

14
th

 INTERNATIONAL SCIENTIFIC CONFERENCE ON PRODUCTION ENGINEERING –CIM2013
Croatian Association of Production Engineering, Zagreb 2013

PARALLEL LEVENBERG-MARQUARDT-BASED NEURAL NETWORK
WITH VARIABLE DECAY RATE

Tomislav Bacek, Dubravko Majetic, Danko Brezak

 Mag. ing. mech. T. Bacek, University of Zagreb, FSB, I. Lucica 5, 10000 Zagreb

Prof. dr.sc. D. Majetic, University of Zagreb, FSB, I. Lucica 5, 10000 Zagreb
Doc. dr.sc. D. Brezak, University of Zagreb, FSB, I. Lucica 5, 10000 Zagreb

Keywords: neural networks, regression, parallel
levenberg-marquardt algorithm

Abstract
 In this paper, parallel Levenberg-Marquardt-
based feed-forward neural network with variable
weight decay, implemented on the Graphics Proce-
ssing Unit, is suggested. Two levels of parallelism
are implemented in the algorithm. One level of
parallelism is achieved across the data set, due to
inherently parallel structure of the feed-forward
neural networks. Another level of parallelism is
achieved in Jacobian computation. To avoid third
level of parallelism, i.e. parallelization of optimi-
zation search steps, and to keep the algorithm
simple, variable decay rate is used. Parameters of
variable decay rate rule allow for compromise
between oscillations and higher accuracy on one
side and stable but slower convergence on the
other side. To improve training speed and
efficiency modification of random weight initializa-
tion is included. Testing of a parallel algorithm is
performed on two real domain benchmark
problems. Results, given in a form of a table with
obtained speedups, show the effectiveness of
proposed algorithm implementation.

1. INTRODUCTION
 Artificial neural networks (NN) are used in a
wide variety of applications due to their capability to
learn and to generalize. Due to their simple struc-
ture and capability of nonlinear mapping of any
input to any output, most widely used NNs are
feed-forward NN.
 Many different learning algorithms for feed-for-
ward NNs have been reported in the literature so
far. Most widely used learning algorithm has long
time been gradient descent, whose poor con-
vergence rates were significantly improved, as
shown in [1], by introducing different modifications,
including momentum and adaptive learning coe-
fficient, [2], [3], [4]. Nonetheless, methods of
second order, such as Gauss-Newton method,
result in much faster convergence rate since they
take into account information on error surface as
well, [5]. Best convergence rates gives Levenberg-
Marquardt (LM) method since it is a combination of
simple gradient descent and Gauss-Newton

method, thus taking best of both methods – stable
convergence of former and fast convergence of
latter method.
 Although this pseudo-second order method has
fast convergence rates on a small-scale problems,
it proves to be very inefficient when it comes to a
large-scale problems due to computational com-
plexity, memory requirements and error osci-
llations, [5], [6]. In order to tackle these problems,
different approaches have been suggested in the
literature. Works on reduction of memory demands
and computational complexity can be found in [7],
[8] and [9]. Another approach is suggested in [6],
where variable decay rate was introduced in order
to decrease error oscillations of standard LM
algorithm.
 Due to the advances in computer architecture
and inherently parallel nature of feed-forward NNs,
parallelization of NNs was yet another approach
suggested in the literature. If NN learns using batch
mode, then it is possible to parallelize evaluation of
objective function and its partial derivatives using
simple data-parallel decomposition, [10]. Similar
approach, but using MPI on .NET platform, was
suggested in [11]. Suri et. al. [12] suggested
parallel LM-based NNs using MPI, but in addition to
simple data-parallelism, they also implemented
computation of row block of the Jacobian in para-
llel. Three levels of parallelization using clusters
are suggested in [13], where authors implemented
parallelization on data sets, parallelization of the
Jacobian computation and parallelization of the
search steps.
 Apart from using clusters to implement parallel
NNs, another way is to use GPU (Graphics Proce-
ssing Unit). In recent years, GPUs have rapidly
evolved from configurable graphics processors to
programmable, massivelly parallel many-core mul-
tiprocessors used for many general applications
(hence the name GPGPU – General Purpose
GPU). To our knowledge, not many implementa-
tions of parallel NNs on GPU have been proposed
in the literature so far. Moreover, proposed
implementations are based on one-level, data-pa-
rallelism only, [14], [15].
 In order to overcome drawbacks of LM algo-
rithm and to use huge potential of GPUs, which are
nowadays easily accessible, parallel GPU imple-

CIM2013 June, 19-22, 2013 Biograd, Croatia

 60

mentation of the feed-forward NNs with LM algo-
rithm is suggested. Although these networks can
be parallelized on three levels, in our implement-
tation parallelization is achieved on two levels only
– across the data sets and in Jacobian com-
putation. Third level of parallelization, i.e.
parallelization in optimization search step, is
avoided by introducing variable decay rate, which
significantly decreases number of unsuccessful
trials and makes third level of parallelization
unnecessary. The results show effectiveness of
proposed parallel implementation of NN.
 The remaining of the paper is organized as
follows. Section II gives description of a standard
sequential LM algorithm, whilst Section III discu-
sses problems caused by fixed decay rate. Section
IV describes authors’ parallel implementation of LM
algorithm on the GPU. In Section V simulation
results are given, whereas Section VI contains
concluding remarks and future work.

2. LEVENBERG-MARQUARDT ALGORITHM
 The goal of the learning process of a multilayer
feed-forward NN is minimization of performance
index through learning parameter optimization.
Learning is not stopped until the value of the
performance index becomes smaller than some
predefined value. The most widely used perfor-
mance index, used in this paper as well, is a sum
of squared errors, as follows:

where

denotes error vector, whilst and denote de-
sired and actual output vector, respectively, with
 . Number of input-output learning pairs
is denoted by , while denotes learning
parameter.
 When NN are trained with LM method, which is
a combination of Gauss-Newton second order me-
thod and standard gradient descent method,
learning parameter change at -th iteation is
given as

where denotes Hessian and gradient ma-
trix, respectively. Since Hessian matrix is often
hard to find, an approximation

which is valid only near-linearity of error function
(i.e., where residuals are small or can be approxi-
mated by linear function), is used. Gradient of error
function is given as

where denotes Jacobian matrix, given as

with being a total number of learning parameters.
Since NN optimizes three different learning para-
meters, i.e. input-hidden and hidden-output layer
weights and slope of bipolar sigmoid activation
function of hidden layer neurons, three different
Jacobian matrices need to be calculated.
 Pseudo-code of sequential LM algorithm is
given as follows:

1. initialize all learning parameters and set

to some small value, e.g.

2. compute the sum of squared errors over
all training patterns

3. compute Jacobian matrices
4. compute increments of learning parame-

ters using Eq. (2)
5. recompute using , and then

IF in Step 2

 go to Step 2
ELSE

 go to Step 4
 END IF

 Starting from some initial set of learning para-
meters , LM algorithm iteratively proceeds down
the slope of the error function, ultimately finding
some local minimum of that function. This is done
by trying different sets of parameters generated by
altering parameter . If error function increases,
quadratic approximation of the error curve is unsa-
tisfactory and is increased by factor , thus
making gradient method dominant in the adaptation
of learning parameters. If, on the other hand, error
function decreases, quadratic approximation is
good and is decreased by decay rate , thus
making Gauss-Newton method dominant in lea-
rning parameters adaptation. First set of para-
meters that leads to decrease in error function is
set to be the new set of parameters which will be
used as the initial set in the next iteration of the
algorithm.

3. VARIABLE DECAY RATE
 Although LM algorithm decreases error in every
iteration, every iteration has a potential to become
computationally very intensive if many unsuccess-
ful trials need to be performed before new set of
parameters is found. Number of unsuccessful trials
is directly related to the decay rate , since the
step direction and the step size of each trial
depend on parameter , which is a function of .
Initial suggestion by Marquardt [16] to use the
same decay rate in both cases, i.e. regardless
whether error function is decreased or increased
(with reciprocal value of decay rate used in latter

June, 19-22, 2013 Biograd, Croatia CIM2013

 61

case), was used by many researchers [13], [17],
[18], but this strategy didn’t give good results.
Another strategy was proposed in [1], where
different decay rates were used depending whether
error function was increased or decreased.
Although better results were obtained, number of
unsuccessful trials was still significant, resulting in
slow learning process in a case of a large network.
 Another approach is considered in [6]. As
authors showed in their paper, speed of conver-
gence of LM algorithm slows down when approach-
ing required accuracy due to many error oscilla-
tions. Authors also show that, by fixing decay rate
to some value (usually 0.1), leads to oscillations in
 , which implies that many trials in decreasing by

multiplying would not lead to reduction in error
but cause unexpected ascend of error and there-
fore, waste time.
 To overcome this drawback, authors suggested
log-linear function as a rule of varying decay rate

after each iteration, where is given as a function
of error. In this paper, we suggest different rule of
varying decay rate, as follows

with given as

where is reduced sum of squared error, is

the required training accuracy and is first calcu-
lated error based on initial learning parameters.
Parameters and should be chosen in interval
 . Figure 1. shows decay rate rule graphi-

cally, when and .
 The idea behind above suggested rule is as fo-
llows. When network is far from desired accuracy
and approaches minimum, decay rate is slowly
decreased, thus slowly increasing step size and
blending more towards Gauss-Newton method.
This ensures stability and good convergence
properties at the beginning stages of learning pro-
cess. At the subsequent stages of learning pro-
cess, when network is closer to the minimum and
error is decreased, decay rate changes faster, thus
blending more and more towards Gauss-Newton
method. This ensures faster convergence to the
minimum, but has a side effect of causing oscillati-
ons near minimum. Nonetheless, these oscillati-
ons are much less expressed than in the case of fi-
xed decay rate, thus speeding up learning process.
 It should also be noted that, in this paper,
different decay rate is used in the case of error de-
crease and increase. When error is decreased, is

multiplied by . On the other hand, when error is

increased, is multiplied by fixed (usually
100), which ensures much faster convergence than
when is used.

Figure 1. Rule of decay rate variation

4. PARALLELIZATION OF THE LEVENBERG-
MARQUARDT ALGORITHM
 As mentioned before, LM-based NN was
parallelized on two levels – across data sets and in
Jacobian computation. Since NNs with LM algo-
rithm learn using batch mode, it is possible to
decompose objective function in such a way that
each GPU unit calculates objective function for one
input-output learning pair. In other words, it is
possible to separate learning patterns (input-output
pairs) into disjoint sets and then perform all
necessary operations on each learning pattern in
parallel. This type of parallelism is known as SIMD
(Single Instruction Multiple Data). After obtaining
outputs for each learning pattern and calculating
local objective functions in parallel, local errors are
gathered and summed up, after which algorithm
continues with execution of the subsequent opera-
tions.
 The second level of parallelism is within the
calculation of the Jacobian matrix. Since only re-
gression problems are considered in this paper, NN
has only one output, i.e each row in Jacobian ma-
trix, given in Eq .(8), corresponds to one input-
output pair. Each row of each Jacobian matrix is
thus calculated in parallel, and stored into appro-
priate matrix. After all learning patterns are pro-
cessed, obtained Jacobians are used to calculate
Hessians, which are then used to determine
learning parameter change according to Eq. (2).
 Calculation of Hessian, although parallelizable,
is not done in parallel since it involves only matrix-
matrix multiplication, an operation performed
extremely fast on the GPU unit. Furthermore, since
our algorithm is implemented in Matlab, which is
well known to, in general, give much better results
when the code is given in vectorized form, Hessian
computation is not parallelized. Two levels of
parallelization suggested in this paper were
accomplished using Accelereyes’ Jacket, platform
that enables single-threaded M-code to be trans-
formed to GPU-enabled applications.
 Third level of parallelization, i.e. parallelization
of the search step, suggested in [13], is not imple-
mented in this paper. Initial LM algorithm with fixed
decay rate, as suggested in [16], often performs

CIM2013 June, 19-22, 2013 Biograd, Croatia

 62

many unsuccessful optimization search steps,
which significantly slows down the convergence. In
this paper, instead of parallelizing search steps and
finding an optimal way to choose between good
search steps if more than one is found, we suggest
using variable decay rate. If decay rate is given as
an exponential function of error, number of
unsuccessful search steps is significantly decre-
ased, thus making third level of parallelization
unnecessary, and simplifies algorithm implement-
tation on the GPU unit. Changing parameters

and in (6) in suggested interval, different shapes
of variable decay rate are obtained, which directly
influences number of unsuccessful search steps.

5. SIMULATION RESULTS
 All tests are carried out using 3-layered feed-
forward NN. Number of input and output layer
neurons depends on the benchmark problem, while
number of hidden layer neurons is arbitrary. In this
paper, three different NN architectures are used.
Learning process was carried out using 1000 steps
during which network was validated after every 10
steps for there is no guarantee that the validation
error will have strictly decreasing manner as
learning proceeds. If validation error decreased
compared to a previous one, learning parameters
were saved. Otherwise, they were not considered.
 In order to improve learning process, a modi-
fication of random learning parameters initializa-
tion, proposed in [19], is used:

where and denote the number of neurons in

layers connected with parameter – former refers
to succeeding and latter to preceding layer.
 Algorithms are compared using speedup mea-
sure. Speedup shows computational advantage
gained by using GPU over the amount of
computation needed by the same algorithm on the
CPU. Speedup can be calculated as follows:

where denotes execution time on the CPU
and denotes execution time on the GPU.
 In all the tables, HLNs denotes hidden layer
neurons and NRMSmin denotes minimum NRMS
error, as given in [1], achieved on validation set.
Furthermore, NRMSmin step denotes iteration at
which this error is achieved.

5.1. Nonlinear system prediction
 In their paper on nonlinear signal processing,
Lapedes and Farber [20] suggested Glass-Mackey
chaotic system as a NN benchmark problem due to
its simple definition but hard to predict behavior.
This system is given in discrete time as

In this paper, and . Sampling time is
set to , and time delay .
 The goal of the algorithm is to predict the beha-
vior of chaotic system in -th point in the future

based on past points and the current one.
Standard method for this kind of prediction is to
determine a mapping function as follows:

In this paper, and , which leads to
the following mapping function

 Figure 2. shows time series of 1000 time steps
for (time in units of). First 500 time steps
were used for learning, whereas remaining 500
were used for validation of an algorithm.

Figure 2. Glass-Mackey time series

 Task of a NN is to predict a single value of a
system based on five known signal values, so the
network has structure (bias neuron is
added to both input and hidden layer), where the
number of hidden layer neurons is arbitrary. In

this paper, .
 Learning and validation results of chaotic
system prediction problem with fixed and variable
decay rate are given in Table 1 and Table 2, respe-
ctively. It can be seen that in both cases networks
give similar results, but networks with fixed decay
rate perform, in total, much more unsuccessful
search steps. Actual improvements introduced with
variable decay rate can be seen in Table 3, which
shows time and epochs needed for both networks
to reach the same NRMS=0.079 error.

June, 19-22, 2013 Biograd, Croatia CIM2013

 63

Table 1. Chaotic system learning and
validation results (fixed)

No. of HLNs 13 23 33

NRMSmin step 520 510 330

NRMSmin 0.0784 0.0743 0.0757

No. of trials 4003 2501 4004

Table 2. Chaotic system learning and
validation results (variable)

No. of HLNs 13 23 33

NRMSmin step 500 510 560

NRMSmin 0.0790 0.0757 0.0765

No. of trials 1470 1706 1392

Table 3. Processor time and trials needed to
achieve NRMS=0.079 on prediction problem

No. of
HLNs

NN with fixed NN with variable

Time[s] Trial Time[s] Trial

13 13.98 1998 8.68 727

23 5.27 475 6.73 499

33 8.89 599 7.59 478

 Speedups obtained with two levels of paralle-
lism and variable decay rate are given in Table 4.
Speedups are not significant in this case due to the
fact that given problem is not sufficiently large in
size to utilize all the computational power of the
GPU. Negative correlation between the size of the
network and speedups is due to the com-
putationally intensive inversion of Hessian which, in
this paper, is not parallelized, i.e. it is performed in
a standard way, using LU factorization.

Table 4. Chaotic system prediction speedups

No. of HLNs 13 23 33

Speedup 4.05 3.56 3.48

5.2. Filtration of estimated tool wear curves
 Machine tool wear estimation is of a high im-
portance in machining processes since every fifth
machine downtime is caused by an unexpected
tool wear. To fulfill high demands on reliability and
robustness, a new tool wear regulation model is
proposed in [21]. Data used therein for testing pro-
posed model, which was obtained experimentally,
will be used in this paper as well.
 Simulated flank wear curves used in NN's
learning process are shown in Figure 3. On the
other hand, in real conditions estimation error is
influenced by different disturbances that can occur
during machining process. In order to capture real
conditions, white noise is added to simulated model
outputs.
 Figure 4. shows simulated () and esti-

mated () curves, as well as filtrated () curve,
which represents desired output of a NN.
Therefore, the goal of a NN is to generate, based
on four previous values obtained from the

estimator, an output which will be similar to the
filtrated curve shown in Figure 4.

Figure 3. Flank wear curves

Figure 4. Model and NN output

 The goal of the learning process is filtration of
the estimated tool wear curves. Since NN has to
estimate only one value based on a five known
values, network has again structure.
 Table 5 and Table 6 show learning and validati-
on results on filtration of estimated tool wear curves
in a case of fixed and variable decay rate, respecti-
vely. It can be seen that variable decay rate led to
significant decrease in number of unsuccessful
search steps.

Table 5. Learning and validation results on filtration
of estimated tool wear curves (fixed)

No. of HLNs 13 23 33

NRMSmin step 320 340 150

NRMSmin 0.2700 0.2660 0.2696

No. of trials 4003 2501 2500

 Table 7 shows actual improvements introduced
with variable decay rate in the case of filtration of
estimated tool wear curves, while Table 8 shows
speedups in the same case. Since filtration pro-
blem is much bigger than prediction problem,
speedups are significantly bigger, thus showing
effectiveness of proposed algorithm. As said befo-
re, negative correlation between network size and
speedups is due to the non-parallelized inversion of
Hessian matrix, which becomes computationally
intensive on the GPU as the size of a network
increases.

CIM2013 June, 19-22, 2013 Biograd, Croatia

 64

Table 6. Learning and validation results on filtration
of estimated tool wear curves (variable)

No. of HLNs 13 23 33

NRMSmin step 320 320 160

NRMSmin 0.2674 0.2646 0.2689

No. of trials 1864 1318 1459

Table 7. Processor time and trials needed to
achieve NRMS=0.27 on filtration problem

No. of
HLNs

NN with fixed NN with variable

Time[s] Trial Time[s] Trial

13 21.42 652 13.99 345

23 24.97 652 7.75 120

33 21.15 377 16.85 213

Table 8. Filtration of estimated tool wear
curves speedups

No. of HLNs 13 23 33

Speedup 16.36 14.06 12.88

6. CONCLUSION
 GPU-based parallel implementation of LM-
based NN with variable weight decay is proposed.
Two levels of parallelism are implemented in the
algorithm – parallelization across data sets and
parallelization of Jacobian computation. In order to
avoid parallelization of search steps, exponential
variable decay rule is suggested. Simulation results
show effectiveness of proposed algorithm, both in
variable decay rate and parallel GPU implemen-
tation.
 Future work will be oriented towards CUDA
implementation of algorithm and parallelization of
Hessian matrix inversion.

7. REFERENCES
[1] Brezak, D., Bacek, T., Majetic, D., Kasac, J.,

Novakovic, B., 2012, A Comparion of Feed-
forward and Recurrent Neural Networks in
Time Series Rorecasting, Conference Pro-
ceedings IEEE-CIFEr, pp. 119-124

[2] Zurada, J.M., 1992, Artificial Neural Systems,
W.P. Company, USA

[3] Pearlmutter, B., 1991, Gradient descent:
Second order momentum and saturating error,
NIPS 2, pp. 887-894

[4] Tollenaere, T., 1990, SuperSAB:Fast adaptive
backpropagation with good scalling properties,
Neural Networks 3, pp. 561-573

[5] Hagan, M.T., Menhaj, M.B., 1993, Training
Feedforward Networks with the Marquardt Al-
gorithm, IEEE T Neural Networ 5, pp. 989-993

[6] Chen, T., Han, D., Au, F., Tham, L., 2003,
Acceleration of Levenberg-Marquardt training
of neural networks with variable decay rate, In
Proc. of IJCNN '03., Vol. 3

[7] Zhou, G., Si, J., 1998, Advanced neural-
network training algorithm with reduced

complexity based on Jacobian deficiency,
IEEE Trans. on Neural Net., vol. 9, no. 3, pp.
448-453

[8] Chan, L.W., Szeto, C.C., 1999, Training
recurrent network with block-diagonal
approximated Levenberg-Marquardt algorithm,
In Proc. of IJCNN, vol. 3, pp. 1521-1526

[9] Wilamowski, B.M., Chen, Y., Malinowski, A.,
1999, Efficient algorithm for training neural
networks with one hidden layer, Proc. IJCNN,
vol. 3, pp. 1725-1728

[10] Daniel, R., 1990, Parallel nonlinear
optimization, Proc. Fifth Distributed Memory
Computing Conf. (DMCC5), Charleston, SC

[11] Lotric, U., Dobnikar, A., 2005, pp. Parallel
implementation of feed-forward neural network
using MPI and C# on .NET platform, Proc. of
International Conference on Adaptive and
Natural Computing Algorithms, 534-537

[12] Suri, R., Deodhare, D., Nagabhushan, P.,
2002, Parallel Levenberg-Marquardt-based
Neural Network Training on Linux Clusters – A
Case Study, India

[13] Cao, J., Novstrup, K., Goyal, A., Midkiff, S.,
Caruthers, J., 2009, A parallel Levenberg-
Marquardt algorithm, ICS '09, New York, USA

[14] Prahbu, R.G., 2003, Gneuron:Parallel Neural
Networks with GPU, International Conference
on High Performance Computing, Hyderabad,
India

[15] Kajan, S., Slacka, J., 2010, Computing of
Neural Network on Graphics Card, Inter-
national Conference Technical Computing,
Bratislava

[16] Marquardt, D., 1963, An algorithm for least
squares estimation of nonlinear parameters, J.
Soc. Ind. Appl. Math, pp. 431-441

[17] Wilamowski, B. M. ,Iplikci, S., Kaynak, O., Efe,
 2001, An algorithm for fast convergence in
 training neural networks, In Proc. of IJCNN
'01., Vol. 3, pp. 1778-1782

[18] Suri, N. N., Deodhare, D., Nagabhushan, P.,
2002, Parallel Levenberg-Marquardt-based
neural network training on Linux clusters – A
case study, ICVGIP 2002

[19] Nguyen, D., Widrow, B., 1990, Improving the
Learning Speed of 2-Layer Neural Networks
by Choosing Initial Values of the Adaptive
Weights, In Proc. of the International Joint
Conference on Neural Networks, San Diego,
CA, USA, vol. 3, pp. 21-26

[20] Lapedes, A., Farber, R., 1987, Nonlinear
Signal Processing Using Neural Networks:
Prediction and System Modeling, Techical
Report, Los Alamos, New Mexico

[21] Brezak, D., Majetic, D., Udiljak, T., Kasac, J.,
2010, Flank Wear Regulation using Artificial
Neural Networks, JMST 24(5), pp. 1041-10

