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Method in which lock-in detectors process signals from standard ac susceptometers, particularly in
the detection of higher harmonics, is analyzed in details. The exact formulas have been derived and
checked experimentally by measurements on soft ferromagnetic sample, using several available lock-
in amplifiers. The reasons why the proper phase adjustment has to be implemented in the protocol of
higher harmonics measurements have been elaborated. The procedure of the lock-in phase adjustment
is described, enabling separation of Fourier or Taylor components of hysteretic ac susceptibility into
real and imaginary sectors. © 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4807752]

I. THE PROBLEM LESS TACKLED

In understanding the ac magnetic susceptibility measure-
ments there are three most relevant elements:

i. time varying magnetic field, usually pure harmonic
H = H0cos (ωt), is generated by some primary coil;

ii. time varying magnetization of the sample, as a response
to the latter field; M = M(H(t));

iii. ac voltage induced in the secondary coil(s) proportional
to −dM / dt. As it is well known and further elaborated
later on, induced voltage contains the information on
susceptibility of the sample.

In conventional ac susceptometer,1 which usually con-
sists of a long primary and two spaced, oppositely connected
and well balanced secondary coils, induced voltage is of the
form

V = −μ0αGNS

dM

dt
, (1)

where μ0 is the vacuum permeability, αG is the calibration
constant typical for a particular device, usually separated in a
part dependent on geometry of coils (α) and a part dependent
on the quantity of sample (G), NS is the number of turns of the
secondary coil; altogether, the prefactors can be abbreviated
by CS.

In this article we consider a particular situation in which
the induced voltage is directly measured by the two-channel
phase sensitive detector (PSD or lock-in), such as the digi-
tal Ametek/Signal Recovery 7265, Stanford Research 830, or
the older analog PAR 5210. These digital lock-ins can mea-
sure amplitudes of the nth Fourier component of the signal
connected to the input. Analog lock-in can do measurement
in one of the available filter-employing modes (BANDPASS,
LOPASS) in which the contribution close to or below a cho-
sen frequency can be extracted out or (in NOTCH mode) fil-
tered out of the input signal, or in the FLAT mode in which it
bypasses any filtering.

In order to acquire full command over ac susceptibility
measurements, as performed by PSD, the role of these three
elements needs to be clarified in all necessary details.

The driving field is produced by connecting an ac source
to the primary coil. In most cases the lock-in’s internal oscil-

lator output voltage is used but any other source can be used
as well – in the latter case lock-in reference has to be locked to
this external source. The driving field can be generally written
as H = H0 cos (ϕ + ϕS), where ϕS is the unknown phase shift
referred to the phase to which the lock-in is synchronized and
ϕ = ωt. (Hereafter, explicit time dependence is represented by
phase dependence. Note that there is always a phase shift be-
tween the voltage applied to the primary coil and the current
passing through it due to reactance of the primary coil.)

Generally, the magnetization of the sample is a nonlinear
function of the field, lagging behind the driving field. Non-
linearity and phase lag of the magnetization can be described
formally in different ways; the form appropriate for our dis-
cussion is the Fourier expansion:

M(ϕ) = M0 +
∞∑

n=1

{An cos[n(ϕ + ϕS)] + Bn sin[n(ϕ + ϕS)]}.
(2)

By convention, An and Bn can be written as χ ′
nH0 andχ ′′

n H0,
respectively, where χ ′

n and χ ′′
n are called real and imaginary

parts of the nth susceptibility component. (χ ′
n and χ ′′

n are com-
ponents in phase and orthogonal to the driving field, respec-
tively.)

If the magnetization of the sample is given by Eq. (2) then
induced voltage, Eq. (1), reads

V (ϕ) = CSωH0

∞∑
n=1

n{χ ′
n sin[n(ϕ +ϕS)]−χ ′′

n cos[n(ϕ + ϕS)]}

=
∞∑

n=1

V ′
n sin[n(ϕ + ϕS)] + V ′′

n cos[n(ϕ + ϕS)]. (3)

By connecting this voltage to the two-channel PSD the user
expects that voltages, appeared in the channels, give real and
imaginary components separated (for any harmonic). But a
trivial fact is that separation of input voltage into lock-in chan-
nels strongly depends on lock-in phase setting. So, a very
important experimental question is the following: if a digital
lock-in is set to measure the nth harmonic of induced voltage,
Eq. (3), how does one determine the lock-in’s referent phase
in order to separate real and imaginary components of the sus-
ceptibility? And a more important one: does the latter setting
remain the same for all Fourier components?
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These questions are, in fact, related to a specific way in
which the lock-in processes the signal. In the so-called phase
mixer the input signal is multiplied by the phase shifted nth
harmonic of the referent signal and then this product is passed
through a LowPass filter. This process (which results with the
corresponding voltages obtained in two lock-in channels) can
be mathematically described by the relation

V x,y
n = Cint

∫
Vin(ϕ)V x,y

ref (ϕ)dϕ.

The form of referent voltage is a source of dispute here. If
digital lock-in is set to measure harmonic components of the
input signal higher than one, it is not clear whether the latter,
phase shifted, nth harmonic of the referent signal is of the
form

V x
ref (ϕ) = sin(nϕ + ϕD) (4a)

or (as is expected from simple mathematical Fourier analysis)

V x
ref (ϕ) = sin[n(ϕ + ϕD)] (4b)

(hereby, V
y

ref (ϕ) = V x
ref (ϕ + π / 2), while ϕD represents the

lock-in’s referent phase setting). In the user-accessible lock-
in documentation nothing is mentioned about these alterna-
tives. On the other side, in most articles referring to results on
“higher susceptibility components χ ′

n, χ ′′
n ,” that do pay atten-

tion to the problem of proper phase, it is implicitly assumed
that the phase setting for the first harmonic remains the same
for all higher ones and that this common choice of phase set-
ting will put χ ′

n in the first channel and χ ′′
n in the second chan-

nel, thus suggesting that the latter form, Eq. (4b), is valid.
However, our experimental insight suggests that this may

not be true: We have verified that only a specific Fourier se-
quence, particularly of the form

V (ϕ) ∼
∞∑

n=1

[
V x

n sin(nϕ + ϕD) + V y
n cos(nϕ + ϕD)

]
,

is able to reproduce the full shape of the time dependent mul-
tiharmonic signal applied to the lock-in input. V x

n and V
y
n are

signals measured in the first and the second channel, respec-
tively, as obtained by keeping the same lock-in phase setting.
This form suggests that there could be mixing of the suscep-
tibility components in measured voltages if the lock-in phase
is kept fixed for different harmonics.

Therefore, we decided to test experimentally which one
of the options in Eqs. (4) is really applied in the lock-in pro-
cessing. The calculations were done by assuming that the op-
tion, Eq. (4a), for the referent signal is true. To test the alter-
native option, Eq. (4b), it would be enough to replace ϕD with
nϕD in final formulas.

So, our starting assumption was that the voltages reported
in the two channels of the lock-in, set to measure nth har-
monic, are actually

V x
n = Cint

∫
Vin(ϕ) sin(nϕ + ϕD)dϕ, ϕ = ωt, (5a)

V y
n = V x

n

(
ϕD + π

2

)
, (5b)

where Cint is the integration constant equal to 1/(π
√

2) in dig-
ital lock-in detection.

II. EXPERIMENTAL VERIFICATION

A. Measurement of Fourier components
of the susceptibility by digital lock-in

If the induced voltage, Eq. (3), is applied to formulas (5),
one obtains

V x
n = CS

nωH0√
2

[χ ′
n cos(nϕS − ϕD) + χ ′′

n sin(nϕS − ϕD)]

= 1√
2

[V ′
n cos(nϕS − ϕD) + V ′′

n sin(nϕS − ϕD)], (6a)

V y
n = CS

nωH0√
2

[χ ′
n sin(nϕS − ϕD) − χ ′′

n cos(nϕS − ϕD)]

= 1√
2

[
V ′

n sin(nϕS − ϕD) − V ′′
n cos(nϕS − ϕD)

]
. (6b)

These expressions immediately tell that lock-in phase setting,
for a decomposition of an arbitrary nth component into real
and imaginary part (i.e., making sin (nϕS − ϕD) = 0, ϕD

= nϕS), should be n-dependent. At variance, if Eq. (4b) were
correct, then it would be enough to replace ϕD in Eqs. (6) with
nϕD; the decomposition would be n-independent now because
sin n(ϕS − ϕD) = 0, ϕD = ϕS.

We propose two ways to test validity of Eqs. (6) or its
alternatives. In both cases we need an induced multiharmonic
voltage in the pick-up coils. The first way is to measure the
voltage in one channel as a function of lock-in phase through
entire cycle for a few different source phases and to do that for
a few harmonic components. The behavior of those curves for
options (4a) or (4b) would be different. The second way is to
record induced voltage independently of lock-in measurement
and calculate numerically its Fourier components and then to
measure the same voltage by lock-in, trying to see whether
the same values as from fit can be obtained with lock-in phase
setting n-dependent or not.

The sample used was the one from the ferromagnetic
amorphous alloy series FeXNi80-XB18Si2 with x = 5. This par-
ticular sample has the Curie temperature around 59 K. Below
this temperature it is a soft ferromagnet with coercive field of
order of a few Oe. Although we could use the own lock-in
output, we preferred the use of the Keithley ac current source
6221 and its SINE OUT to feed the primary coil of our ac
susceptometer.2 This current source is able to arbitrarily shift
its own TTL signal relative to its own SINE OUT signal. In
our measurements the lock-in was synchronized to the latter
TTL signal. So, for sample below the Curie temperature, we
can change harmonic composition of Vin in Eqs. (5) by chang-
ing sine out level. By changing the TTL position we can also
shift that signal relative to the lock-in phase setting and in that
way change the source phase.

The scan of induced voltage was done by high-speed,
12-bit resolution digitizer card NI 6111. The driving fre-
quency was 231 Hz, field amplitude 22 Oe, and sampling fre-
quency 1 MHz. The pattern of voltage as the function of time
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FIG. 1. Voltage induced in secondary coils and corresponding TTL signal as
function of time.

on T = 4.2 K, obtained as an average of 100 scans, is given in
Fig. 1.

For the first test we measured odd harmonics V
y

2n+1 on
our sample as a function of detector phase through entire cy-
cle for a few different source phases (the component of Earth
magnetic field in direction of driving field was cancelled and,
therefore, even harmonics vanishes, V

x,y

2n = 0). If Eq. (4a) is
true, then the zeroes of this voltage should appear, following
Eqs. (6) at

ϕD = (2n + 1)ϕS − atn

(
χ ′′

2n+1

χ ′
2n+1

)
. (7a)

Alternatively, if Eq. (4b) is true then zeroes should appear at

ϕD = ϕS − 1

2n + 1
atn

(
χ ′′

2n+1

χ ′
2n+1

)
. (7b)

We see that the behavior of the span between zeroes of dif-
ferent harmonics is decisive. In the first case it will increase
exactly proportional to n and in the second case it will de-
crease with n.

In Fig. 2 we show the dependence of the first three odd
harmonics on detector phase for four different source phases
(in fact, position of TTL signal on Keithley 6221). First posi-
tion was arbitrary and then increased for 10◦, 20◦, and 30◦. In
all three cases the zeroes move in the direction of change of
ϕS and the span between zeroes of harmonics increases with
(2n + 1)ϕS. This finding shows that Eq. (7a) is true, which
strongly supports the option in Eq. (4a) and the validity of
Eqs. (5).

Now we proceed with detailed examination of Fourier
analysis of induced voltage from Fig. 1. First we calculate
Fourier components taking the points within TTL markers as
the period. Next, we measure the same voltage by lock-in ma-
nipulating the phase in a way that the sin terms in Eqs. (6) van-
ish. We did it in two ways. In both ways we used the fact that
phase of real susceptibility is the same as that of the empty
coil (real susceptibility just changes the amount of induced
voltage, not the phase). First, we set the lock-in phase ϕD to
zero and set TTL marker such that complete positive voltage
of empty secondary coil (in the first harmonic) is positioned
in the first channel only (formally ϕS = 0). That will remove

FIG. 2. 1st, 3rd, and 5th even component of induced voltage for arbitrary
source phase and phase shifted for 10◦, 20◦, and 30◦ as a function of detector
phase. Arrow shows shift of source phase, same for all three harmonics.

any phase dependence from Eqs. (6) for any harmonic and
the voltages measured in two channels will be proportional
to real and imaginary parts of nth susceptibility component.
In the second way, lock-in is again set to measure empty sec-
ondary coil voltage in the first harmonic and lock-in phase
is found such that complete positive voltage is in the first
channel only (AUTOPHASE command3 of the lock-in can
be used). That phase is, in fact, equal to the source phase,
ϕ1

D = ϕS . Now, for nth harmonic measurement it is necessary
to set ϕD = nϕ1

D . This will give us the sin terms equal to 0 and
the cos terms equal to 1, thus decoupling the components. The
voltages measured in these two ways completely coincide for
any harmonic. They are

V x
n = CS

nωH0√
2

χ ′
n, (8a)

V y
n = −CS

nωH0√
2

χ ′′
n . (8b)

In Fig. 3 we plot the first 29 odd harmonics measured by lock-
in (full symbols) and those calculated from the digitized volt-
age (open symbols). The latter data were additionally divided
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FIG. 3. RMS amplitudes of real (down) and imaginary (up) Fourier compo-
nents of induced voltage obtained from fit of digitized voltage (full dots) and
directly measured on Ametek 7265 lock-in (empty dots).

by the RMS normalization factor. Obviously, the agreement
between the two sets of data provides a clear proof that our
basic assumption, Eqs. (5), is correct.

We conclude that formulas (6) indeed provide the volt-
ages measured in the two lock-in channels. It is clear that
keeping the detector phase fixed would not separate real and
imaginary components of all harmonics.

B. Measurement of Taylor components
of the susceptibility by digital lock-in

The above conclusions have important consequence to
another representation of hysteresis: the Taylor expansion.
This representation is of interest when it is important to ex-
tract components of the susceptibility that depend on the pow-
ers of the field:

M± = ±M0 +
∞∑

k=0

χ2k+1H
2k+1 ±

∞∑
k=1

χ2kH
2k. (9)

M+ is the magnetization branch for decreasing field and
M− for increasing field. This form follows from the re-
quest M(− H) = −M(H) (driving field is again of the form
H = H0cos (ϕ + ϕS)). Voltage measured in the first channel
now reads

V x
n = CSCint

[ π−ϕS∫
ϕS

(
−dM+

dt

)
sin(nϕ + ϕD)dϕ

+
2π−ϕS∫

π−ϕS

(
−dM−

dt

)
sin(nϕ + ϕD)dϕ

]
. (10)

The result, after lengthy but otherwise straightforward calcu-
lations, is

V x
2n+1 = CSCintω

{
M2n+1 cos [(2n + 1) ϕS − ϕD]

−N2n+1 sin [(2n + 1) ϕS − ϕD]
}
, (11)

V
y

2n+1 = CSCintω
{
N2n+1 cos [(2n + 1) ϕS − ϕD]

+M2n+1 sin [(2n + 1) ϕS − ϕD]
}
, (12)

M2n+1 = π
2n + 1

22n

∞∑
k=0

1

22k

(
2n + 1 + k

k

)
χ2n+1+2kH

2n+1+2k
0 ,

N2n+1 = 2
∞∑

k=1

1

22(k−1)

×
(

2k∑
j=0

k − j

2n + 1 + 2k − 2j

(
2k

j

))
χ2kH

2k
0 .

The same procedure with the phase adjustment as described
above has to be applied to obtain even and odd terms sepa-
rated in two channels:

V x
2n+1 = CSCintωM2n+1 = CSCint

2n + 1

22n
πω

×
∞∑

k=0

1

22k

(
2n + 1 + k

k

)
χ2n+1+2kH

2n+1+2k
0 ,

(13)

V
y

2n+1 = CSCintωN2n+1 = CSCint2ω

∞∑
k=1

1

22(k−1)

×
⎛
⎝ 2k∑

j=0

k − j

2n + 1 + 2k − 2j

(
2k

j

)⎞
⎠χ2kH

2k
0 .

(14)

The fact that V x
2n+1 comprises components of (2n + 1)th

and higher odd orders of the susceptibility enables finding
the inverse relation for odd components of the susceptibility.
After a few iterations the relation inverse to Eq. (13) is ob-
tained as

χ2n+1 = 1

CSCintπω

1

H 2n+1
0

22n

2n + 1

×
∞∑

j=0

(−1)j
(

2n + j

j

)
V x

2n+1+2j . (15)

This equation shows that, in cases when any nonlinearity in
magnetization curve is expected (on phase transitions it is true
even for small driving field), it is necessary to measure more
harmonics to extract even linear behavior. Up to field and cal-
ibration factor, linear and cubic terms should be obtained by
measuring a number of Fourier components and composed
according to Eq. (15):

χ1 ∼ (
V x

1 − V x
3 + V x

5 − V x
7 + V x

9 − · · ·) ,

χ3 ∼ 4

3

(
V x

3 − 3V x
5 + 6V x

7 − 10V x
9 + · · ·) .

C. Measurement of Taylor components
of the susceptibility by analog lock-in

We have also measured the same sample by an analog
lock-in (PAR 5210). As this lock-in multiplies input signal
by square voltage shifted in phase for ϕD it is clear that it,
in fact, integrates the derivative of the magnetization and that
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the result could be numerically related to magnetization. The
voltages in the two channels are

Vx = CSCint

∫ (
−dM

dt

)
4

π

∞∑
n=0

sin(2n + 1)(ϕ + ϕD)

2n + 1
dϕ,

Vy = Vx

(
ϕD + π

2

)
,

and Cint for this lock-in is equal to −1 / (4
√

2).
The final result is

Vx = 4CSCintω

{ ∞∑
k=0

χ2k+1H
2k+1
0 cos2k+1 (ϕS − ϕD)

−
∞∑

k=1

χ2kH
2k
0

[
1 − cos2k (ϕS − ϕD)

]

× 4

π

∞∑
k=0

1

2k + 1
sin [(2k + 1) (ϕS − ϕD)]

}
. (16)

The last sum in Eq. (16) represents a square signal which just
takes care of the sign of the second factor. Also, due to hys-
teresis symmetry, M+(Hmax ) = M−(Hmax ), it follows that

∞∑
k=1

χ2kH
2k
0 = −M0.

It is clear that in Eq. (16) the two sums represent odd and even
components of magnetization in the (ϕS − ϕD) point.

Thus, the analog lock-in PAR 5210, operating in FLAT
mode, in fact gives the magnetization at a particular value,
dependent on the phase setting. The voltages measured in the
two channels can be rewritten in compact form

Vx = 1√
2
CSωM (ϕS − ϕD) , (17a)

Vy = 1√
2
CSωM

(
ϕS − ϕD − π

2

)
. (17b)

Since, within the driving field oscillation, the phase is propor-
tional to the time, the acquisition of either channel voltage,
as a function of source, or lock-in phase through a complete
cycle, is equivalent to obtaining M(t) or M(−t), respectively.
This is shown in Fig. 4. A corresponding field profile is just
H (t) ∼ cos (ϕD). The only remaining question is a point in
which we can uniquely link M(t) and H(t). Again, the phase
ϕ1

D , for which the voltage of the empty detection coil is maxi-
mal in the first channel, represents the point of maximal field.
Consequently, H = H0 cos

(
ϕD − ϕ1

D

)
can be taken as a driv-

ing field. That means that in ϕ1
D the sample voltage in the first

channel corresponds to the magnetization in maximal field
while the voltage in the second channel corresponds to re-
manent magnetization. If the voltage in Eq. (17a) is displayed
against H0 cos

(
ϕD − ϕ1

D

)
, one obtains a complete hysteresis

loop. It is shown in Fig. 5. For comparison, the same hys-
teresis, as obtained in the other two ways, is also shown. The
second representation is composed from the first 50 measured

FIG. 4. Voltage measured in first channel of PAR 5210 lock-in (in FLAT
mode) as the function of lock-in phase.

Fourier components:

M(ϕ) =
50∑

n=1

[−V x
n cos(nϕ)/n + V y

n sin(nϕ)/n],

and the field profile is just H(ϕ) = H0cos (ϕ). This second
representation overlaps the first one. The third hysteresis rep-
resentation (shown elongated but just for RMS normalization
factor) is obtained by numeric integration of the digitized volt-
age from Fig. 2 and multiplied by 2π f. Here, the field profile
is obtained by digitizing the voltage on a standard resistor in
primary circuit, which is then scaled to the field amplitude.

It is worth noting that hysteresis, as obtained from
Eq. (17a) by changing the detector phase, “goes” in clockwise
direction as one scans through corresponding field points.
This is a consequence of negative sign of the detector phase.
Direction of hysteresis looping can be reversed by sorting
the phase in mode opposite to acquisition prior to making
the cos (ϕD). If the phase loop is done by changing the source

FIG. 5. Hysteresis obtained by: integration of digitized induced voltage
(elongated one), constructed from 50 harmonics measured by Ametek 7265,
and directly measured by PAR 5210 lock-in. Latter two almost coincide.
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phase then hysteresis scans in usual, counterclockwise direc-
tion by the same field.

III. SUMMARY

We proved that the voltages that a digital lock-in (set to
measure nth harmonic of the input signal) generates in the two
channels are given by

V x
n = 1

π
√

2

∫
Vin(ϕ) sin(nϕ + ϕD)dϕ,

V y
n = V x

n

(
ϕD + π

2

)
.

If Vin is a multiharmonic function, then determination of the
proper lock-in phase is crucially important. In order to deter-
mine Fourier components of input signal, which comes from
ac susceptometer, we define the procedure about phase adjust-
ment as follows:

1. If there is an option of changing the phase of input sig-
nal, then the best way is to set the lock-in phase ϕD to
zero and change the source phase such that complete
voltage of empty secondary coil (in the first harmonic)
is in the first channel only. That will remove any phase
dependence from Eqs. (6) and the measured voltages in
the two channels are proportional to real and imaginary
part of the nth Fourier component of the susceptibility.

2. If there is no possibility to change the phase on the
source side (for example, when the lock-in output is used
to feed the primary coil), then the proper lock-in phase
is found such that complete voltage of the empty sec-
ondary coil (in the first harmonic) is positioned in the
first channel only. The AUTOPHASE command3 can be
used for this purpose. This lock-in phase is assigned as
ϕ1

D . (This actually represents standard procedure for first

harmonic ac susceptibility measurement.) Now, for the
nth harmonic measurement of the sample voltage it is
necessary to set the lock-in phase to ϕD = nϕ1

D . This
will again separate real and imaginary part of nth Fourier
component of the susceptibility.

In both cases the voltages in the two channels are

V x
n = CS

nωH0√
2

χ ′
n,

V y
n = −CS

nωH0√
2

χ ′′
n .

Proper separation of the Fourier components of induced volt-
age enables one to find odd Taylor components of sample’s
susceptibility. This is very important in magnetic phase tran-
sitions where magnetization is a nonlinear function of the field
even for small fields:

χ2n+1 = 1

CS

√
2

ω

1

H 2n+1
0

22n

2n + 1

∞∑
j=0

(−1)j
(

2n + j

j

)
V x

2n+1+2j .

Validity of all these formulas was confirmed for digital lock-
ins Ametek/Signal Recovery models 7225, 7265, and 7280,
as well as for Stanford Research Systems 830.

ACKNOWLEDGMENTS

We acknowledge financing from Project No. 035-
0352843-2845 of the Croatian Ministry of Science, Educa-
tion, and Sport.

1M. Nikolo, Am. J. Phys. 63, 57 (1995).
2D. Drobac and Z. Marohnic, Fizika A 8, 165 (1999).
3AUTOPHASE command of the lock-in searches the referent phase of the
lock-in in a way that complete positive signal is put in first channel and
zero in second channel.

http://dx.doi.org/10.1119/1.17770

