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Abstract 
 In this paper, parallel Levenberg-Marquardt-
based feed-forward neural network with variable 
weight decay, implemented on the Graphics Proce-
ssing Unit, is suggested. Two levels of parallelism 
are implemented in the algorithm. One level of 
parallelism is achieved across the data set, due to 
inherently parallel structure of the feed-forward 
neural networks. Another level of parallelism is 
achieved in Jacobian computation. To avoid third 
level of parallelism, i.e. parallelization of optimi-
zation search steps, and to keep the algorithm 
simple, variable decay rate is used. Parameters of 
variable decay rate rule allow for compromise 
between oscillations and higher accuracy on one 
side and stable but slower convergence on the 
other side. To improve training speed and 
efficiency modification of random weight initializa-
tion is included. Testing of a parallel algorithm is 
performed on two real domain benchmark 
problems. Results, given in a form of a table with 
obtained speedups, show the effectiveness of 
proposed algorithm implementation. 
 
1. INTRODUCTION 
 Artificial neural networks (NN) are used in a 
wide variety of applications due to their capability to 
learn and to generalize. Due to their simple struc-
ture and capability of nonlinear mapping of any 
input to any output, most widely used NNs are 
feed-forward NN. 
 Many different learning algorithms for feed-for-
ward NNs have been reported in the literature so 
far. Most widely used learning algorithm has long 
time been gradient descent, whose poor con-
vergence rates were significantly improved, as 
shown in [1], by introducing different modifications, 
including momentum and adaptive learning coe-
fficient, [2], [3], [4]. Nonetheless, methods of 
second order, such as Gauss-Newton method, 
result in much faster convergence rate since they 
take into account information on error surface as 
well, [5]. Best convergence rates gives Levenberg-
Marquardt (LM) method since it is a combination of 
simple gradient descent and Gauss-Newton 

method, thus taking best of both methods – stable 
convergence of former and fast convergence of 
latter method.   
 Although this pseudo-second order method has 
fast convergence rates on a small-scale problems, 
it proves to be very inefficient when it comes to a 
large-scale problems due to computational com-
plexity, memory requirements and error osci-
llations, [5], [6]. In order to tackle these problems, 
different approaches have been suggested in the 
literature. Works on reduction of memory demands 
and computational complexity can be found in [7], 
[8] and [9]. Another approach is suggested in [6], 
where variable decay rate was introduced in order 
to decrease error oscillations of standard LM 
algorithm. 
 Due to the advances in computer architecture 
and inherently parallel nature of feed-forward NNs, 
parallelization of NNs was yet another approach 
suggested in the literature. If NN learns using batch 
mode, then it is possible to parallelize evaluation of 
objective function and its partial derivatives using 
simple data-parallel decomposition, [10]. Similar 
approach, but using MPI on .NET platform, was 
suggested in [11]. Suri et. al. [12] suggested 
parallel LM-based NNs using MPI, but in addition to 
simple data-parallelism, they also implemented 
computation of row block of the Jacobian in para-
llel. Three levels of parallelization using clusters 
are suggested in [13], where authors implemented 
parallelization on data sets, parallelization of the 
Jacobian computation and parallelization of the 
search steps.  
 Apart from using clusters to implement parallel 
NNs, another way is to use GPU (Graphics Proce-
ssing Unit). In recent years, GPUs have rapidly 
evolved from configurable graphics processors to 
programmable, massivelly parallel many-core mul-
tiprocessors used for many general applications 
(hence the name GPGPU – General Purpose 
GPU). To our knowledge, not many implementa-
tions of parallel NNs on GPU have been proposed 
in the literature so far. Moreover, proposed 
implementations are based on one-level, data-pa-
rallelism only, [14], [15].  
 In order to overcome drawbacks of LM algo-
rithm and to use huge potential of GPUs, which are 
nowadays easily accessible, parallel GPU imple-
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mentation of the feed-forward NNs with LM algo-
rithm is suggested. Although these networks can 
be parallelized on three levels, in our implement-
tation parallelization is achieved on two levels only 
– across the data sets and in Jacobian com-
putation. Third level of parallelization, i.e. 
parallelization in optimization search step, is 
avoided by introducing variable decay rate, which 
significantly decreases number of unsuccessful 
trials and makes third level of parallelization 
unnecessary. The results show effectiveness of 
proposed parallel implementation of NN. 
 The remaining of the paper is organized as 
follows. Section II gives description of a standard 
sequential LM algorithm, whilst Section III discu-
sses problems caused by fixed decay rate. Section 
IV describes authors’ parallel implementation of LM 
algorithm on the GPU. In Section V simulation 
results are given, whereas Section VI contains 
concluding remarks and future work.  
 
2. LEVENBERG-MARQUARDT ALGORITHM 
 The goal of the learning process of a multilayer 
feed-forward NN is minimization of performance 
index through learning parameter optimization. 
Learning is not stopped until the value of the 
performance index becomes smaller than some 
predefined value. The most widely used perfor-
mance index, used in this paper as well, is a sum 
of squared errors, as follows: 

 
                                                                               
 

where            
          

             
denotes error vector, whilst    and    denote de-
sired and actual output vector, respectively, with 
         . Number of input-output learning pairs 
is denoted by  , while   denotes learning 
parameter. 
 When NN are trained with LM method, which is 
a combination of Gauss-Newton second order me-
thod and standard gradient descent method, 
learning parameter change    at  -th iteation is 
given as 
 

                                                          
 

where     denotes Hessian and    gradient ma-
trix, respectively. Since Hessian matrix is often 
hard to find, an approximation 
 

                                                                                                                             
 
which is valid only near-linearity of error function 
(i.e., where residuals are small or can be approxi-
mated by linear function), is used. Gradient of error 
function is given as 
 

                                                                                                                               
 
where   denotes Jacobian matrix, given as  

       
   

   

                                  

 

with   being a total number of learning parameters. 
Since NN optimizes three different learning para-
meters, i.e. input-hidden and hidden-output layer 
weights and slope of bipolar sigmoid activation 
function of hidden layer neurons, three different 
Jacobian matrices need to be calculated.  
 Pseudo-code of sequential LM algorithm is 
given as follows: 

1. initialize all learning parameters and set   

to some small value, e.g.        

2. compute the sum of squared errors   over 
all training patterns 

3. compute Jacobian matrices  
4. compute increments of learning parame-

ters using Eq. (2) 
5. recompute      using     , and then 

IF              in Step 2 

        

                              
 go to Step 2 
ELSE  
       

   go to Step 4 
  END IF 
 
 Starting from some initial set of learning para-
meters   , LM algorithm iteratively proceeds down 
the slope of the error function, ultimately finding 
some local minimum of that function. This is done 
by trying different sets of parameters generated by 
altering parameter  . If error function increases, 
quadratic approximation of the error curve is unsa-
tisfactory and   is increased by factor    , thus 
making gradient method dominant in the adaptation 
of learning parameters. If, on the other hand, error 
function decreases, quadratic approximation is 
good and   is decreased by decay rate  , thus 
making Gauss-Newton method dominant in lea-
rning parameters adaptation. First set of para-
meters that leads to decrease in error function is 
set to be the new set of parameters which will be 
used as the initial set in the next iteration of the 
algorithm. 
 
3. VARIABLE DECAY RATE 
 Although LM algorithm decreases error in every 
iteration, every iteration has a potential to become 
computationally very intensive if many unsuccess-
ful trials need to be performed before new set of 
parameters is found. Number of unsuccessful trials 
is directly related to the decay rate  , since the 
step direction and the step size of each trial 
depend on parameter  , which is a function of  . 
Initial suggestion by Marquardt [16] to use the 
same decay rate in both cases, i.e. regardless 
whether error function is decreased or increased 
(with reciprocal value of decay rate used in latter 
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case), was used by many researchers [13], [17], 
[18], but this strategy didn’t give good results. 
Another strategy was proposed in [1], where 
different decay rates were used depending whether 
error function was increased or decreased. 
Although better results were obtained, number of 
unsuccessful trials was still significant, resulting in 
slow learning process in a case of a large network. 
 Another approach is considered in [6]. As 
authors showed in their paper, speed of conver-
gence of LM algorithm slows down when approach-
ing required accuracy due to many error oscilla-
tions. Authors also show that, by fixing decay rate 
to some value (usually 0.1), leads to oscillations in 
 , which implies that many trials in decreasing   by 

multiplying   would not lead to reduction in error 
but cause unexpected ascend of error and there-
fore, waste time. 
 To overcome this drawback, authors suggested 
log-linear function as a rule of varying decay rate   

after each iteration, where   is given as a function 
of error. In this paper, we suggest different rule of 
varying decay rate, as follows 
 

                                                                         
 

with     given as 
 

     
      

        

                                                                  

 

where   is reduced sum of squared error,      is 

the required training accuracy and    is first calcu-
lated error based on initial learning parameters. 
Parameters    and    should be chosen in interval 
         . Figure 1. shows decay rate rule graphi-

cally, when        and       . 
 The idea behind above suggested rule is as fo-
llows. When network is far from desired accuracy 
and approaches minimum, decay rate is slowly 
decreased, thus slowly increasing step size and 
blending more towards Gauss-Newton method. 
This ensures stability and good convergence 
properties at the beginning stages of learning pro-
cess. At the subsequent stages of learning pro-
cess, when network is closer to the minimum and 
error is decreased, decay rate changes faster, thus 
blending more and more towards Gauss-Newton 
method. This ensures faster convergence to the 
minimum, but has a side effect of causing oscillati-
ons near minimum. Nonetheless, these oscillati-
ons are much less expressed than in the case of fi-
xed decay rate, thus speeding up learning process. 
 It should also be noted that, in this paper, 
different decay rate is used in the case of error de-
crease and increase. When error is decreased,   is 

multiplied by     . On the other hand, when error is 

increased,   is multiplied by fixed      (usually 
100), which ensures much faster convergence than 
when        is used. 
 

 
Figure 1. Rule of decay rate variation 

 
 
4. PARALLELIZATION OF THE LEVENBERG-
MARQUARDT ALGORITHM 
 As mentioned before, LM-based NN was 
parallelized on two levels – across data sets and in 
Jacobian computation. Since NNs with LM algo-
rithm learn using batch mode, it is possible to 
decompose objective function in such a way that 
each GPU unit calculates objective function for one 
input-output learning pair. In other words, it is 
possible to separate learning patterns (input-output 
pairs) into disjoint sets and then perform all 
necessary operations on each learning pattern in 
parallel. This type of parallelism is known as SIMD 
(Single Instruction Multiple Data). After obtaining 
outputs for each learning pattern and calculating 
local objective functions in parallel, local errors are 
gathered and summed up, after which algorithm 
continues with execution of the subsequent opera-
tions. 
 The second level of parallelism is within the 
calculation of the Jacobian matrix. Since only re-
gression problems are considered in this paper, NN 
has only one output, i.e each row in Jacobian ma-
trix, given in Eq .(8), corresponds to one input-
output pair. Each row of each Jacobian matrix is 
thus calculated in parallel, and stored into appro-
priate matrix. After all learning patterns are pro-
cessed, obtained Jacobians are used to calculate 
Hessians, which are then used to determine 
learning parameter change according to Eq. (2). 
 Calculation of Hessian, although parallelizable, 
is not done in parallel since it involves only matrix-
matrix multiplication, an operation performed 
extremely fast on the GPU unit. Furthermore, since 
our algorithm is implemented in Matlab, which is 
well known to, in general, give much better results 
when the code is given in vectorized form, Hessian 
computation is not parallelized. Two levels of 
parallelization suggested in this paper were 
accomplished using Accelereyes’ Jacket, platform 
that enables single-threaded M-code to be trans-
formed to GPU-enabled applications. 
 Third level of parallelization, i.e. parallelization 
of the search step, suggested in [13], is not imple-
mented in this paper. Initial LM algorithm with fixed 
decay rate, as suggested in [16], often performs 
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many unsuccessful optimization search steps, 
which significantly slows down the convergence. In 
this paper, instead of parallelizing search steps and 
finding an optimal way to choose between good 
search steps if more than one is found, we suggest 
using variable decay rate. If decay rate is given as 
an exponential function of error, number of 
unsuccessful search steps is significantly decre-
ased, thus making third level of parallelization 
unnecessary, and simplifies algorithm implement-
tation on the GPU unit. Changing parameters    

and    in (6) in suggested interval, different shapes 
of variable decay rate are obtained, which directly 
influences number of unsuccessful search steps.  
 

     

 
 
 
 
 
 
 
   

   

   

   

   

   

   

   

 

   

   

   

   

   
   

   

   

   
 

   

    
 
 
 
 
 
 

                                                

 
5. SIMULATION RESULTS 
 All tests are carried out using 3-layered feed-
forward NN. Number of input and output layer 
neurons depends on the benchmark problem, while 
number of hidden layer neurons is arbitrary. In this 
paper, three different NN architectures are used. 
Learning process was carried out using 1000 steps 
during which network was validated after every 10 
steps for there is no guarantee that the validation 
error will have strictly decreasing manner as 
learning proceeds. If validation error decreased 
compared to a previous one, learning parameters 
were saved. Otherwise, they were not considered. 
 In order to improve learning process, a modi-
fication of random learning parameters initializa-
tion, proposed in [19], is used: 
 

        
 
                                                          

 
where   and   denote the number of neurons in 

layers connected with parameter   – former refers 
to succeeding and latter to preceding layer. 
 Algorithms are compared using speedup mea-
sure. Speedup shows computational advantage 
gained by using GPU over the amount of 
computation needed by the same algorithm on the 
CPU. Speedup   can be calculated as follows: 
 

  
    

    

                                                                                 

 

where      denotes execution time on the CPU 
and      denotes execution time on the GPU. 
 In all the tables, HLNs denotes hidden layer 
neurons and NRMSmin denotes minimum NRMS 
error, as given in [1], achieved on validation set. 
Furthermore,  NRMSmin step denotes iteration at 
which this error is achieved.   

5.1. Nonlinear system prediction 
 In their paper on nonlinear signal processing, 
Lapedes and Farber [20] suggested Glass-Mackey 
chaotic system as a NN benchmark problem due to 
its simple definition but hard to predict behavior. 
This system is given in discrete time as  
 

      
 

   
        

        

          
                  

 
In this paper,       and      . Sampling time is 
set to      , and time delay     . 
 The goal of the algorithm is to predict the beha-
vior of chaotic system in  -th point in the future 

based on   past points and the current one. 
Standard method for this kind of prediction is to 
determine a mapping function      as follows: 
 

                                            

 
In this paper,       and    , which leads to 
the following mapping function 
 

                                              

 
 Figure 2. shows time series of 1000 time steps 
for      (time in units of  ). First 500 time steps 
were used for learning, whereas remaining 500 
were used for validation of an algorithm. 
 

 
Figure 2. Glass-Mackey time series 

 
 Task of a NN is to predict a single value of a 
system based on five known signal values, so the 
network has       structure (bias neuron is 
added to both input and hidden layer), where the 
number    of hidden layer neurons is arbitrary. In 

this paper,           .  
 Learning and validation results of chaotic 
system prediction problem with fixed and variable 
decay rate are given in Table 1 and Table 2, respe-
ctively. It can be seen that in both cases networks 
give similar results, but networks with fixed decay 
rate perform, in total, much more unsuccessful 
search steps. Actual improvements introduced with 
variable decay rate can be seen in Table 3, which 
shows time and epochs needed for both networks 
to reach the same NRMS=0.079 error. 
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Table 1. Chaotic system learning and  
validation results (fixed  ) 

No. of HLNs 13 23 33 

NRMSmin step 520 510 330 

NRMSmin 0.0784 0.0743 0.0757 

No. of trials 4003 2501 4004 

 
Table 2. Chaotic system learning and  
validation results (variable  ) 

No. of HLNs 13 23 33 

NRMSmin step 500 510 560 

NRMSmin 0.0790 0.0757 0.0765 

No. of trials 1470 1706 1392 

 
Table 3. Processor time and trials needed to 
achieve NRMS=0.079 on prediction problem 

No. of  
HLNs 

NN with fixed   NN with variable   

Time[s] Trial Time[s] Trial 

13 13.98 1998 8.68 727 

23 5.27 475 6.73 499 

33 8.89 599 7.59 478 

 
 Speedups obtained with two levels of paralle-
lism and variable decay rate are given in Table 4. 
Speedups are not significant in this case due to the 
fact that given problem is not sufficiently large in 
size to utilize all the computational power of the 
GPU. Negative correlation between the size of the 
network and speedups is due to the com-
putationally intensive inversion of Hessian which, in 
this paper, is not parallelized, i.e. it is performed in 
a standard way, using LU factorization. 
 
Table 4. Chaotic system prediction speedups 

No. of HLNs 13 23 33 

Speedup   4.05 3.56 3.48 

 
5.2. Filtration of estimated tool wear curves 
 Machine tool wear estimation is of a high im-
portance in machining processes since every fifth 
machine downtime is caused by an unexpected 
tool wear. To fulfill high demands on reliability and 
robustness, a new tool wear regulation model is 
proposed in [21]. Data used therein for testing pro-
posed model, which was obtained experimentally, 
will be used in this paper as well.  
 Simulated flank wear curves used in NN's 
learning process are shown in Figure 3. On the 
other hand, in real conditions estimation error is 
influenced by different disturbances that can occur 
during machining process. In order to capture real 
conditions, white noise is added to simulated model 
outputs.  
 Figure 4. shows simulated (    ) and esti-

mated (    ) curves, as well as filtrated (   ) curve, 
which represents desired output of a NN. 
Therefore, the goal of a NN is to generate, based 
on four previous values obtained from the 

estimator, an output which will be similar to the 
filtrated curve shown in Figure 4. 
 

 
Figure 3. Flank wear curves 

 

 
Figure 4. Model and NN output 

 
 The goal of the learning process is filtration of 
the estimated tool wear curves. Since NN has to 
estimate only one value based on a five known 
values, network has again       structure.  
 Table 5 and Table 6 show learning and validati-
on results on filtration of estimated tool wear curves 
in a case of fixed and variable decay rate, respecti-
vely. It can be seen that variable decay rate led to 
significant decrease in number of unsuccessful 
search steps. 
 
Table 5. Learning and validation results on filtration 
of estimated tool wear curves (fixed  ) 

No. of HLNs 13 23 33 

NRMSmin step 320 340 150 

NRMSmin 0.2700 0.2660 0.2696 

No. of trials 4003 2501 2500 

 
 Table 7 shows actual improvements introduced 
with variable decay rate in the case of filtration of 
estimated tool wear curves, while Table 8 shows 
speedups in the same case. Since filtration pro-
blem is much bigger than prediction problem, 
speedups are significantly bigger, thus showing 
effectiveness of proposed algorithm. As said befo-
re, negative correlation between network size and 
speedups is due to the non-parallelized inversion of 
Hessian matrix, which becomes computationally 
intensive on the GPU as the size of a network 
increases. 
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Table 6. Learning and validation results on filtration 
of estimated tool wear curves (variable  ) 

No. of HLNs 13 23 33 

NRMSmin step 320 320 160 

NRMSmin 0.2674 0.2646 0.2689 

No. of trials 1864 1318 1459 

 
Table 7. Processor time and trials needed to 
achieve NRMS=0.27 on filtration problem 

No. of  
HLNs 

NN with fixed   NN with variable   

Time[s] Trial Time[s] Trial 

13 21.42 652 13.99 345 

23 24.97 652 7.75 120 

33 21.15 377 16.85 213 

 
Table 8. Filtration of estimated tool wear  
curves speedups 

No. of HLNs 13 23 33 

Speedup   16.36 14.06 12.88 

 
6. CONCLUSION 
 GPU-based parallel implementation of LM-
based NN with variable weight decay is proposed. 
Two levels of parallelism are implemented in the 
algorithm – parallelization across data sets and 
parallelization of Jacobian computation. In order to 
avoid parallelization of search steps, exponential 
variable decay rule is suggested. Simulation results 
show effectiveness of proposed algorithm, both in 
variable decay rate and parallel GPU implemen-
tation. 
 Future work will be oriented towards CUDA 
implementation of algorithm and parallelization of 
Hessian matrix inversion. 
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