
Transformation of OWL Ontology Sources

into Data Warehouse

M. Gulić

Faculty of Maritime Studies, Rijeka, Croatia

marko.gulic@pfri.hr

Abstract - The Semantic Web, as the extension of the

traditional Web, provides the semantic annotations of the

information generated by different organizations. Semantic

annotations are stored within ontologies. Ontologies are

expressed using ontology language. Web Ontology

Language (OWL) is one of the most popular ontology

languages. As a result of the increasing use of ontologies,

large quantity of complex, heterogeneous and semi-

structured semantic data sources exists. There is plenty of

useful information in these data sources that can be

analyzed and used in the decision making process of an

organization. In order to facilitate the analysis of semantic

data, new data warehouse tools that support semantic data

analysis must be made. Data warehouse is used in

traditional business analysis and decision making processes.

A star schema is the most common design of data

warehouse. In this paper a method that transforms OWL

structure into the star schema of data warehouse is

proposed. After the designer chooses the fact in the

ontology, a method transforms OWL into the star schema.

At the end, the designer selects which elements in the

schema remain while creating physical data warehouse.

I. INTRODUCTION

The Semantic Web provides a common framework
that allows data to be shared and reused across
application, enterprise, and community boundaries [1].
Therefore, the goal of Semantic Web is the creation of
standards and technologies that help machines to
understand more about the Web data. These standards and
technologies will improve user search results, data
integration, navigation etc. Semantic annotations for Web
data are stored within ontologies.

Ontology is a shared understanding of some domain of
interest [2]. Ontology defines a set of entities and relations
between them in a way that both humans and machines
understand it. There are various data and conceptual
models that can be thought of as ontologies (e.g.
folksonomies, UML models, XML schemes, formal
ontologies, etc.). Ontologies are expressed in an ontology
language. OWL [3] is one of the most popular languages
that is recommended by W3C organization.

As the Semantic Web is rapidly increasing, a large
quantity of heterogeneous, composite and semi-structured
semantic data sources exists. In these data, there is a lot of
useful information that can be used in the decision making
process of some company. For example, the data of the
sales that were completed through the Web using a
common ontology between two organizations can be used

in decision making process. Data warehouse has proved as
a good solution in decision making process. According to
[4], a data warehouse is a subject-oriented, integrated,
time-variant and non-volatile collection of data in support
of management's decision making process. The process of
creating the data warehouse includes business demands,
data design, architecture design, implementation, and
deployment [4]. A data modelling is included in the data
design. A dimensional fact model is one of the most
popular models. The dimensional fact model consists of a
fact table and its associated dimension tables [5]. These
dimension tables consist of descriptive attributes that
define some fact. Fact table also has attributes which are
numeric and additive. If the presentation area is based on a
relational database, then this dimensional fact model is
implemented with a star schema [5]. The star schema is
different from typical relational databases that are in the
third normal form.

In order to facilitate the analysis of semantic data
sources in the data warehouse, new warehouse tools need
to be made. The tools [7, 8, 9 and 10] transform OWL
ontology into a relational database, but do not deal with
the star schema. Therefore, the additional transformation
from relational database to the star schema is necessary.
Furthermore, there is a risk of losing relevant information
during multi-step transformation. Some relations
(hierarchy between classes, symmetric relations etc.)
within the OWL ontology could be lost after
transformation of ontology into a relational database.
Therefore it is better to implement a method that
transforms OWL ontology into the star schema directly.

Furthermore, these solutions (except the [7]) deal with
all subclasses of certain class in a way that the particular
table is created for every subclass. This solution is not
good for transforming relational database into the star
schema because every subclass is managed like specific
entity which is not the true. However, we take advantage
of their transformation and improve several procedures to
transform ontology into the star schema. Only the authors
in [11] propose the direct transformation from the OWL
ontology to the star schema, but with several drawbacks.
The main drawback of their work is that data warehouse
does not include the data of instances of certain class and
its subclasses that does not have the values for certain
attributes in the ontology that are specific for several
subclasses.

In this paper a method that transforms OWL Lite
ontology into the star schema directly is proposed. The

limitations described in the previous paragraph are also
resolved. Our method deals with a class and its subclasses
in a way that these classes represent one entity. Therefore
the certain class and its subclasses become one dimension
in the data warehouse. Our method also stores the data of
all individuals of parent class and all its subclasses despite
some individuals do not have values for several attributes
that are specific only for certain subclasses. In this way,
the data warehouse contains total data from the ontology,
which is essential if the analyst wants to get the accurate
results.

The paper is organized as follows. In Section II the
terminology of OWL Lite ontology and star schema is
introduced. In Section III related work is discussed. In
Section IV the method for transforming OWL structure
into the star schema is presented. Finally, the conclusion is
given in section V.

II. TERMINOLOGY

A. OWL Lite ontology

OWL language (figure 1) is used when the information
in a document need to be processed by a machine. OWL
represents the meaning of terms and the relationships
between them. OWL has three sublanguages: OWL Lite,
OWL DL, and OWL Full. In this paper, the OWL Lite
ontology is used. According to [12] the definitions of the
OWL Lite elements that are essential for transformation
are given below:

An owl:Class defines a group of individuals that
belong together because they share some properties. For
example, HP1005 and Canon505 are both members of the
class Printer (figure 1). A rdfs:subClassOf establishes a
hierarchy between one or more class. For example, the

class Printer could be stated to be a subclass of the class
Product (figure 1). An Individual is instance of the certain
class, and properties can relate one individual to another.
Individuals carry data that can be used for analysis.

A rdf:Property is used to define relationships between
individuals (owl:ObjectProperty) or between individuals
and data values (owl:DatatypeProperty). Example of
properties can be named as hasProduct, hasPrice etc. A
rdfs:domain of a property defines the individuals to which
the property can be applied. For example, the property
hasProduct can have the domain of Invoice (figure 1). A
rdfs:range of a property defines the individuals that the
property may have as its value. For example, the property
hasProduct can have the range of Product (figure 1). An
inverseOf element defines a property that can be the
inverse of another property. If the property P1 is the
inverse of the property P2, and X is related to Y by the
P2, then Y is related to X by the P1. Properties may be
stated to be SymmetricProperty. If a property is
symmetric, and the pair (x,y) is an instance of the
symmetric property P, then the pair (y,x) is also an
instance of P. If a property is FunctionalProperty, than a
unique value is added to each individual that has this
property. Transitive and InverseFunctionalProperty also
exist in the OWL Lite ontology, but this type of property
does not affect the transformation of OWL ontology into a
star schema.

OWL Lite restrictions define the rules for using
properties by particular instance. There are 5 restrictions:
allValuesFrom, someValuesFrom, minCardinality,
maxCardinality and cardinality. AllValuesFrom defines a
local range restriction of some range class.
SomeValuesFrom defines that at least one value of
restricted property related to some instance is of the
certain type. MinCardinality defines the minimal number
of values of certain property that the individual must have.
MaxCardinality defines the maximal number of values of
certain property that the individual must have. Cardinality
defines the exact number of values of certain property that
the individual must have.

OWL uses the XML Schema dataTypes for defining
the range of owl:DataTypeProperties.

B. Dimensional fact model

In this paper we adopt the dimensional fact model as a
conceptual model that presents a data warehouse by a set
of fact schemes with facts, measures, dimensions and
hierarchies [16]. A fact is the center of interest in the
decision making process.

A fact represents an event that occurs dynamically in
the business process (e.g. invoice). A fact consists of
measures. Measures are attributes that specify a fact. The
most useful measures are additive and numeric. For
example, every invoice has the total price, total tax etc.

Dimensions consist of discrete attributes that describe
the fact event. Dimensions define the grain of the fact. For
example, dimensions for every invoice are product, date,
time, store etc. In this example, an analyst may request to
see the money amount by product, by week, every evening
from 7pm to 9pm. An analyst usually uses the OLAP (On-

<owl:Class rdf:ID="Product">

</owl:Class>

<owl:Class rdf:ID="Invoice">

</owl:Class>

<owl:Class rdf:ID="Printer">

<rdfs:subClassOf>

<owl:Class rdf:about="#Product"/>

</rdfs:subClassOf>

</owl:Class>

<owl:ObjectProperty rdf:ID="hasProduct">

<rdfs:range rdf:resource="#Product"/>

<rdfs:domain rdf:resource="#Invoice"/>

</owl:ObjectProperty>

<owl:DatatypeProperty rdf:ID="hasPrice">

 <rdfs:domain rdf:resource="#Product" />

 <rdfs:range rdf:resource="&xsd;float"/>

</owl:DatatypeProperty>

<Invoice rdf:ID="Invoice145">

 <hasProduct rdf:resource="#HP1005"/>

 <hasProduct rdf:resource="#Canon505"/>

</Invoice>

<Printer rdf:ID="HP1005">

 <hasPrice>95</hasPrice>

</Printer>

<Printer rdf:ID="Canon505">

 <hasPrice>90</hasPrice>

</Printer>

Figure 1 A part of OWL ontology

Line Analytical Processing) tools for analyzing data
warehouse. These tools are based on a multidimensional
conceptual view of data. In this paper, a transformation
from OWL ontology to ROLAP (Relational On-Line
Analytical Processing) system is proposed. The ROLAP
uses the relational model for representing dimensional fact
model. The implementation of dimensional fact model in
the relational database is called star schema (figure 2). The
star schema consists of a set of dimension tables and the
fact table. Each dimension has a set of attributes that
describe the dimension. The fact table has a primary key
that is a set of foreign keys of dimension tables. As it was
stated before, the fact table also has the numeric and
additive attributes that are measures of the fact.

III. RELATED WORK

As it was stated before, new data warehouse tools need
to be made for more accurate analysis of semantic data
sources. The focus of this paper is on the direct
transformation of OWL ontology into the star schema
because when a multi-step transformation is performed,
some relations defined in the OWL ontology could be lost.
The authors, who explore the transformation of OWL
ontology into the relational database [7, 8, 9 and 10] deal
with the transformation in the third normal form, not with
the star schema. There are many solutions that transform
the relational database in third normal form into the star
schema. However, the main problem here is that the OWL
ontology has a hierarchy of entities that appear in the
ontology. The authors in [8, 9 and 10] propose the
transformations that create an extra table in the relational
database for every class in class hierarchy. For example,
the class Product has subclass Food that has the additional
attribute named lifetime. Transformations in [8, 9 and 10]
create two tables, one for Product and one for Food.
These two tables have all common attributes except for
the attribute lifetime. The relation rdfs:subClassOf
defined in OWL ontology (Food is a subClassOf
Product), between Product and Food is lost after the
transformation in the third normal form hence Product
and Food will represent two different entities in the third
normal form. When the transformation from third normal
form into the star schema is made, the star schema has two
dimensions for Food and Product instead of one
dimension because these two classes represent the same
entity, except that the Food class has the additional
attribute. Hence, the wrong transformation could happen
after losing a class hierarchy in the third normal form.
However, some solutions of transformation proposed in
[7, 8, 9 and 10] are used and integrated in the method
proposed in this paper. A table for the parent class is

created in all transformation. If a class has the
ObjectProperty and the maxCardinality is 1, a column is
created and it is a foreign key for the range class of the
ObjectProperty. If a class has the DataTypeProperty and
the maxCardinality is 1, a column is created and the type
of the column is the most similar type in the relational
database comparing XML data types added as a range of
the DataTypeProperty. The authors in [10] propose the
rules for transforming every XML data type into the
certain data type in the relational database. If the
ObjectProperty is Functional, the cardinality of the
property is 1 and the column in the table is created. If the
cardinality of any property is greater than 1, a new table
will be created that has the primary key which is a
combination of two foreign keys. The first key references
to the domain class and the second references to the range
class.

Although the authors in [7] present the transformation
from OWL ontology in third normal form, they propose
an interesting solution. The subclasses of parent class are
recognized as the same entity but the ontology is
transformed into the object relational database. For
example, the class Food inherits all attributes of class
Product and has the additional attribute lifetime. This
solution of recognizing hierarchical classes as the same
entity is used in this paper.

The authors in [11] provide the transformation from
OWL ontology to the star schema but with notable
limitations. For example, the analyst wants to analyse
certain class according to the first attribute which is
common for certain class and its subclasses in the
ontology, and to the second attribute which is common
only for several subclasses. Only the individuals of these
several subclasses that have both attributes will be stored
in the data warehouse. Therefore, when the analyst wants
to see analysis just according to this first common
attribute of a class and all of its subclasses, she will get
only the individuals of these several subclasses that have
the first and the second attribute in the OWL ontology.

IV. THE METHOD FOR AUTOMATICALLY

TRANSFORMING OWL STRUCTURE INTO THE STAR

SCHEMA

Transformation of OWL ontology into the star schema

cannot be fully automated. The designer always has to

choose which data she wants to analyze. Hence, the most

important topic is that the designer selects what entity

will represent the fact. As it was already mentioned, the

direct transformation of OWL ontology into the star

schema is proposed. The Invoice ontology (figure 4) will

be taken as example for transformation of OWL Lite

ontology into the star schema. In figure 4, The Invoice

ontology is displayed as a directed graph to facilitate the

steps of the transformation. That ontology is a

combination of two real ontologies. First ontology [13]

describes the main parts of the e-invoice while the second

ontology [14] is the professional web vocabulary for e-

commerce that describes a large number of products and

services. These two ontologies are merged to show the

real situation that can happen in a company while

analyzing sales. For example, an analyst of the company

Figure 2 An example of the star schema

wants to analyze sale by certain month, year, product etc.

Invoice ontology that is used for example has only the

specific parts of the ontologies [13] and [14] through

which it can be shown all capabilities of transforming

OWL Lite ontologies into the star schema. The names of

ontology classes in the example are shorter than real

names in the ontologies [13] and [14] to facilitate the

transformation steps. When the designer selects the fact,

the transformation starts. First, the dependency graph will

be created from the OWL ontology. The dependency

graph is an intermediate structure used to provide a

multidimensional representation of the XML data

describing the fact [15, 16]. Here, the graph is used to

provide a multidimensional representation of the OWL

data. Therefore, in this case, the dependency graph is a

directed rooted graph whose vertices are classes or their

data attributes in the OWL ontology. Pseudo code of

transforming OWL ontology into the dependency graph is

shown in the figure 3.

For example, an analyst wants to examine the product
sale. The designer selects the object property
hasInvoiceLine in the figure 4 to be a fact. The object
property hasInvoiceLine becomes the first node (the
designer renamed it as Product sales) in the dependency
graph. Then, the algorithm gets all dataType and object
properties of the domain (Invoice class) and range
(InvoiceLine class) classes of the object property
hasInvoiceLine and puts them into a list of properties. The
Invoice class has one dataType property (hasInvoiceID)
and four object properties (hasDelivery, hasTime,
hasDate, hasInvoicePrice). All properties have the
cardinality equal to 1 and therefore the range classes
(Date, Time, Delivery, InvoicePrice) or dataTypes
(xsd:string named InvoiceID) of these five properties are
added to the dependency graph (figure 5 a)). The

{

Create dependency graph starGraph

Select a class or an ObjectProperty (with cardinality

greater than 1) in the OWL ontology that will represent

the fact;

Create the lists factDataTypeProperty and

factObjectProperty;

IF fact is ObjectProperty THEN

 Get all objectProperties and dataTypeProperties of

 the domain class and range class of the fact and put

 them in the lists factObjectProperty and

 factDataTypeProperty;

ELSE

 Get all objectProperties and dataTypeProperties of

 the of the fact class and put them in the lists

 factObjectProperty and factDataTypeProperty;

END IF

ProcessDataTypeProperties(factDataTypeProperty, true);

ProcessObjectProperties(factObjectProperty, true);

ProcessDataTypeProperties(dataTypeProperties,all){

FOR every dataTypeProperty in

dataTypeProperties

ProcessDataTypeProperty(dataTypeProper

ty,all);

 END FOR

}

ProcessObjectProperties(objectProperties,all{

FOR every objectProperty in objectProperties

ProcessObjectProperty(objectProperty,a

ll);

 END FOR

}

ProcessDataTypeProperty(dataTypeProperty,all){

 Cardinality(dataTypeProperty, all);

}

Cardinality(property, all){

IF property cardinality > 1 AND the property

represents a many-to-many relationship THEN

Create node (with name of the property

range Class) with cardinality > 1

(sign -> double line) and insert into

starGraph; (sign # if all is false)
ELSE

Create node (with name of the property

range Class) with cardinality = 1 and

insert into starGraph; (sign # if all
is false)

END IF

}

Figure 3 Pseudo code for transforming OWL into the dependency graph

ProcessObjectProperty(objectProperty,all){

IF objectProperty is Functional THEN

Create node (with name of the property

range Class) with cardinality = 1 and

insert into starGraph; (sign # if all
is false)

ELSE IF objectProperty is Symmetric THEN

IF starGraph does not contain range

Class of this objectProperty THEN

Cardinality

objectProperty,all);

SubClasses(range Class);

 ELSE

IF objectProperty is inverseOf THEN

IF starGraph does not contain

range Class of this

objectProperty THEN

Cardinality

objectProperty,all);

SubClasses(range Class);

END IF

 ELSE

Cardinality

objectProperty,all);

SubClasses(range Class);

 END IF

 END IF

}

SubClasses(class){

IF class has subclasses THEN

Create node with name SubClassName

with cardinality = 1 and insert it

into starGraph; (quadratic node in the

dependency graph)

END IF

Get all common dataType and object properties of parent

class and all subclasses of certain class and put them

in the lists classObjectProperty and classDataProperty;

ProcessDataTypeProperties(classDataProperty, true);

ProcessObjectProperties(classObjectProperty, true);

Get all dataType and object properties of subclasses of

certain class that are not common for every subclass

and parent class and put them in the lists

classObjectPropertyNotAll and classDataPropertyNotAll;

ProcessDataTypeProperties(classDataPropertyNotAll,

false);

ProcessObjectProperties(classObjectPropertyNotAll,

false);

}

The designer manually selects the measures, dimensions

and useful attributes in the starGraph

}

InvoiceLine class has two dataType properties
(hasInvoiceLineID, hasQuantity) and two object
properties (hasProduct, hasInvoiceLinePrice). All
properties have the cardinality equal to 1 therefore the
range classes (Product, InvoiceLinePrice) or dataTypes
(xsd:string named InvoiceLineID and xsd:string named
Quantity) of these four properties are added to the
dependency graph (figure 5 a)). Thereafter, for every
range class inserted into the dependency graph, the
algorithm obtains all object and dataType properties.

The properties of the Delivery are hasDate,
isDeliveryFor, hasInvoiceID and hasTime. These
properties are inserted into the list of properties. An
interesting object property is isDeliveryFor because it is
an inverseOf property of the hasDelivery property in the
Invoice class. The range class (Delivery) of the
hasDelivery property is already inserted in the dependency
graph through the Invoice node. Hence, the node for the
range class (Invoice) of the object property isDeliveryFor
will not be created because it is already created. If the
algorithm creates the Invoice node again, an infinite
recursion will occur. Other properties have the cardinality
equal to 1 therefore the range classes (Date, Time) or
dataTypes (xsd:string named DeliveryID) of these three
properties are added to the dependency graph (figure 5
b)). Classes Date and Time (added through Delivery node)
have one dataType property (hasDataValue and
hasTimeValue) therefore one node is added in the Date
(DateValue) and Time (TimeValue) node (figure 5 b)). It
can be seen that the dependency graph stops expanding in
some direction when the remaining properties are only
dataType properties. Hence, the classes Date and Time
stop expanding when the DateValue and TimeValue are
added into dependency graph.

The properties of the Date and Time in the Invoice
node are the same as the properties Date and Time in the

Delivery node. Hence, the same nodes are created as
earlier (figure 5 b)). At the end of the algorithm, the
designer will merge this Date and Time nodes in the star
schema because they represent the same dimensions. The
dataType property hasPriceValue is the only property of
the class InvoicePrice therefore the node PriceValue is
created (figure 5 b)). The same procedure is made for the
hasPriceValue property in the InvoiceLinePrice class
(figure 5 b)).

Furthermore, the Product class needs to be expanded
in the dependency graph. The Product class has two
subclasses, FoodProduct and ComputerProduct. The
ComputerProduct class has one subclass, the Game class.
When the class has subclasses, the first step is to create the
subClassName node that has a quadratic shape (figure 5
b)). This shape defines that each value of the
subClassName attribute in the dimension table that
corresponds with the subClassName node will be one of
the names of subclasses (FoodProduct, ComputerProduct
and Game in the example) or the root class (Product). The
designer can rename the name of the subClassName node
after creating the column in the relational database. In this
example the column will be named categoryName (figure
6). After creating a node for all subclasses names and their
root class, the algorithm gets all common dataType and
object properties of the root class (Product) and all child
classes (FoodProduct, ComputerProduct, Game). These
properties are hasProductPrice and hasProductName.
These properties have the cardinality 1 therefore two
nodes (ProductName, and ProductPrice) are created in the
dependency graph. The node Product is the parent node of
these nodes. After creating nodes for properties of the
Product class that are common to all subclasses of
Product class, the properties that are special just for a
subset of all subclasses need to be processed. These
properties are isMultiplayered and hasIngredient. The

Figure 4 An example of the Invoice OWL ontology displayed as

directed graph

Figure 5 Dependency graph for the transformation of the Invoice OWL

ontology

isMultiplayered property has cardinality equal to 1 and the
node for the range of the property is created in the
dependency graph but with the sign # to mark that this
attribute will have null values in the data warehouse for
some products. The hasIngredient property has cardinality
greater than 1. When a property has cardinality greater
than 1, the designer determines if this property represents
a many-to-many relationship. If it is a many-to-many, then
the designer decides whether to include it into the star
schema or not. The star schema will have a snowflake
structure because a many-to-many relationship exists in
the hierarchy. In this example, the hasIngredient property
represents a many-to-many relationship that the designer
decides to include, hence the node for the range class of
the hasIngredient property is created and marked with the
signs # and double line that indicates a many-to-many
relationship (figure 5 b)).

The designer selects measures, dimensions and useful
attributes in the final step before implementing the star
schema. Let us assume that the designer wants the
quantity, invoiceLinePrice and productPrice to be
measures and the nodes Date, Time, DeliveryDate,
DeliveryTime and Product to be dimensions. Only the
nodes that represent the range of dataType property in the
dependency graph are actually in the dimension tables
because every object property consists of several dataType
properties that carry the data of ontology. The designer
deleted dataType nodes that the analyst will not need (in
our example InvoiceID, DeliveryID and InvoiceLineID).
The star schema of the Invoice example can be seen in
figure 6. Every column has its own data type in the
relational database that is the most similar to the XML data
type defined in the ontology. The method that maps
similar data types from XML to SQL is described in [10].
The star schema has one snowflake structure for the
ingredients that the product could have because it
represents the many-to-many relationship between the
product and the ingredients. Furthermore, the designer
would probably enrich the date dimension. For example
she would like to have information if the certain date is a
weekend (figure 6), workday, etc. In a similar way the
designer will enrich the time dimension.

V. CONCLUSION

In this paper a method that transforms OWL ontology
into the star schema is proposed. The method semi
automatically transforms all elements of the ontology after
the designer selects which class in the ontology will be the
fact. Before implementing the star schema, the designer
selects which data will be included in the data warehouse
in order to drop unnecessary data from the data

warehouse.

Our method identifies all subclasses of the certain
parent class as the same entity like parent class and thus it
differs from other methods that transform OWL ontology
into the normalized relational database or star schema. It is
important because the certain class and its subclasses
could become one dimension in the star schema. In this
way, all individuals of parent class and all of its subclasses
will be stored together although they have some different
attributes that are defined only for some subclasses.

In the future work the attention will be paid on the
ranges of the property that are composed of more classes.
The solution for the symmetric property should also be
improved. Symmetric property is like a recursive structure
and it is difficult to define when the algorithm stops while
obtaining the data from that property. Also, the
implementation of the tool that uses the method described
in this paper will be made.

REFERENCES

[1] World Wide Web Consortium (W3C), W3C Semantic Web
Activity, Web resource “http://www.w3.org/2001/sw/”, retrieved
February 4, 2013.

[2] M. Uschold, M. Grüniger, “Ontologies: Principles, Methods and
Applications”, The Knowledge Engineering Review, Vol 11(2),
pp 93–155, 1996.

[3] G. Antoniou, and F. van Harmelen, “Web ontology language:
Owl”, In A Semantic Web Primer, pages 110–150, MIT Press,
2004.

[4] W. H. Inmon, Building the Data Warehouse, 3rd edition, John
Wiley, New York, 2002.

[5] R. Kimball, and M. Ross, The Data Warehouse Toolkit: The
Complete Guide to Dimensional Modeling, 2nd edition, Wiley,
New York, 2002.

[6] R. Kimball, L. Reeves, M. Ross, and W. Thronthwaite, The Data
Warehouse Lifecycle Toolkit, Wiley, New York, 1998.

[7] X. Liu, DataWarehousing Technologies for Large-scale and Right-
time Data, dissertation, Faculty of Engineering and Science at
Aalborg University, Denmark, 2012.

[8] E. Vysniauskas, and L. Nemuraite, “Transforming ontology
representation from OWL to relational database,” Information
Technology and Control, vol. 35A, no. 3, pp. 333-343, 2006.

[9] E. Vysniauskas, and L. Nemuraite, Mapping of OWL ontology
concepts to RDB schemas, Proceedings of the 15th International
Conference on Information and Software Technologies, pp. 317–
327, Lithuania 2009.

[10] I. Astrova, N. Korda, and A. Kalja, Storing OWL Ontologies in
SQL Relational Databases, Engineering and Technology 23, pp.
167–172, 2007

[11] V. Nebot, and R. Berlanga, Building data warehouses with
semantic data, Proceedings of the 2010 EDBT/ICDT Workshops,
2010

[12] World Wide Web Consortium (W3C), OWL Web Ontology
Language Overview, Web resurce “http://www.w3.org/TR/owl-
features/”, retrieved February 4, 2013.

[13] e-Račun, Web resource “http://edocument.foi.hr/ontologies/
ubl2_0.owl” , retrieved February 4, 2013.

[14] GoodRelations: The Professional Web Vocabulary for E-
Commerce, Web resurce “http://www.heppnetz.de/ontologies/
goodrelations/v1.html”, retrieved February 4, 2013.

[15] B. Vrdoljak, M. Banek, and S. Rizzi, Designing Web Warehouses
from XMLSchemas, Data Warehousing and Knowledge
Discovery, 5th International Conference DaWak, 2003

[16] M. Golfarelli, D. Maio, and S. Rizzi, The Dimensional Fact
Model: a Conceptual Model for Data Warehouses, International
Journal of Cooperative Information Systems, vol. 7, 1998.

Figure 6 The star schema for the Invoice ontology example

