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Voltage

Electrochemical Impedance Spectroscopy

Advantages
Provides information on the various losses

in a fuel cell.
No significant perturbation to fuel cell.

Disadvantages
For high current systems a load is

required that has the ability to accept ac
input and operate over the banawidih of
the measurement.

High cost instrumentation required.
Difficult to apply to all cells in a stack
simultaneously.

t."lilurn:m infermapticn point
Time
Current Interrupt
Advantages
Rapid measurement.
Low cost.

Easy to apply to cells in a stack.
Applicable to high current operation

Disadvantages

Significant perturbation to fuel
Requires interruption of the fuel
current delivery.

Current must be flowing for
measurement to be taken (cannot
measure at open circuit conditions).

Low signal-to-noise when measuring at
low current density.

cell.
cell
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Diagnostics as a desian tool

B Polarization curve

B Polarization curve hysteresis

E Comparative polarization curves
B Current interrupt

B AC impedance spectroscopy

[l Pressure drop ]

B Current density mapping

B Temperature mapping

E Flow visualization

B Neutron/X-Ray imaging
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Cell Potential (Volts),
Resistance (miliOhm-cm?),

Stack Flooding and Recovery

Pressure Drop(10 kPa)
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Diagnostics as a desian tool

Polarization curve

Polarization curve hysteresis
Comparative polarization curves
Current interrupt

AC impedance spectroscopy
Pressure drop

[l Current density mapping ]

B Temperature mapping

E Flow visualization

B Neutron/X-Ray imaging
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total cell current - 45,65 A

D. Derteisen et al., Int. J. Hydrogen Energy,
Vol 37, 2012, pp. 7736—7744

total cell current ; 5054 A
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B Polarization curve

B Polarization curve hysteresis

E Comparative polarization curves
B Current interrupt

B AC impedance spectroscopy

B Pressure drop

B Current density mapping

[l Temperature mapping

E Flow visualization

B Neutron/X-Ray imaging




Temperature Mapping with iR Camera
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Segmented fuel cell with separate temperature control

nnnnnn

smallest sensor
on the market
Sensirion SHT 71
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Polarization curve

Polarization curve hysteresis
Comparative polarization curves
Current interrupt

AC impedance spectroscopy
Pressure drop

Current density mapping
Temperature mapping

Flow visualization ]
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Flow Visualization

Interdigitated Flow Field

Enlargement of the tlow channels

Water column

Enlargement of the main channels

Water droplets  Phase boundary

Enlargement of the flow channels

Straight Channels

X Liu, et al. Water flooding and two-
phase flow in cathode channels of
proton exchange membrane fuel cells,
Journal of Power Sources,



Flooding in Fuel Cell Channels

Watersiug —y

Water droplet

o
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D. Lee, J. Bae, Visualization of flooding in a single cell and stacks by using a newly-
designed transparent PEMFC International Journal of Hydrogen Energy, Vol. 37,
No.1, 2012, pp 422-435



Optical measurements of water partial pressure
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Visualization of oxygen partial pressure Fs .l

—— T —— ——mre— e 146 kPa
—— T ey —_— H
kil [ ——H L —— ——1

——— A H—— ¢ 10
— | — _ : ' - ——1F 5
—— B —— — — .u
E-— - C —— —- #

K Takada et al. J. Power Sources , Vol 196, 2011, Pages 2635-2639

Inukai, J. et al. Direct Visualization of Oxygen Distribution in Operating Fuel Cells.
Angew. Chem. Int. Ed. 47, 2792-2795 (2008).
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Real time detection
of liquid water inside
an operating fuel cell

Water Distribution in flow channels vs. Time
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B 400 secs

800 secs

Light tight bex

WET

Neutron te light converter Flow Channel + Water Water only




neutrons can ‘see’ water in fuel cells

normalization of images: water distribution map

original radiography water distribution

ratio:
water filled =

cell
lempty cell
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Liquid water distribution in PEMFC s By
by neutron imaging

at Penn State University

A. Turhan, K. Heller, J.S. Brenizer and M.M. Mench, Passive control of liquid water storage and distribution
in a PEFC through flow-field design, Journal of Power Sources 180 (2) (2008), pp. 773—783.



Synchrotron X-Ray Radigraphy
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Conclusions

B Diagnostics — important aspect of fuel cell R&D

B Limited number of diagnostic methods applicable
for fuel cell control purposes

E Definition of optimum performance must include

life time

E In order to achieve optimum performance diagnostics
IS crucial for prognostics and health management



More information about PEM fuel cells:

Frano Barbir
PEM Fuel Cells: Theory and Practice

Elsevier/Academic Press, 2005
ISBN 978-0-12-078142-3

Written as a textbook
for engineering students.

Used at hundreds of universities B
In U.S., China, India, Korea, Iran, = 'R Fuel

Germany, Croatia ... Cells

Theory and

New updated edition coming out 2012!

Available from:

WWWw.elsevier.com .
WWW.amazon.com _ | FRaNO BARBIR
www.barnesandnoble.com |

SECOND EDITION




