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Shortcomings of the traditional stiffness matrix in dynamic analysis of TLPs, derived by considering equi-
librium of forces, are pointed out, as well as dilemma concerning consistency of the recently presented
matrix based on energy balance. New stiffness matrix is derived by utilizing both force equilibrium
approach, with algebraic averaging and root mean square of tendon forces, and energy balance approach
for large surge and sway. Yaw is treated as a small and large displacement. Static numerical analysis is
performed for all six cases by imposing surge force and yaw moment. The obtained results are compared
with those of FEM analysis, and useful conclusion is drawn, which can be used for improvement of uncou-
pled mathematical model of TLPs.
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1. Introduction

Tension leg platform (TLP) is classified as a compliant offshore
structure, i.e. a semi-submersible one attached to the sea bottom
by vertical pretensioned tendons or tethers, [1]. It is ordinary used
for deep water oil operations. At the beginning the installed depth
was 147 m, Hutton (1984), and nowadays it reaches much higher
values, for instance 1425 m, Magnolia (2005). The consisting parts
of a TLP are: pontoon, columns and deck with drilling equipment,
[2].

TLP motion in waves is nonlinear due to nonlinear restoring
stiffness and damping, [3]. The tendons make TLPs more mobile
in horizontal than in vertical plane and ensure almost horizontal
position of the working area. Vertical excitation is caused by the
first order wave forces, while dominant horizontal excitation is
due to the second order wave forces, [4]. Vertical response, i.e.
heave, roll and pitch, has high natural frequencies due to high axial
tendon stiffness. Natural frequencies of horizontal motion, i.e.
surge, sway and yaw, are much lower due to tendon geometric
stiffness and can easily fall into resonance with the forcing
frequency.

Restoring stiffness plays very important role in TLPs dynamic
behavior. Horizontal motion is nonlinear since stiffness is function
of surge, sway and yaw. Stiffness of vertical motion is almost linear
and depends on platform offset, which causes setdown, as position
parameter. Setdown is one of very important design parameters for
limiting platform immersion [5].

Nowadays, the secant stiffness matrix introduced in [6] and
slightly modified in [7,8] is still widely used for dynamic analysis
of TLPs. Its formulation is based on equilibrium of restoring forces
due to large displacements. One finite displacement is imposed
while the others are restrained. Asymmetric stiffness matrix for
six d.o.f. is established with respect to the center of gravity. Short-
comings of that formulation is that stiffness elements of surge,
sway and yaw depend on tendon axial stiffness instead of a buoy-
ancy increase due to setdown, as a hydrostatic spring. The former
stiffness is much larger than the latter, and since setdown is not ta-
ken into account, implication is excessively large stiffness of hori-
zontal motions. By considering equilibrium due to particular
displacements, coupling motions is not taken into account. These
problems are analysed in details in [9].

Recently, another formulation of nonlinear restoring stiffness
for TLPs is presented in [10], specifying also the shortcomings of
the above mentioned traditional one. The stiffness matrix is de-
rived by the energy approach and employing Lagrange’s equations.
Since the tendon setdowns are different due to coupling of surge
and sway with yaw, the platform is considered as independent
quadrants, which follow the tendon top motion. Potential energy
of the system is established under that assumption, and its first
derivatives per displacements give the restoring forces, i.e. secant
stiffness matrix. The shortcomings of the traditional stiffness are
overcome, i.e. stiffness of horizontal motion depends on platform
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Fig. 1. Double symmetric TLP.
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hydrostatics, and coupling between surge, sway and yaw is
captured.

Dynamic analysis of TLP is performed by the uncoupled and
fully coupled models [11]. In the former case platform is consid-
ered as a rigid body without tendon influence, and linear restoring
is applied. If nonlinear damping is linearized problem can be
solved in frequency domain. That advantage of reduction of com-
puting time is paid by decreased accuracy.

Fully coupled model is actually 3D FEM model of platform and
tendons adapted to large displacements. Due to mechanical and
hydrodynamical nonlinearity problem is analysed in time domain.
Nonlinear equation of motion can be linearized that makes some
difficulties and limitations.

Motivated by the fact that the uncoupled dynamic analysis of
TLPs is widely performed by using linear or an inadequate nonlin-
ear restoring stiffness matrix, research for consistent stiffness is
undertaken [9]. The force equilibrium approach is employed and
stiffness similar to that in [10], determined by the energy ap-
proach, is obtained. New stiffness elements are the same for surge,
sway and yaw, but without some additional coupling terms pres-
ent in the energy formulation [10]. Hence, there is doubt which
of the two stiffness formulations is a proper one.

In order to overcome that dilemma nonlinear restoring stiffness
is derived in this paper by employing both the force equilibrium
and energy balance approach for large surge and sway, as well as
yaw motion that was not the case in the previous considerations,
[9] and [10]. Then, the obtained stiffness expressions are reduced
for the case of small yaw.

In order to evaluate two different restoring stiffness formula-
tions, static response of a TLP platform exposed to surge force
and yaw moment is analysed, treating yaw both as a small and
large quantity. The obtained results are compared to those deter-
mined by FEM analysis that leads to some interesting conclusion.

2. Stiffness based on equilibrium of forces

2.1. Large translation and rotation

A double symmetric rectangular TLP, with four tendons and
main dimensions shown in Fig. 1, is considered. The platform is ex-
posed to large surge, sway and yaw, dx, dy and u, which are com-
mon for all tendons, Fig. 2. Trajectory of the tendon top due to
yaw is circular arc, ru, where r is the tendon radial distance from
the platform centroid. The tendon final offset is determined with
the secant displacement, Fig. 2

du ¼ 2r sin
u
2
: ð1Þ

According to Fig. 2 the tendon top coordinates in the local coordi-
nate system read
Fig. 2. Large surge, sway and yaw.
Ln
x ¼ dx � Dn

x ¼ dx � du sin hn þ
u
2

� �
; ð2Þ

Ln
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� �
; ð3Þ
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; ð4Þ

where L is tendon length and hn, n = 1, 2, 3, 4, is tendon central
angle.

Components of the tendon tension forces Tn in an offset position
are proportional to the tendon top coordinates
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Tn
x ¼

Tn

L
dx � du sin hn þ

u
2

� �h i
; ð5Þ

Tn
y ¼

Tn

L
dy þ du cos hn þ

u
2

� �h i
; ð6Þ

Tn
z ¼

Tn

L
Ln

z : ð7Þ

Total tendon force acting on platform is T ¼
PN

n¼1Tn. Its components
according to (5)–(7) read

Tx ¼
XN

n¼1

Tn
x ¼

T
L

dx; ð8Þ

Ty ¼
XN

n¼1

Tn
y ¼

T
L

dy; ð9Þ

Tz ¼
XN

n¼1

Tn
z ¼

T
L

1
N

XN

n¼1

Ln
z : ð10Þ

Horizontal components Tx and Ty depend only on horizontal dis-
placements dx and dy, respectively, since the trigonometric functions
vanish from (5) and (6) upon summation owing to the platform
double symmetry. However, values of Ln

z are different in case of
yaw. In order to make summation of Ln

z in (10) possible let us ex-
pand Ln

z into power series. Since
ffiffiffiffiffiffiffiffiffiffiffi
1� e
p

¼ 1� 1
2 e� 1�1

2�4 e
2 � � � � one

can write

Lz ¼
1
N

XN

n¼1

Ln
z ¼ Lð1� f1 � f2Þ; ð11Þ

where

f1 ¼
1

2L2 d2
x þ d2

y þ d2
u

� �
; f 2 ¼

1
2

f 2
1 þ f3; ð12Þ

f3 ¼
2
L4 d2

x b2 cos2 u
2
þ a2 sin2 u

2

� �
þ d2

y a2 cos2 u
2
þ b2 sin2 u

2

� �h
þ dxdyðb2 � a2Þ sin u

i
sin2 u

2
: ð13Þ

Functions f1 and f2 are the first and second order terms, respectively.
Relatively simple expressions are obtained since trigonometric
functions of argument hn with odd exponent vanish upon summa-
tion. Also, relation (1) for du, cos2hn = (a/r)2 and sin2hn = (b/r)2 are
employed. In that way angles hn disappear from Lz. Differences
Ln

z � Lz cause some small platform roll and pitch.
The tendon offsets cause platform setdown ds = L � Lz, and con-

sequently additional buoyancy DU and tendon forces DTn. The
resulting additional tendon force can be determined from the equi-
librium of the vertical forces

U þ DU ¼ Q þ 1
L

XN

n¼1

ðTn þ DTnÞLn
z ; ð14Þ

where Q is the platform weight. The second term in (14) is written
according to (10). The increased buoyancy reads

DU ¼ qgAWLd
s; ð15Þ

where AWL is the waterplane area. By taking floating condition
T = U � Q into account and substituting (15) into (14), one finds
for the total additional tendon force

DT ¼ 1
Lz

XN

n¼1

DTnLn
z ¼

1
Lz
ðT þ qgAWLLÞds: ð16Þ

Horizontal component of the total tendon force (8) is increased, and
has to be equal to the external force, Tx = Fx, i.e.

Fx ¼
1
L
ðT þ DTÞdx ¼ ~K0dx; ð17Þ
where eK 0 is nonlinear secant stiffness. By substituting (16) into (17)
yields

eK 0 ¼
1
Lz
ðT þ qgAWLd

sÞ ¼ C
Lz
� qgAWL; ð18Þ

where

C ¼ T þ qgAWLL: ð19Þ

Analogously, the sway force reads Ty ¼ Fy ¼ eK 0dy.
The yaw moment is caused by the horizontal tendon forces

Mz ¼ �
XN

n¼1

Tn
x þ DTn

x

� �
yn þ

XN

n¼1

Tn
y þ DTn

y

� �
xn; ð20Þ

where xn = r coshn and yn = r sinhn are the tendon top coordinates,
Fig. 1. By employing (5) and (6) one finds

Mz ¼
r
L

XN

n¼1

ðTn þ DTnÞ �dx sin hn þ dy cos hn þ du cos
u
2

� �
: ð21Þ

Trigonometric functions of hn vanish upon summation and taking
(1) for du into account one arrives at

Mz ¼
r2

L
ðT þ DTÞ sinu ¼ eK 0r2u: ð22Þ

Since according to (17) ðT þ DTÞ=L ¼ eK 0, the yaw stiffness reads

eK 66 ¼ r2 eK 0
sinu
u

: ð23Þ

Function sinu/u represents reduction of arm of the tendon horizon-
tal forces. For hypothetically large value u = p, the arm is zero.
Fig. 3. Construction of setdown in offset plane.
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2.2. Large translation and small rotation

If only the first two terms of expansion (11) for Lz are taken into
account, the setdown reads

ds ¼ L� Lz ¼ Lf1 ¼
1
2L

d2
x þ d2

y þ d2
u

� �
: ð24Þ

It can be constructed as shown in Fig. 3, where dh and w is virtual
horizontal displacement and offset angle, respectively.

Furthermore, if yaw angle u is small then according to (1)
du = ru and

ds ¼ 1
2L

d2
x þ d2

y þ r2u2
� �

: ð25Þ

In that case the yaw stiffness (23) is also simplified, eKu ¼ r2 eK 0. It is
obvious that stiffness in any horizontal direction is the same.

3. Stiffness based on balance of potential energy

3.1. Large translation and rotation

The following forces act on platform: U, Q, T, DT and DU. Tendon
elongation DLn due to tendon forces Tn + D Tn is very small compar-
ing to the platform setdown and therefore is ignored. Work of the
external vertical forces U � Q = T is done in the way of setdown, ds.
Buoyancy variation DU is internal force increasing proportionally
to the setdown. Hence, one can specify the platform potential en-
ergy as

V ¼ Tds þ 1
2
qgAWLðdsÞ2: ð26Þ

The platform vertical coordinate Lz is defined by (11), and accord-
ingly the setdown ds = L � Lz reads

ds ¼ Lðf1 þ f2Þ; ð27Þ

where f1 and f2 are specified with (12) and (13), respectively. Lz can
also be determined as the quadratic mean of the tendon vertical
coordinates (4), i.e.

L2
z ¼

1
N

XN

n¼1

Ln
z

� �2
: ð28Þ

Since the trigonometric functions of angles hn in Ln
z

� �2 vanish upon
summation, yields

L2
z ¼ L2 1� 2f 1ð Þ: ð29Þ

On the other side, relation ds = L � Lz gives

ðdsÞ2 ¼ L2 � 2LLz þ L2
z : ð30Þ

By substituting (11) and (29) into (30) one arrives at

ðdsÞ2 ¼ 2L2f2: ð31Þ

Finally, by employing (27) and (31), Eq. (26) can be presented in the
form

V ¼ TLf1 þ CLf2; ð32Þ

where function f2 of the second order is transferred from the first
term to the second one.

Since function f2 consists of two terms, Eq. (12), yields

V ¼ TLf1 þ
1
2

CLf 2
1 þ CLf3; ð33Þ

Restoring forces are obtained as derivatives of the potential en-
ergy per particular displacement. Hence, for the secant stiffness of
surge, sway and yaw one can write
eK 11 ¼
L
dx

T
@f1

@dx
þ C

@f2

@dx

	 

; ð34Þ

eK 22 ¼
L
dy

T
@f1

@dy
þ C

@f2

@dy

	 

; ð35Þ

eK 66 ¼
L
u

T
@f1

@u
þ C

@f2

@u

	 

: ð36Þ

Derivatives of functions f1 and f2. Eqs. (12) and (13), are the
following:

@f1

@dx
¼ dx

L2 ;
@f1

@dy
¼ dy

L2 ;
@f1

@u
¼ r2

L2 sin u; ð37Þ

@f2

@dx
¼ 1

L2 f1dx þ
4
L4 f3dx sin2 u

2
; ð38Þ

@f2

@dy
¼ 1

L2 f1dy þ
4
L4 f4dy sin2 u

2
; ð39Þ

@f2

@u
¼ r2

L2 f1 sin uþ 1
L4 f4d

2
x þ f5d

2
y þ ðb

2 � a2Þdxdy sin u
h i

sinu

þ b2 � a2

L4 d2
y � d2

x

� �
sin uþ 2dxdy cos u

h i
sin2 u

2
; ð40Þ

where f1 is represented with (18) and

f4 ¼ b2 cos2 u
2
þ a2 sin2 u

2
; ð41Þ

f5 ¼ a2 cos2 u
2
þ b2 sin2 u

2
: ð42Þ
3.2. Large translation and small rotation

If yaw angle is small sin u � u; cos2 u
2 � 1 and sin2 u

2 � 0, the
stiffness elements, Eqs. (34)–(36), take quite simple form

eK 11 ¼ eK 0 þ
C

L3 b2u2; ð43Þ

eK 22 ¼ eK 0 þ
C

L3 a2u2; ð44Þ

eK 66 ¼ r2 eK 0 þ
C

L3 b2d2
x þ a2d2

y þ ðb
2 � a2Þdxdy

h i
; ð45Þ

where eK 0 is specified with Eq. (34). Last term in (53) in case of a
square platform is zero, while for a rectangular one its value de-
pends on the platform aspect ratio. If that term is ignored due to
small value, elements eK ii; i ¼ 1;2;6, are identical to those pre-
sented in [10]. They are derived directly for small yaw angle and
utilizing the energy approach based on the assumption that each
platform quarter moves separately together with the corresponding
tendon.

4. Stiffness based on root means square of tendon forces

4.1. Large translation and rotation

In spite of the fact that stiffness elements shown in the previous
sections are consistently derived based on equilibrium of forces
and energy balance, different formulas are obtained. The reason
for that is use of the algebraic and quadratic mean of the vertical
tendon forces, expressed with coordinates Ln

z , Eq. (10), in the for-
mer and latter case, respectively. Consequence of natural applica-
tion of the algebraic mean on potential energy is investigated in
Appendix.

In addition it is interesting to apply the quadratic mean for ver-
tical tendon forces in the force equilibrium approach. One can start
with rigorous expression for eK 0, Eq. (18). Since Lz = L � ds and by
employing relation (1 � e)�1 � 1 + e, yields



Table 1
Main particulars of the ISSC TLP.

Parameters Symbol Value

Column (tendon) spacing 2a = 2b 86.25 m
Column diameter DC 16.87 m
Pontoon width w 7.50 m
Pontoon height d 10.50 m
Draft �zT 35.00 m
Waterplane area Awl 894 m2

Displacement U 5.346 � 105 kN
Weight Q 3.973 � 105 kN
Total tendon pretension T 1.373 � 105 kN
Longitudinal metacentric height MLG 6.0 m
Transverse metacentric height MT G 6.0 m
Platform mass m 40.5 � 103 t
Roll mass moment of inertia JG

x
82.37 � 106 t m2

Pitch mass moment of inertia JG
y

82.37 � 106 t m2

Yaw mass moment of inertia JG
z

98.07 � 106 t m2

Vertical position of COG above keel PG 38.0 m
Vertical position of COB above keel PB 22.3 m
Length of mooring tendons L 415.0 m
Tendon cross-section area A 1.6 m2

Vertical stiffness of combined tendons EA
L

0.813 � 106 kN/m

Roll and pitch effective stiffness EIx
L ;

EIy

L
1.501 � 109 kNm/rad

Young’s modulus E 2.1 � 108 kN/m2
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eK 0 ¼
T
L
þ C

L2 ds: ð46Þ

For setdown ds quadratic mean (31), i.e. root mean square, can be
used that arrives at

eK RMS ¼
T
L
þ C

L2 ds
RMS; ð47Þ

where

ds
RMS ¼ L

ffiffiffiffiffiffiffiffi
2f 2

q
: ð48Þ

By employing the second of Eqs. (12) the stiffness is presented in
the final form

eK RMS ¼
T
L
þ C

L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2
1 þ 2f 3

q
: ð49Þ
4.2. Large translation and small rotation

If yaw angle is small one finds from Eqs. (12) and (13)

f1 ¼
1

2L2 d2
x þ d2

y þ r2u2
� �

; ð50Þ

f3 ¼
1

2L4 b2d2
x þ a2d2

y

� �
u2: ð51Þ
Table 2
Platform displacements.

Case no. Approach Averaging of tendon
forces

Yaw
treatment

Loading
condition
Ref.

1 Force equilibrium Arithmetic Small [9] Section 2.2
2 Force equilibrium Arithmetic Large Section 2.1
3 Force equilibrium RMS Small Section 4.2
4 Force equilibrium RMS Large Section 4.1
5 Energy balance Quadratic Small [10] Section 3.
6 Energy balance Quadratic Large Section 3.1
7 FEM LS DYNA
In that case 2f 3 � f 2
1 and relation

ffiffiffiffiffiffiffiffiffiffiffi
1þ e
p

� 1þ e
2 can be applied. By

taking into account ds = L f1 stiffness (49) can be presented in the
form

eK RMS ¼ eK 0 þ
C

2L4ds
b2d2

x þ a2d2
y

� �
u2: ð52Þ

The stiffness is the same in any direction, while that obtained by the
energy approach is different, Eqs. (43)–(45). Actually, the constitu-
tive quantities of (52) are spread into Eqs. (43)–(45) in a refined
energetic way. Yaw influences translations and vice versa.
5. Comparison analysis of different stiffness formulations

5.1. Uncoupled static analysis

Influence of six restoring stiffness formulations presented in
Sections 2–4, on uncoupled static platform response, i.e. ignoring
tendon influence, is analysed in the case of well known ISSC TLP,
which is often used in the relevant literature as a benchmark
[12]. The platform main particulars are listed in Table 1, where ten-
sion leg stiffness and mass parameters are related to the center of
gravity.

Large surge and yaw displacements are given in order to mag-
nify their coupling: dx = 0.1L = 41.5 m and u = 45� = 0.78537 rad.
The surge force Fx ¼ eK 0dx and yaw moment Mz ¼ r2 eK 0u, are calcu-
lated by employing formula (34) for eK 0. The partial setdown for
surge and yaw are determined according to (25):

ds
F ¼

1
2L

d2
x ¼ 2:075 m;

ds
M ¼

r2

2L
u2 ¼ 2:748 m:

That leads to Fx = 1.563 � 104 kN and Mz = 1.136 � 106 kN m.
Furthermore, force Fx and Mz are imposed to the platform sepa-

rately and than together in order to analyse interaction between
surge and yaw. The obtained results for uncoupled and coupled
case and six stiffness formulations, determined iteratively, are
listed in Table 2. All formulations in case of Fx give the same value
for dx and ds, respectively. Moment Mz causes almost the same dis-
placements u and ds, for force equilibrium and energy balance. Dif-
ferences of ca. 20% are caused by yaw treatment as a small or large
quantity. Common action of Fx and Mz results with different values
of all displacements, dx, u, ds, for considered six cases, i.e. three dif-
ferent approaches and two yaw treatments.

In order to evaluate which of the above results are more realis-
tic, the same nonlinear problem is solved by the finite element
method by using program LS DYNA [13]. A quite simple FEM model
is constructed as shown in Fig. 4. The platform is modeled as a
thick plate of thickness t = 1 m and tendons by one finite element.
Force Fx is lumped in the plate corners, while moment Mz is distrib-
Fx = 1.563 � 104 kN Mz = 1.136 � 106 kN m Fx&Mz

dx (m) ds (m) u (�) ds (m) dx (m) u (�) ds (m)

41.5 2.075 45 2.748 37.174 41.87 4.044
41.5 2.075 50 3.392 36.604 46.01 4.336
41.5 2.075 45 2.748 36.110 40.67 3.815
41.5 2.075 50 3.392 35.596 44.40 4.071

2 41.5 2.075 45 2.748 34.204 39.98 3.579
41.5 2.075 50 3.182 33.330 43.79 3.817
41.25 2.055 49.1 3.088 33.343 42.95 3.746



Fig. 4. TLP FEM model.

Fig. 5. Bird’s view of platform in offset position.

Fig. 6. Lateral view of platform in offset position.
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uted in all 25 nodes. The hydrostatic springs in the plate corners
take value kn ¼ 1

4 qgAWL ¼ 2192 kN=m. Value of the Young’s modu-
lus is considerably increased (E⁄ = 103E) in order to constrain initial
tendon strain due to imposed tendon pretension forces Tn, Fig. 4.

Numerical calculation is performed separately for particular
loads Fx and Mz, and then for their common action. Due to geomet-
ric nonlinearity caused by the large displacements the static prob-
lem is solved as a dynamic one in the time domain by the step-by-
step integration method and slowly increasing load values in order
to avoid inertia influence. First force Fx is imposed and then mo-
ment Mz so that their particular influence on response can be no-
ticed. The bird’s view of the platform in the equilibrated
translated and rotated position is shown in Fig. 5. Figs. 6 and 7
show zoomed lateral and front view, where platform small pitch
and roll can be noticed.

The time history of the platform longitudinal, transversal and
vertical displacements is shown in Figs. 8–10, respectively. During
Fx action displacements of all platform corners are the same. By
activating Mz spreading of displacements due to rotation is notice-
able. Displacement dx is slightly reduced, while setdown ds is con-
siderably increased.

The FEM results for all three loading conditions are added in Ta-
ble 2. Response due to Fx is slightly smaller than the analytical val-
ues. In case of Mz action numerical results are also somewhat lower
than analytical ones for energy balance approach and yaw treat-



Fig. 7. Front view of platform in offset position.

Fig. 8. Time history of platform longitudinal displacement.

Fig. 9. Time history of platform transverse displacement.

Fig. 10. Time history of platform setdown.

Fig. 11. Setdown versus virtual horizontal displacement.

Fig. 12. Horizontal restoring force versus horizontal displacement.
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ment as a large value. Since the analytical solutions for particular
load are rigorous, they can be used for validation of the FEM
results.

For simultaneous action of Fx and Mz the analytical results are
nearly equal to the numerical ones. However, the latter are more
accurate and therefore are used as referent values. Values of set-
down in cases 3 and 6 are closer to the FEM ones, than those ob-
tained for the other four cases. However, in case 6 better
agreement for surge and yaw is obtained. Spreading of setdown
ds as function of virtual horizontal displacement, dh ¼

ffiffiffiffiffiffiffiffiffiffi
2Lds
p

, which
comprises both surge, dx, and yaw, du, Eq. (24), is shown in Fig. 11.
The figure represents zoom of the complete diagram constructed in
accordance with Fig. 3.
5.2. Coupled static analysis

The ISSC TLP is exposed to action of static surge force Fx, im-
posed at the pole level P, Fig. 1, by gradually increasing its magni-
tude. In analytical uncoupled analysis one half of the tendon
weight is added to the platform bottom and another half to the
sea bottom.

The same task is analysed as coupled platform and tendon prob-
lem by the finite element method, [14] and [15]. The platform is
represented by one rigid plate element, while each tendon is mod-
eled by four beam finite elements with realistic stiffness and dis-
tributed weight.



Fig. 13. Vertical displacement versus horizontal displacement.

Table 3
Comparison of coupled (FEM) and uncoupled (analytical) TLP static analysis.

Fx (kN) Coupled Uncoupled

X (m) Z (m) X (m) Z (m)

0 0.000 0.000 0.000 0.000
3126 11.667 �0.165 11.559 �0.161
6252 22.482 �0.613 22.327 �0.601
9378 32.066 �1.245 31.926 �1.228
12,504 40.444 �1.979 40.355 �1.962
15,630 47.793 �2.763 47.770 �2.749
18,756 54.304 �3.565 54.350 �3.559
21,882 60.135 �4.372 60.251 �4.374
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The obtained results are shown in Figs. 12 and 13. The former
represents surge as function of imposed force Fx, and latter shows
vertical displacement as function of surge. Difference between ana-
lytical uncoupled and FEM coupled analysis is very small as can be
noticed in Table 3. In uncoupled analysis vertical displacement is
pure setdown, while in coupled analysis there is small release
due to tendon elasticity. Since results of uncoupled and coupled
analysis are very close, one can conclude that the former is reliable
enough for the static analysis.
6. Conclusion

Nonlinear restoring stiffness plays very important role in TLPs
dynamic behavior. The traditionally used stiffness matrix mani-
fests shortcomings [7,8], while there is doubt concerning consis-
tency of the recently derived matrix [10]. Therefore a detailed
analysis of the problem is undertaken. Both the force equilibrium
approach, with algebraic mean and RMS of tendon forces, and po-
tential energy approach with quadratic mean are used and new
stiffness matrices, treating yaw as a small and large displacement,
are derived. Comparison of numerical results determined for ISSC
TLP with those of FEM analysis shows that the stiffness matrix for-
mulation based on energy approach for large yaw is the most
reliable.

The derived secant stiffness matrix for horizontal motions has
to be completed with terms for vertical motions, i.e. heave, pitch
and roll. Such matrix is diagonal since it is established with respect
to the pole P, Fig. 1, while the accompanying mass matrix is not
diagonal. Setdown, as a slave d.o.f. of the master horizontal dis-
placements, induces vertical inertia force, which has to be incorpo-
rated in the mass matrix. However, it is easier to add setdown to
heave forming in such a way complete vertical motion. The stiff-
ness matrix is accordingly transformed; it becomes asymmetric
[9]. In order to perform dynamic analysis in ordinary way with re-
spect to the center of gravity, both matrices have to be transformed
from the tendon natural coordinate system to the global system
with origin in the center of gravity.

Some software operate with nonlinear restoring forces and
some with their increments, i.e. secant and tangent stiffness ma-
trix, respectively. Both matrices can be easily incorporated in the
existing computer codes. In that way applicability and accuracy
of uncoupled model is extended and increased, respectively. That
might be interesting for improvement of the required uncoupled
time domain model in the Classification Rules for design and con-
struction of TLPs, [16].
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Appendix A. Potential energy based on equilibrated forces

After the nonlinear stiffness for large translation and small rota-
tion and algebraic mean of tendon forces based on equilibrium of
internal and external forces is established, it is interesting to for-
mulate potential energy of the considered elastic system. The
external forces are specified in simple form

Fx ¼ eK 0dx; Fy ¼ eK 0dy; Mz ¼ r2 eK 0u; ðA1Þ

where eK 0 is common stiffness, Eq. (18). Since Lz = L � ds, stiffness,
Eq. (18) can be expressed as function of setdown

eK 0 ¼
C

L� ds � qgAWL: ðA2Þ

Work of the horizontal forces is

V ¼
Z

Fx ddx þ
Z

Fy ddy þ
Z

Mz du ðA3Þ

and by substituting (A1) into (A3) yields

V ¼
Z eK 0ðdx ddx þ dy ddy þ r2u duÞ: ðA4Þ

Expression in the brackets, according to (25), represents the total
differential of setdown, i.e. (. . .) = L dds. Hence, by substituting
(18) into (A4) one finds

V ¼ L
Z

C
L� ds � qgAWL

	 

dðdsÞ

¼ �LC ln 1� ds

L

	 

� qgAWLLds: ðA5Þ

The logarithmic function can be expanded into the power series

ln 1� ds

L

	 

¼ �

X1
k¼1

1
k

ds

L

	 
k

; ðA6Þ

that leads to

V ¼ Tds þ C
2L
ðdsÞ2 þ LC

X1
k¼3

1
k

ds

L

	 
k

; ðA7Þ

where the first two term of the series are expressed explicitly.
Quantities C and ds are specified by Eqs. (19) and (25), respectively.
According to (12) ds = L f1 and the potential energy can be presented
in the following form

V ¼ TLf1 þ
1
2

CLf 2
1 þ LC

X1
k¼3

1
k

f k
1 : ðA8Þ

By comparing (A8) with (33) it is obvious that the first two terms
are identical. The third term in (33) is of the same order of magni-
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tude as the second one, and cannot be compensated with the third
term in (A8), since it is a small quantity of higher order.

Formulation of potential energy (A8) leads to the stiffness

eK 0 �
T
L
þ C

L2 ds; ðA9Þ

which is common for any direction. The first and the second term in
(A9) represent linear and nonlinear stiffness, respectively, [9].
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