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Abstract This paper proposes an efficient algorithm for simultaneous reduction of three matrices.
The algorithm is a blocked version of the algorithm described by Miminis and Page (1982) which
reduces A to the m-Hessenberg form, and B and E to the triangular form. The m-Hessenberg–
triangular–triangular form of matrices A, B and E is specially suitable for solving multiple shifted
systems. Such shifted systems naturally occur in control theory when evaluating the transfer func-
tion of a descriptor system, or in interpolatory model reduction methods. They also arise as a result
of discretization of the time-harmonic wave equation in heterogeneous media, or originate from
structural dynamics engineering problems. The proposed blocked algorithm for the m-Hessenberg–
triangular–triangular reduction is based on the aggregated Givens rotations, which are a general-
ization of the blocked algorithm for the Hessenberg–triangular reduction proposed by Kågström et
al. (2008). Numerical tests confirmed that the blocked algorithm is up to 3.4 times faster than its
non-blocked version based on regular Givens rotations only. As an illustration of its efficiency, two
applications of the m-Hessenberg–triangular–triangular reduction coming from control theory are
described: evaluation of the transfer function of a descriptor system at many complex values, and
computation of the staircase form used to identify the controllable part of the system.
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blocked algorithm · solving shifted system · transfer function evaluation · staircase form
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1 Introduction

Our goal is to implement an efficient algorithm for solving general shifted systems of the form
(σE−A)X = B, with A,E ∈ Rn×n and B ∈ Rn×m, where m� n, and for possibly large number of
shifts σ ∈R or σ ∈C. Transforming matrices A, B and E into a suitable form can increase efficiency
of repeated system solving, as described in [3] and [4] for E = I, where I is the identity matrix.
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Shifted systems frequently occur in control theory, where in case of descriptor systems

Eẋ(t) = Ax(t)+Bu(t) (1.1)
y(t) =Cx(t)+Du(t),

with C ∈ Rp×n and D ∈ Rp×m, the corresponding transfer function has the following form

G (σ) =C(σE−A)−1B+D.

Similar shifted systems can be found in interpolatory model reduction where a sequence of sub-
spaces is computed. The subspaces are spanned by (σiE −A)−1B and (σiE −A)−∗CT , i = 1, . . .r
in case when m = p = 1, and by (σiE − A)−1Bbi and (σiE − A)−∗CT ci for suitable vectors bi
and ci in case when m, p > 1. In the iterative rational Krylov optimal H2 model reduction algo-
rithm (IRKA) [10], [1], a shifted linear solver represents its important part. Shifted systems are
naturally obtained as a result of numerical methods applied to mathematical models in applied
mathematics. Such examples are coming from acoustic problems in many areas, e.g., from aero-
nautics, marine technology, geophysics, and optical problems, and they are the result of solving the
time-harmonic wave equation in heterogeneous media. Finite Element discretization of a Helmholtz
equation, where a model of wave propagation in the earth crust is observed, results with a system
of the form (K− z1M)p = b, z1 = (2π f )2. K is a discretized Laplacian and M is a mass matrix,
see for example [8]. Another example comes from the structural dynamics engineering problem,
where direct frequency analysis leads to the solution of the algebraic linear system of the form
(σ2A+σB+C)x = b, for several values of the frequency-related parameter σ . Linearization yields
the system ([

B C
Cτ 0

]
+σ

[
A 0
0 −Cτ

])[
y
x

]
=

[
b
0

]
.

For details see [20] and [21].
On the other hand, when solving the generalized eigenvalue problem Ax = λEx the first step

in computing the generalized Schur decomposition of the pair (A,E) is to reduce A and E to the
generalized upper Hessenberg form (Hessenberg–triangular form) using orthogonal transformations
based on Givens rotations (see, [9, Section 7.7]). Efficient block algorithms for the Hessenberg–
triangular reduction are proposed by Kågström et al. in [12]. The reduction results with

Qτ AZ = H, Qτ EZ = TE ,

where H is an upper Hessenberg matrix and TE is an upper triangular matrix. In this case G (σ)
would have the form

G (σ) = (CZ)(σTE −H)−1(Qτ B)+D.

where a Hessenberg system of linear equations (σTE −H)X = Qτ B has to be solved, but Qτ B does
not have any convenient form. This is a standard approach for computing the transfer function of
the descriptor system, see for example [24]. If we want to use a similar and more efficient approach
as in [4], we have to include the matrix B into reduction. This approach can easily be generalized to
the descriptor systems, as already described in the same paper.

Now we introduce the m-Hessenberg–triangular–triangular form for the matrices A, B and E. We
will show that there exist orthogonal matrices Q, Z ∈ Rn×n, which simultaneously reduce matrices
A, B and E to the desired form.

Definition 1.1 Reduction of the matrices A, B and E to the m-Hessenberg–triangular–triangular
form is obtained as

Â = Qτ AZ = H where H is an upper m-Hessenberg matrix,

B̂ = Qτ B =

[
TB
0

]
where TB is an upper triangular matrix,

Ê = Qτ EZ = TE where TE is an upper triangular matrix,
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and Q,Z ∈ Rn×n are orthogonal.
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Fig. 1.1: The m-Hessenberg–triangular–triangular form of the matrices Â, B̂, and Ê.

Besides shifted systems, the m-Hessenberg–triangular–triangular form is used in [19] and [17]
as a tool to determine controllability of the system in the single input case (m = 1), and in [17] as a
preprocessing faze in an algorithm for pole assignment.

In this paper we describe in details the blocked algorithm for the m-Hessenberg–triangular–
triangular reduction in Section 3, and in Section 4 we give a short insight in its backward stability
analysis. In the following sections we illustrate the application of the m-Hessenberg–triangular–
triangular reduction in two cases from control theory. In Section 5 the evaluation of the transfer func-
tion is elaborated, showing that this can be done efficiently when the system is in the m-Hessenberg–
triangular–triangular form. In Section 6 we describe an efficient algorithm for reduction of the de-
scriptor system to the staircase form, which is based on the m-Hessenberg–triangular–triangular
reduction. The staircase form reveals the controllable part of the system. Only an introduction to
the GPU algorithm of the m-Hessenberg–triangular–triangular reduction is given in Section 7, and
finally in Section 8 we confirm the superiority of our algorithms by presenting the results of our
numerical tests.

2 The non-blocked algorithm

The non–blocked algorithm is a generalization of the Hessenberg–triangular reduction described in
Algorithm 7.7.1 in [9], and is actually introduced for m = 1 by Miminis and Paige in [17](see also
[19] for m > 1).

1. First, an orthogonal QE is determined such that E = Qτ
EE is upper triangular, and B = Qτ

EB and
A = Qτ

EA are updated accordingly.
2. The next step is reduction of the matrix B. Since this matrix is affected only by orthogonal trans-

formations from the left, it can be reduced to the upper triangular form while simultaneously
preserving upper triangular form of E. In each step of the algorithm a Givens rotation from the
left is applied to annihilate one element below the main diagonal of B. The same transformation
is then applied to E introducing one nontrivial subdiagonal element. Then, another Givens ro-
tation is applied to E from the right in order to restore its triangular form. Both transformations
have to be applied to the matrix A, too.

3. When the reduction of B is finished, the algorithm switches to A. In order to simultaneously
reduce the matrix A and preserve the upper triangular form of the matrix E, the optimal reduced
form of A is Hessenberg. But, if we take the upper triangular form of B into account, than the
desired reduced form of A is m-Hessenberg. Orthogonal transformations applied to A from the
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left determined to annihilate elements bellow its m-th subdiagonal, when applied to B will not
affect its reduced form.

4. The role of the matrix C is rather passive. It is updated by all orthogonal transformations from
the right that were produced in the reduction.

To sum up, this algorithm reduces the first n columns of [B A ] to the upper triangular form in n−1
outer-loop steps, restoring the triangular form of E at each inner-loop step.

3 The blocked algorithm

First, we should notice that in case of descriptor systems, matrices E that occur in practice are
sparse and structured. Thus, the triangular reduction of E can be performed by a structure specific
transformation, which is much more efficient than the standard QR factorization. On the other
hand, our algorithm is developed for a general case, where we do not imply any structure or non-
singularity of E, and can be applied for solving general shifted systems.

The blocked algorithm for the m-Hessenberg–triangular–triangular reduction is a generalization
of the Level 3 BLAS [7] variant of the algorithm for the Hessenberg–triangular reduction based on
Givens rotations, and introduced by Kågström et al. in [12] (see also [14]). Since the application
of Givens rotations in the non–blocked algorithm is performed only by Level 1 BLAS operations
both with unit and non-unit stride, this algorithm does not use the fast cache memory optimally.
To increase its efficiency we must optimize the usage of cache memory by reordering operations
in the algorithm, which will allow us to utilize efficient Level 3 BLAS operations based on the
matrix–matrix product.

We will start with an observation. In our algorithm we are annihilating consecutive elements of
[B A ] columnwise, so we will use the same notation as in [12]: G( j)

i−1,i denotes the Givens rotation
used to annihilate B(i, j) or A(i, j−m) if j > m. This is the Givens rotation generated in the j-th
outer loop step and the i-th inner loop step of the non–blocked algorithm. In order to determine
this Givens rotation, all rotations from previous steps have to be applied to B or A in a given order.
On the other hand, if we want to apply a sequence of Givens rotations defined in the non–blocked
algorithm to a vector x ∈Rn which does not determine any of the rotations from the sequence, then
we have some freedom to reorder the rotations. Still, there are some dependencies between Givens
rotations from different outer loop steps that we cannot avoid.

G(1)
12,13 G(1)

11,12 G(1)
10,11 G(1)

9,10 G(1)
8,9 G(1)

7,8 G(1)
6,7 G(1)

5,6 G(1)
4,5 G(1)

3,4 G(1)
2,3 G(1)

1,2

G(2)
12,13 G(2)

11,12 G(2)
10,11 G(2)

9,10 G(2)
8,9 G(2)

7,8 G(2)
6,7 G(2)

5,6 G(2)
4,5 G(2)

3,4 G(2)
2,3

G(3)
12,13 G(3)

11,12 G(3)
10,11 G(3)

9,10 G(3)
8,9 G(3)

7,8 G(3)
6,7 G(3)

5,6 G(3)
4,5 G(3)

3,4

G(4)
12,13 G(4)

11,12 G(4)
10,11 G(4)

9,10 G(4)
8,9 G(4)

7,8 G(4)
6,7 G(4)

5,6 G(4)
4,5

· · ·

Fig. 3.1: The sequence of Givens rotations in the non-blocked algorithm for n = 13.

Let us define x(0) = x, and x( j) = G( j)
j, j+1G( j)

j+1, j+2 · · ·G
( j)
n−1,nx( j−1) is the updated vector x af-

ter j outer loop steps. Then, in order to determine its i-th element x( j)(i), under assumption that
G( j)

n−1,n,. . . ,G( j)
i,i+1 are already applied to x( j−1)(i : n), we only need to apply G( j)

i−1,i to x( j−1)(i−1 : i).

Further, to determine x( j−1)(i− 1 : i), under assumption that G( j−1)
n−1,n,. . . ,G( j−1)

i,i+1 are already applied



Efficient Algorithm for Simultaneous Reduction to the m-Hessenberg–Triangular–Triangular Form 5

to x( j−2)(i : n) we need to apply G( j−1)
i−1,i and G( j−1)

i−2,i−1 to x( j−2)(i−2 : i). To determine x( j−2)(i−2 : i),

under assumption that G( j−2)
n−1,n,. . . ,G( j−2)

i,i+1 are already applied to x( j−3)(i : n) we need to apply G( j−2)
i−1,i ,

G( j−2)
i−2,i−1 and G( j−2)

i−3,i−2 to x( j−3)(i−3 : i), and so on.

G( j−2)
i−1,i G( j−2)

i−2,i−1 G( j−2)
i−3,i−2

G( j−1)
i−1,i G( j−1)

i−2,i−1

G( j)
i−1,i

Fig. 3.2: The dependencies of the rotations affecting x( j)(i). An arrow S→ T means that T can be
applied after S.

Further, since the rotations G( j1)
i1−1,i1

and G( j2)
i2−1,i2

commute when i2 > i1+1 we can conclude that

– G( j−1)
i−1,i , G( j−1)

i−2,i−1 and G( j)
i−1,i commute with the sequence of rotations G( j−2)

i−4,i−3,. . . ,G( j−2)
j−2, j−1, and

– G( j)
i−1,i commute with the sequence of rotations G( j−1)

i−3,i−2,. . . ,G( j−1)
j−1, j , hence

– we can apply rotations presented in Figure 3.2 one after another, in a sequence

G( j−2)
i−1,i G( j−2)

i−2,i−1 G( j−2)
i−3,i−2 G( j−1)

i−1,i G( j−1)
i−2,i−1 G( j)

i−1,i

This sequence is more localized, in sense that when applied to the vector x only elements x(i−3),
x(i− 2), x(i− 1) and x(i) are involved. Consequently, this approach will increase efficiency of
cache line usage, since we can reorganize the sequence of Givens rotations in groups with local
effect on a small block of vector elements, as in [12]. The groups of rotations are determined by
two parameters:

– Columns of the extended matrix [B A ] are grouped in blocks of nb, which is the first parameter.

– Givens rotations G( j)
i−1,i determined by elements of columns j belonging to a block, are further

organized in local groups similar to the group shown in Figure 3.2. They form slanted stripes
in Figure 3.3. The second parameter is the width of the stripes, which is for practical reason
chosen to be nb.

G(1)
12,13 G(1)

11,12 G(1)
10,11 G(1)

9,10 G(1)
8,9 G(1)

7,8 G(1)
6,7 G(1)

5,6 G(1)
4,5 G(1)

3,4 G(1)
2,3 G(1)

1,2

G(2)
12,13 G(2)

11,12 G(2)
10,11 G(2)

9,10 G(2)
8,9 G(2)

7,8 G(2)
6,7 G(2)

5,6 G(2)
4,5 G(2)

3,4 G(2)
2,3

G(3)
12,13 G(3)

11,12 G(3)
10,11 G(3)

9,10 G(3)
8,9 G(3)

7,8 G(3)
6,7 G(3)

5,6 G(3)
4,5 G(3)

3,4

G(4)
12,13 G(4)

11,12 G(4)
10,11 G(4)

9,10 G(4)
8,9 G(4)

7,8 G(4)
6,7 G(4)

5,6 G(4)
4,5

U3 U2 U1

Fig. 3.3: Regrouping of Givens rotations from Figure 3.1, for n = 13 and nb = 4.

The product of all rotations from a local group is denoted by Uk and represents the aggregated
Givens rotations. The application of the whole sequence of Givens rotations to a vector or a matrix,
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can now be performed by consecutive multiplication with matrices Uk. Hence, we can use Level 3
BLAS routines instead of Level 1 BLAS routines.

At first, only the left Givens rotations are accumulated in the matrices Uk. When the processing
of the block is finished and all left updates are performed, the matrices Uk are reused for storing the
aggregated right Givens rotations.

In case of the m-Hessenberg–triangular–triangular reduction the approach with the aggregated
Givens rotations can be applied only to those blocks of matrices A, B and E which do not determine
any rotations included in the matrices Uk, and to the whole matrix C. We will illustrate this with
the example from Figure 3.3. Let n = 13, m = p = 5, and let one column block consist of nb = 4
columns. In one outer loop step of the blocked algorithm all necessary elements in the current
column block of the extended matrix [B A ] are annihilated. During this annihilation, only elements
involved in determination of the next Givens rotation are updated. At the end of the outer loop step
the remaining parts of involved matrices are updated using Level 3 BLAS operations. Two cases
can occur: the current column block includes only columns of B, or it contains some columns of A.
These situations are illustrated in Figures 3.4 and 3.5.
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Updated by the aggregated Givens
rotations from the left

Updated by the aggregated Givens
rotations from the right

Fig. 3.4: Update after annihilation in the first column block of [B A]: only columns of B are involved.
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C
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rotations from the left
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Fig. 3.5: Update after annihilation in the second column block of [B A]: columns of A are involved.

Now we resume the important facts about aggregated Givens rotations. Let us assume that the
first jc columns of the extended matrix [B A ] are already processed, and that all required elements
in those columns are annihilated.
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1. There is lb =
⌊

n− jc
nb

⌋
−1 regular groups in the current block (like U1 and U2 in Figure 3.3) and

one starting group (U3). Hence, Uk, k = 1, . . . , lb, lb +1 have to be determined.
2. The form of matrices Uk is

Uk =

 I jc+(k−1)nb
Ūk

In− jc−(k+1)nb

 , k = 1, . . . , lb, Ulb+1 =

[
In−dim0

Ūlb+1

]
,

where Ūk ∈R2nb×2nb for k = 1, . . . , lb, and Ūlb+1 ∈Rdim0×dim0 with nb ≤ dim0 = n− jc− lbnb <
2nb.

3. The form of matrices Ūk is

Ūk = , k = 1, . . . , lb Ūlb+1 =

4. In each step of the algorithm two Givens rotations are determined, one from the left and one
from the right. Thus, for every rotation G( j)

i−1,i it is important to determine which local group it

belongs to. This means that we have to determine the index k such that G( j)
i−1,i is a factor of Uk.

It can be done in the following way.
– If i > n−dim0 + j− jc then G( j)

i−1,i is a factor of Ulb+1,

– else, k =
⌊

i− j−1
nb

⌋
+1.

3.1 Delayed right update

As in [4] and [13], where the notion of “mini-block” is introduced, we can note that the Givens
rotations G̃( j)

n−1,n, G̃( j)
n−2,n−1,. . . , G̃( j)

j, j+1 determined to annihilate all subdiagonal elements of E in-
troduced while annihilating elements in the j-th column of [B A ] (( j−m)-th column of A), when
applied to A from the right have effect on elements which are at least m columns away from the
current column. This means, that the update with Givens rotations from the right, as described in
the non–blocked algorithm, can be performed after processing m columns of [B A ]. Thus, each
block of nb columns (for nb > m) is split further into smaller subblocks consisting of m consecutive
columns. The last subblock may have less than m columns. Each column inside the current sub-
block has to be updated only with the aggregated Givens rotations from the left, before annihilating
appropriate elements. After all columns of the subblock are processed, the Givens rotations from
the right determined by the annihilation of the elements in this subblock are applied to A.

G(1)
12,13 G(1)

11,12 G(1)
10,11 G(1)

9,10 G(1)
8,9 G(1)

7,8 G(1)
6,7 G(1)

5,6 G(1)
4,5 G(1)

3,4 G(1)
2,3 G(1)

1,2

G(2)
12,13 G(2)

11,12 G(2)
10,11 G(2)

9,10 G(2)
8,9 G(2)

7,8 G(2)
6,7 G(2)

5,6 G(2)
4,5 G(2)

3,4 G(2)
2,3

G(3)
12,13 G(3)

11,12 G(3)
10,11 G(3)

9,10 G(3)
8,9 G(3)

7,8 G(3)
6,7 G(3)

5,6 G(3)
4,5 G(3)

3,4

Fig. 3.6: The sequence of Givens rotations from the right determined by the annihilation of elements
in a subblock, for n = 13 and m = 3.
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The order of non-aggregated Givens rotations from the right can also be rearranged in a new
sequence with emphasized local effect, inspired by the dependencies of rotations described in Fig-
ure 3.2. The adjacent rotations in this sequence will have effect on adjacent vector elements, as
illustrated in Figure 3.6.

ALGORITHM 1: The blocked algorithm for reduction of matrices A, B, and E to the m-
Hessenberg–triangular–triangular form.

Input: matrices A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, E ∈ Rn×n; block dimension nb
Output: upper m-Hessenberg matrix A = Qτ AZ, upper triangular matrix B = Qτ B, matrix C =CZ, upper triangular

matrix E = Qτ EZ; Q and Z can be accumulated if needed

1 Perform the QR factorization on E to determine an orthogonal matrix QE such that E = Qτ
E E is upper triangular;

2 A = Qτ
E A; B = Qτ

E B;
3 imb = 1;
4 for jc = 0 : nb : n−1 do
5 jc,max = min{ jc +nb,n−1}; nb = min{nb,n−1− jc};
6 if nb = 0 then
7 return;
8 end

9 lb =
⌊

n− jc
nb

⌋
−1; dim0 = n− jc− lbnb;

10 for k = 1 : lb do
11 Ūk = I2nb ;
12 end
13 Ūlb+1 = Idim0 ;
14 for j = jc +1 : jc,max do
15 for i = n :−1 : j+1 do
16 Annihilate B(i, j) or A(i, j−m) if j > m by a Givens rotation applied from the left;
17 Update corresponding matrix Ūk from the right, and matrix E from the left by this rotation;
18 Annihilate E(i, i−1) by a Givens rotation applied from the right, and update rows jc +1 : i−1 of E

by this rotation from the right;
19 end
20 If j is the last column of the subblock, then update A( jc +1 : n, j− imb+1 : n) by all Givens rotations

from the right that were generated in the current subblock;
21 If this is not the last column of the column block, then update B( jc +1 : n, j+1) or A( jc +1 : n, j−m+1)

for j ≥ m by the aggregated rotations from the left;
22 end
23 Update B( jc +1 : n, jc,max +1 : m) or A( jc +1 : n, jc,max−m+1 : n) if jc,max ≥ m by the aggregated rotations

from the left;
24 Generate the aggregated Givens rotations from the right and apply them to A(1 : jc, jc +1 : n),

E(1 : jc, jc +1 : n), and C(1 : p, jc +1 : n);
25 end

4 Backward stability

The backward stability of the m-Hessenberg–triangular–triangular reduction follows directly from
[11], and the proof is straightforward. First, we will state the notation and the results from [11] that
we need, and then we are going to give a concluding backward error bound for our algorithm. In
the standard model the accuracy of basic operations is expressed as

f l(x op y) = (x op y)(1+δ ), |δ | ≤ u, op =+,−,∗,/

where f l(·) denotes a result computed in finite precision arithmetic, and u is the unit roundoff. For
computations involving vectors and matrices it is convenient to introduce the parameter

γn =
nu

1−nu
.
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The properties of this parameter are listed in Lemma 3.3 in [11]. Now we can state the intermediate
results following from Theorem 19.4, Lemma 19.9 and Theorem 19.9 in [11], concerning the back-
ward error of the QR factorization by the Householder reflectors and a product of a sequence of the
Givens rotations with a general matrix. These results are obtained for the non-blocked algorithm,
and for the blocked algorithm the results are similar but with different constants. Let us partition
the algorithm in three basic steps.

1. The first step is QR factorization of E by the Householder reflectors, and for that we have the
following relation

E +∆E1 = Q1E1, ‖∆E1‖F ≤ γchrn2‖E‖F ,

where E1 is upper triangular, Q1 is orthogonal, and chr is a small integer constant whose exact
value is unimportant. Q1 is then applied to B and A resulting with

B+∆B1 = Q1B1, ‖∆B1‖F ≤ γchrn2‖B‖F ,

A+∆A1 = Q1A1, ‖∆A1‖F ≤ γchrn2‖A‖F .

2. Next, we accumulate effects of all left Givens rotations. The matrix B is affected only by those
Givens rotations which participate in the QR factorization of B, and the matrices A and E are
affected by all left rotations that participate in annihilation of the lower left triangular in [B A ].
For a small integer constant c, we obtain

B1 +∆B2 = Q21B̂, ‖∆B2‖F ≤ γc(n+m)‖B1‖F ≤ γc(2n+2m)‖B‖F ,

A1 +∆A2 = Q2A2, ‖∆A2‖F ≤ γ2cn‖A1‖F ≤ γ4cn‖A‖F ,

E1 +∆E2 = Q2E2, ‖∆E2‖F ≤ γ2cn‖E1‖F ≤ γ4cn‖E‖F ,

where B̂ is the final computed triangular form of B, Q21 and Q2 are orthogonal, and Q2 =
Q21Q22.

3. Finally, we accumulate effects of all right Givens rotations, obtaining

A2 +∆A3 = ÂZτ , ‖∆A3‖F ≤ γ2cn‖A2‖F ≤ γ4cn‖A‖F ,

E2 +∆E3 = ÊZτ , ‖∆E3‖F ≤ γ2cn‖E2‖F ≤ γ4cn‖E‖F ,

where Â and Ê are the final computed m-Hessenberg and triangular forms of A and E respec-
tively, and Z is orthogonal.

Putting all this together, we can conclude that Â, B̂ and Ê represent the exact m-Hessenberg–
triangular–triangular form of the matrices A+∆A, B+∆B and E +∆E, such that for Q = Q1Q2 the
following holds

Â = Qτ(A+∆A)Z, ‖∆A‖F ≤ (γchrn2 + γ8cn)‖A‖F ,

Ê = Qτ(E +∆E)Z, ‖∆E‖F ≤ (γchrn2 + γ8cn)‖E‖F ,

B̂ = Qτ(B+∆B), ‖∆B‖F ≤ (γchrn2 + γc(2n+2m))‖B‖F .

In case of the blocked algorithm, we have to analyze the accumulation and application of the ag-
gregated Givens rotations Ūk. By Lemma 19.9 in [11] we have that the backward error for computed
Ûk satisfies the relation

Ûk = (I +∆ Ik)Ūk, ‖∆ Ik‖F ≤ γdnb‖I‖F ≤
√

2nbγdnb ,

for a small integer constant d, since Ūk can be factorized as Ūk =W1W2 · · ·W2nb−1, and each Wi is a
product of disjoint Givens rotations.



10 Nela Bosner

Let Mk denote a block of 2nb (or dim0 < 2nb) consecutive rows of A, B or E affected by Ūk from
the left. In finite precision arithmetic, by section 3.5 in [11] on matrix multiplication we have the
following relations

M̂k = f l(Ûτ
k Mk)

M̂k = Ûτ
k Mk +∆Mk,1 = Ūτ

k (I +∆ Iτ
k )Mk +∆Mk,1

= Ūτ
k (Mk +∆ Iτ

k Mk +Ūk∆Mk,1) = Ūτ
k (Mk +∆Mk),

where for a suitable constant e we get

‖∆Mk,1‖F ≤ γ2nb‖Û
τ
k ‖F‖Mk‖F ≤

√
2nbγ(2+d)nb

‖Mk‖F ,

‖∆Mk‖F ≤
√

2nbγ(2+2d)nb
‖Mk‖F ≤ γenb‖Mk‖F .

Following the proof of Lemma 19.9 in [11] for the Givens rotations, we can obtain the similar results
for the aggregated Givens rotations. It can be easily shown that the matrix Q is of the form Q =
V1V2 · · ·V2d n−1

nb
e−2 where Vi is a product of disjoint aggregated Givens rotations. Hence, it follows

that there exists a constant f such that

A1 +∆A2 = QA2, ‖∆A2‖F ≤ γ
e
(

2d n−1
nb
e−2

)
nb
‖A1‖F ≤ γ f n‖A1‖F ,

E1 +∆E2 = QE2, ‖∆E2‖F ≤ γ
e
(

2d n−1
nb
e−2

)
nb
‖E1‖F ≤ γ f n‖E1‖F .

The same result can be obtained for the right aggregated Givens rotations. Hence, we can conclude
that the backward error bounds for the blocked algorithm are of the same form as for the non-
blocked algorithm, but with different constants.

5 Shifted systems and transfer function

As mentioned in the introduction, the m-Hessenberg–triangular-triangular form is used as the first
phase of an efficient solver of shifted systems, in particular when evaluating the transfer function
G (σ) = C(σE −A)−1B+D of a descriptor system (1.1) at many values of complex scalar σ . In
[4] it is described in details how to efficiently evaluate the transfer function in case when E = I, by
using the controller Hessenberg (m-Hessenberg–triangular) form. Evaluation of G (σ) for a single
shift is a straightforward generalization of Algorithm 11 in [4], which implements an incomplete
RQ factorization by Householder reflectors. The most important part of the block algorithm im-
plemented in [4, Algorithm 11] is illustrated in Algorithm 2. Matrices Y and V represent the WY
representation of the aggregated Householder reflectors exploited in RQ factorization.

On the other hand, batch processing in case of multiple shifts described in Algorithm 12 in [4]
for E = I has to be remodeled in order to function for general matrices E. The auxiliary (p+n)×
(m+ nb) array Z, introduced in Algorithm 2 which stores (m+ nb) columns of the transformed
matrices C and A−σ I for a single shift, in [4] is split into two parts:

– The first part consists of the first nb columns of Z and is denoted by Z1. This part is (almost) the
same for all shifts and relates to the original elements of A and C.

– The second part consists of the last m columns of Z that are specific to the shift σi, and is
denoted by Z2(i), where i = 1, . . . ,ns and ns is the number of shifts processed simultaneously.
These submatrices are the result of the update applied to the shifted matrix from the previous
outer loop step, and are different for different shifts.
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ALGORITHM 2: The blocked algorithm for computing G (σ) =C(σE−A)−1B+D.
Input: (A,B,C,D,E) ∈ Rn×n×Rn×m×Rp×n×Rp×m×Rn×n ((A,B,E) in the m-Hessenberg–triangular-triangular

form); σ ∈ C, and block dimension nb
Output: G (σ) ∈ Cp×m

1 lb = b(n−m)/nbc;
2 mink = n− (lb−1) ·nb;
3 Fill the first m columns of Z with the last m columns of

[ C
A−σE

]
;

4 for k = n :−nb : mink do
5 Copy the first m columns Z to the last m columns of Z, and fill the first nb columns of Z with columns

k−m−nb +1, . . . ,k−m of
( C

A−σE

)
;

6 Compute V and Y by the RQ algorithm, such that Z(p+ k−nb +1 : p+ k,1 : m+nb)(I−YV ∗) is upper
triangular;

7 Compute the first m columns of Z, by calling xTRMM and xGEMM:
Z(1 : p+ k−nb,1 : m) = Z(1 : p+ k−nb, :)(I−YV ∗)(:,1 : m);

8 end
9 l = n− lb ·nb;

10 for k = l :−1 : m+1 do
11 Perform the point algorithm;
12 end
13 Reduce the first m rows of A−σE to the triangular form T̂ and simultaneously solve T̂ X̂ = B̂;
14 G (σ) = D−Z(1 : p,1 : m) · X̂ ;

In case when E = I, only elements corresponding to diagonal elements of A stored in Z1 are pro-
cessed separately, since the shift σ(i) has to be subtracted from them. With general E the situation
is more complicated. The columns of E multiplied with σ(i) have to be subtracted from the corre-
sponding columns of A, in order to obtain columns of A−σ(i)E. Thus, besides columns of C and
A, Z1 has to store columns of E, too. Z2(i) is also extended to p+ 2n rows, where the additional
rows accommodate intermediate results. Rows of Z1 are organized as

[
C
A
E

]
.

ALGORITHM 3: Details of the update in case of aggregated shifts.
for k = n :−nb : mink do

Initialize data;
for 1 = 1 : ns do

Perform necessary copying, and form Zblock which is input for the RQ algorithm;
6 Compute V (i) and Y (i) by the RQ algorithm, such that Zblock(I−Y (i)V (i)∗) is upper triangular;

7.1 Call xTRMM to compute Y (i)(1 : m+nb,1 : m) = Y (i)(1 : m+nb,1 : m) ·V (i)(1 : m,1 : m)∗;
7.2 Call xGEMM to compute Z2(i)(1 : p+ k−nb,1 : m) = Z1(1 : p+ k−nb,1 : m)

−Z2(i)(1 : p+ k−nb,1 : m) ·Y (i)(nb +1 : nb +m,1 : m);
7.3 Set Z2(i)(p+ k−nb +1 : p+2k−2nb,1 : m) = Z1(p+ k−nb +1 : p+2k−2nb,1 : m);

end
7.4 Call xGEMM to compute

[ Z2(1) Z2(2) · · · Z2(ns) ](1 : p+2k−2nb,1 : m ·ns) = [ Z2(1) Z2(2) · · · Z2(ns) ](1 : p+2k−2nb,1 :
m ·ns)−Z1(1 : p+2k−2nb,1 : nb) ·[Y (1)(1 : nb,1 : m) Y (2)(1 : nb,1 : m) · · · Y (ns)(1 : nb,1 : m) ];
for 1 = 1 : ns do

7.3 Z2(i)(1 : p+1 : p+ k−nb,1 : m) = Z2(i)(1 : p+1 : p+ k−nb,1 : m)
−σ(i)Z2(i)(p+ k−nb +1 : p+2k−2nb,1 : m);

end
end

The main idea of batch processing is to perform the update of Z1 simultaneously for all shifts,
as one call to the BLAS 3 routine xGEMM. That is what we are going to do for general E, but this
update will be less efficient than the one for the case with E = I. The update for general E includes
extra rows of the matrix E, and hence has larger operation count. At the end of this process, rows
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corresponding to updated rows of E multiplied by the shift σ(i) are subtracted from the correspond-
ing updated rows of A. As a result, the update described in line 7 of Algorithm 2 is transformed to
the sequence of BLAS 3 operation described in Algorithm 3.

Here we assume that m ≤ nb. Y (i) stores the product Y (i)(1 : m + nb,1 : m) ·V (i)(1 : m,1 :
m)∗, where matrices Y (i) and V (i) represent the WY representation of the aggregated Householder
reflectors determined in the current outer loop step for the shift σ(i). For details, see subsection 4.2
in [4].

6 The staircase form

The m-Hessenberg–triangular–triangular reduction algorithm can be efficiently applied to computa-
tion of a useful canonical form, used to determine whether the descriptor system (1.1) is controllable
or not, or to identify its controllable part. Such a canonical form is a staircase form, which can be
computed with a numerically stable algorithm, and is described in [19]. For the nonsingular matrix
E, the staircase form directly reveals controllability of the system.

ALGORITHM 4: The standard staircase reduction algorithm.
Input: the system (A,B,E) ∈ Rn×n×Rn×m×Rn×n

Output: the system (Â, B̂, Ê) in the staircase form

1 Compute the RRD B =U
[

B̄
0

]
, where B̄ has full row rank n1;

2 Update from left A =Uτ A, E =Uτ E;
3 Compute the RQ factorization E = EV τ ;
4 Update from right A = AV τ ;
5 Set prev = 0, curr = n1, i = 1;
6 while curr < n do
7 Set Z = A(curr+1 : n, prev+1 : prev+ni);
8 if Z is a zero matrix then
9 break: the system is uncontrollable;

10 end
11 Compute the RRD Z =U

[
Z̄
0

]
, where Z̄ has full row rank ni+1;

12 Update from left: A(curr+1 : n, prev+1 : n) =Uτ A(curr+1 : n, prev+1 : n),
E(curr+1 : n,curr+1 : n) =Uτ E(curr+1 : n,curr+1 : n);

13 Compute the RQ factorization E(curr+1 : n,curr+1 : n) = E(curr+1 : n,curr+1 : n)V τ ;
14 Update from right: A(1 : n,curr+1 : n) = A(1 : n,curr+1 : n)V τ ,

E(1 : curr,curr+1 : n) = E(1 : curr,curr+1 : n)V τ ;
15 prev = curr, curr = curr+ni+1, i = i+1;
16 end
17 Set Â = A, B̂ =

[
B̄
0

]
, Ê = E;

For any matrices A,E ∈ Rn×n and B ∈ Rn×m there exist orthogonal matrices Q,Z ∈ Rn×n such
that

Qτ EZ =


E11 E12 · · · E1k
0 E22 · · · E2k
...

...
. . .

...
0 0 · · · Ekk

 , (6.1)

[
Qτ B Qτ AZ

]
=


A10 A11 A12 · · · A1k
0 A21 A22 · · · A2k
...

...
. . .

...
0 0 · · · Ak,k−1 Akk

 , (6.2)
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where k ≤ n, Eii and Aii are of order ni× ni for i = 1, . . . ,k, Ai,i−1 are of order ni× ni−1 and have
full row rank ni for i = 1, . . . ,k−1, and n0 = m. Then, if
– Ak,k−1 has rank nk > 0, the system (1.1) is controllable,
– Ak,k−1 = 0, the system is not controllable.

This approach can be easily extended to systems with the singular matrix E, with a few ad-
ditional steps. Even in this case, reduction to the staircase form (6.1)–(6.2) constitutes its most
important part, see [5] and [25]. The singularity of the matrix E is not important for the actual re-
duction algorithm. The staircase reduction is also used as a preprocessing phase when solving the
pole (eigenvalue) assignment problem by state feedback [16].

If the matrices A and E have no structure, then a common way of computing the staircase form
is shown in Algorithm 4, which is a generalization of Algorithm 8 from [4] (see also [19]).

Here RRD denotes a rank-revealing decomposition of a matrix, and for that usually a rank-
revealing QR-factorization is used. This algorithm performs O(n4) floating point operations, and
its efficiency substantially depends on dimensions ni which represent its blocking dimensions. Varga
in [25] proposes a combination between the non–blocked m-Hessenberg–triangular–triangular re-
duction algorithm described in section 2 and Algorithm 4 with only O(n3) operations. Each RRD
is performed by QR factorization with column pivoting, where in the reduction algorithm elements
are annihilated one by one from the left, followed immediately by correction of the introduced sub-
diagonal element in E from the right. We propose a more efficient version of the staircase reduction
algorithm which combines the blocked m-Hessenberg–triangular–triangular reduction implemented
in Algorithm 1 with Algorithm 4. Since for small m, ni ≤ m represent blocking dimensions for Al-
gorithm 4, the idea is to use the blocking strategy of Algorithm 1, but with variable band width of
the reduced matrix A. On the other hand, after a column block A(curr+1 : n, prev+1 : prev+ni) is
reduced to the ni-Hessenberg form, the RRD is performed on the small ni×ni diagonal block with
any suitable algorithm providing that eventual column pivoting interchanges small dimensional
columns. The obtained algorithm is quite complicated since the band width of the reduced A and
the blocking dimension are not fixed any more. The maximal blocking dimension nb is predeter-
mined as in Algorithm 1, but the actual dimension of each block is tailored to include the maximal
number of whole subblocks with variable dimensions ni. After every RRD, the dimension of the
next subblock is determined by the computed rank, as well as the band width of its ni-Hessenberg
reduction. The new staircase reduction algorithm is described in Algorithm 5.

ALGORITHM 5: The new staircase reduction algorithm via blocked m-Hessenberg–triangular–
triangular reduction algorithm — part 1.

Input: the system (A,B,E) ∈ Rn×n×Rn×m×Rn×n

Output: the system (Â, B̂, Ê) in the staircase form

1 Perform the QR factorization on E to determine the orthogonal matrix QE such that E = Qτ
E E is upper triangular;

2 A = Qτ
E A; B = Qτ

E B;
3 jc = 0; prev =−m; curr = 0; mm = m;
4 while curr < n

// if no subblock fits into the block step out of the loop.

55 if jc +mm > n−1 then
6 break;
7 end
8 os = mm−m; nb = min{nb,n−1− jc}; lb = b(n− jc−os)/nbc−1; dim0 = n− jc−os− lbnb;
9 for k = 1 : lb do

10 Ūk = I2nb ;
11 end
12 Ūlb+1 = Idim0 ;
13
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ALGORITHM 5: The new staircase reduction algorithm via blocked m-Hessenberg–triangular–
triangular reduction algorithm — part 2.

12
13 j = jc +1;
14 while true do
15 for jsb = 1 : mm do
16 for i = n :−1 : j+os+1 do
17 Annihilate B(i, j) or A(i, j−m) if j > m by a Givens rotation applied from the left;
18 Update corresponding matrix Ūk from the right, and matrix E from the left by this rotation;
19 Annihilate E(i, i−1) by a Givens rotation applied from the right, and update rows

jc +os+1 : i−1 of E by this rotation from the right;
20 end
21 If jsb < mm and this is not the last column of the subblock, then update B( jc +1 : n, j+1) or

A( jc +1 : n, j−m+1) for j ≥ m by the aggregated rotations from the left;
22 j = j+1;
23 end

// The subblock is reduced to the mm-Hessenberg form.

24 Set Z = B(1 : m,1 : m) if j = m+1, or else Z = A(curr+1 : curr+mm, prev+1 : prev+mm);
25 Compute the RRD Z = P

[
Z̄
0

]
, where Z̄ has full row rank nmm;

26 if nmm = 0 then
27 break: the system is uncontrollable;
28 end
29 if nmm < mm then
30 In case of a rank drop set B(1 : m,1 : m) =

[
Z̄
0

]
if j = m+1, or else

A(curr+1 : curr+mm, prev+1 : prev+mm) =
[

Z̄
0

]
;

31 Update Ū1 by P from the right, and matrix E by Pτ from the left;
32 Compute the RQ factorization

E(curr+1:curr+mm,curr+1:curr+mm) = E(curr+1:curr+mm,curr+1:curr+mm)Q, and
store Q;

33 end
34 Update A( jc +os+1 : n,curr+1 : n) by all Givens rotations from the right that were generated in the

current subblock, and in case of rank drop update A( jc +os+1 : n,curr+1 : curr+mm) by Qτ from the
right;

35 if m+ curr+nmm− jc > nb then
// The next subblock does not fit into the block, step out of the loop.

36 prev = curr; curr = curr+nmm; mm = nmm;
37 break;
38 else
39 Update the first column of the next subblock A( jc +1 : n, j−m) by the aggregated rotations from the

left;
40 end
41 prev = curr; curr = curr+nmm; mm = nmm;
42 end
43 jmax = j−1;
44 Update A( jc +os+1 : n,max(prev,0)+1 : n) by the aggregated rotations from the left;
45 Generate the aggregated Givens rotations from the right and include the stored matrices Q from RQ

factorizations;
46 Apply the aggregated Givens rotations to A(1 : jc +os, jc +os+1 : n) and E(1 : jc +os, jc +os+1 : n);
47 jc = jmax;
48 If the system is uncontrollable exit the routine;
49 end
50 Apply Algorithm 4 to A(curr+1 : n, prev+1 : n) and E(curr+1 : n,curr+1 : n);

7 The GPU algorithm

The blocked CPU algorithm for m-Hessenberg–triangular–triangular reduction is not completely
blocked. The only part that is left unblocked is the sequence of consecutive determination of the left
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and right Givens rotations, since we cannot change the order in this sequence. On the other hand,
the total time spent on:

1. determination of the left Givens rotation and update of the corresponding aggregated Givens
rotation Ūk,

2. left update of E,
3. determination of the right Givens rotation and right update of E

in all inner–loop steps takes 51-63% of execution time of the whole reduction. This is the place in
the algorithm which we tried to improve in our GPU version, and we managed to parallelize it suc-
cessfully. The details of the GPU algorithm for the m-Hessenberg–triangular–triangular reduction
will be published in another paper, devoted only to GPU algorithms. Here, we will only report that
the GPU algorithm is up to two times faster than the CPU algorithm.

8 Numerical tests

In this section we illustrate better efficiency of the blocked algorithm for the m-Hessenberg–triangu-
lar–triangular reduction compared to the non–blocked version of the same algorithm, and the routine
TG01BD of the control and systems library SLICOT [22]. SLICOT does not include any routine for
evaluation of the transfer function of a descriptor system. There only exists routine TG01BD which
reduces the matrices A and E to the Hessenberg–triangular form using a non–blocked algorithm
based on Givens rotations ([9, Algorithm 7.7.1].

Extensive numerical test were performed on random matrices with different sizes of n, m, p
and nb, and on different platforms. Here we present test results obtained on the architecture whose
hardware and software specifications are listed in Table 8.1.

processor Intel R© Xeon R© X5470 (quad-core)
Frequency 3.33 GHz
Cache (Level 2) 6+6 MB
RAM 8 GB
Operating system Ubuntu Linux 8.10
Compiler Intel R© Fortran Compiler Version 11.0
Optimization flag -O3
BLAS Intel R© Math Kernel Library 10.1

Table 8.1: Hardware and software specifications of the test platform.

All tests were run using the IEEE double precision arithmetic. The TG01BD routine was executed
without forming orthogonal factors. Size n of the matrices A and E ranges from 100 to 6000 with the
step of 100. m — the number of columns of the matrix B, and p — the number of rows of the matrix
C are chosen to be m = p = 1,5,10,15,20,100. All matrices are generated with random elements.
The block size nb for each dimension setup is chosen to be optimal in sense that it produces the
best execution time of our blocked algorithm. It turned out to be nb = 32 for n < 1400, and nb = 64
otherwise. The test results are shown in Figure 8.1.

As we can see, we obtained almost identical speedup graphs for any choice of m and p, since
the non–blocked m-Hessenberg–triangular–triangular reduction has almost the same execution time
as TG01BD. The crucial role plays dimension n: for m > 1 and for n = 100 up to n = 1000,1200,
the efficiency of our routine rapidly grows compared to the SLICOT routine. The peek efficiency is
obtained for n = 1100 and m = 100 where our blocked algorithm for the m-Hessenberg–triangular–
triangular reduction was at most 3.3906 times faster than TG01BD. For larger dimensions n there is a
drop in our efficiency, but the speed-up factor stabilizes between 2.6 and 2.8, for m> 1. Our blocked
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Fig. 8.1: Speed–up factors for the blocked m-Hessenberg–triangular–triangular reduction vs.
TG01BD, and for the blocked m-Hessenberg–triangular–triangular reduction vs. its non–blocked ver-
sion.

algorithm was least efficient for m = 1 as expected, since the right updates have to be performed
after processing of each column.

The test for two applications of m-Hessenberg–triangular–triangular form were also performed.
Again, we used double precision and double complex arithmetic. When evaluating the transfer
function we compared execution times of the single shift and the multiple shift algorithms for
r = 1000 shifts, on random matrices with dimensions n ranging from 500 up to 5000 with the step
500, and m = 1,5,10,20. For both algorithms we chose the optimal block dimension nb, offering
the best execution time. For the single shift algorithm it turned out to be nb = 32 for all dimensions,
except for n = 500 and m = 1,5. For the multiple shifts algorithm the optimal nb varies between
32, 64 and 96 for n <= 2000, and 64, 96 and 128 for n > 2000. The number of shifts ns that
are simultaneously processed is also chosen to be optimal, and it varies between 128, 256 and
512. ns = 512 predominates for larger dimensions n ≥ 3000. The results are presented in Figure
8.2a. The speed-up factor stabilizes round 1.4 for larger dimensions. Thus, we can conclude that
the multiple shifts algorithm for the evaluation of the transfer function for the general E is half
as efficient as the corresponding algorithm for E = I, as expected. Still, we gained some speed-
up. Besides the new algorithms, we also implemented the standard algorithm for transfer function
evaluation performing only the Hessenberg–triangular reduction. This implementation is similar to
the SLICOT routine TB05AD when E = I. The routines were executed as follows.

– Our routines: the reduction to the m-Hessenberg–triangular–triangular form was executed once
followed by executions of our blocked algorithm for computing G (σi), i = 1, . . . ,1000 with
aggregated shifts;

– The standard algorithm in SLICOT style: the routine was first executed with the parameter
INITIA=’G’, indicating that the matrices A and E are general matrices. This was followed by
999 executions of the same routine with INITIA=’H’ indicating that the matrices A and E are
in the upper Hessenberg–triangular form, which is computed using non-blocked xGGHRD from
LAPACK [2] in the first step.

The speed-up factors gained by our routines compared to the standard algorithm are presented in
Figure 8.2b. The results are similar to those presented in [4] for E = I, but the factors are ap-
proximately halved, since the efficiency of the algorithm for computing the transfer function with
aggregated shifts for general E is less efficient than the one for E = I. Our routines are at most 6
times faster than the standard algorithm for n = 1000 and m = 1, but for the larger n-s the speed-up
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factors stabilize between 3 and 5. Hence, our approach is much more efficient than the standard
one, when evaluating the transfer function for a larger number of shifts.
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(a) Speed-up factors for blocked single-shift algorithm
for the evaluation of the transfer function vs. multiple-
shifts algorithm. Both algorithms process 1000 shifts.
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(b) Speed-up factors for the standard algorithm for the
evaluation of the transfer function vs. multiple-shifts al-
gorithm. Both algorithms process 1000 shifts.

Fig. 8.2: The evaluation of the transfer function.

For the staircase reduction, first we compared the execution times of two algorithms imple-
menting Algorithm 4 and Algorithm 5. Both algorithms include the accumulation of the orthogonal
matrices Q and Z. Dimensions n are chosen as in case of the evaluation of the transfer function,
and m = p = 1,5,10,20,100. We performed two sets of tests. In all tests we chose the optimal
block dimension nb in implementation of Algorithm 5, which turned out to be nb = 32 for n≤ 500,
nb = 64 for 1000 ≤ n ≤ 2000, nb = 96 for 2500 ≤ n ≤ 4500, and n = 128 for n ≥ 5000. In the
first test round all the matrices were random matrices, and there were now rank drops in RRD-s
in both algorithms. The results are presented in Figure 8.3a. As we can see in this case, the new
staircase reduction implemented in Algorithm 5 is much more efficient for smaller m-s than the
standard approach. The reason for this is the fact that m can be interpreted as a block dimension
in Algorithm 4, and for larger m-s this algorithm is faster. The execution times of Algorithm 5 for
fixed n varies little when changing m. We obtain speed-up factors over 80 for m = 1, over 20 for
m = 5, over 10 for m = 10, and over 5 for m = 20. In case of m = 100 the new algorithm is faster
than the standard one only when n > 4000, since the blocking dimension for Algorithm 4 is larger
and the aggregated Householder reflectors employed in this algorithm are more efficient than the
aggregated Givens rotation in Algorithm 5. It is worth mentioning here that the execution times of
Algorithm 5 are comparable with the execution times of the m-Hessenberg–triangular–triangular
reduction algorithm implemented in Algorithm 1 with the same parameters n and m.

In the second set of tests the systems have predefined ranks ni in their staircase form (6.1)–(6.2).
Rank drop of 1 occurs for every fifth RRD, until ni reaches the value 1. The results are shown in
Figure 8.3b. The execution times of Algorithm 5 vary between the execution times for the given m
and m = 1 of the same algorithm when performed without the rank drops.

Next, we compare execution times of the SLICOT routine TG01HX which implements the algo-
rithm from [25] and Algorithm 5. In all tests we chose the same dimensions n, m and p as in the
previous test rounds, and the optimal block dimension nb for Algorithm 5. The results presented in
Figure 8.4 reveal that Algorithm 5 is up to 5.7631 times faster than TG01HX. The speed-up factors
stabilizes between 5.28 and 5.45 for larger n and all m > 1. This speed-up graph resembles the
graphs in Figure 8.1, since the largest influence on the speed-up has the better efficiency of blocked
m-Hessenberg–triangular–triangular reduction over its non–blocked version.
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(a) Speed-up factors for the staircase reduction imple-
mented in Algorithm 4 vs. Algorithm 5, with full ranks
ni.
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(b) Speed-up factors for the staircase reduction imple-
mented in Algorithm 4 vs. Algorithm 5, with rank drops.

Fig. 8.3: The evaluation of the staircase reduction algorithms.
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Fig. 8.4: Speed-up factors for the staircase reduction implemented in TG01HX vs. Algorithm 5, with
full ranks ni.

9 Conclusion

We are proposing a new blocked algorithm which ensures efficient evaluation of the transfer func-
tion G (σ) = C(σE −A)−1B+D. The algorithm simultaneously reduces A to the m-Hessenberg
form, and B and E to the triangular form, thus enabling efficient computation of the transfer func-
tion C(σE −A)−1B for large number of shifts σ , as described in [4]. The non–blocked version
of the algorithm for reduction to the m-Hessenberg–triangular–triangular form has execution time
comparable to the execution time of the SLICOT routine TG01BD. On the other hand, the blocked
version using the aggregated Givens rotations is much faster, up to 3.4 times compared to the non–
blocked algorithms. Our algorithm for evaluation of the transfer function is up to 6 times faster than
the standard one based only on the Hessenberg–triangular reduction of A and E. Besides the transfer
function evaluation, the blocked algorithm for the m-Hessenberg–triangular–triangular reduction is
efficiently incorporated into another reduction algorithm which computes the staircase form used
to identify the controllable part of the descriptor system. Our staircase reduction algorithm is up
to 80 times faster than the standard approach, and up to 5.8 times faster than the SLICOT routine
TG01HX.
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A The algorithm details

In this appendix we describe the blocked algorithm for reduction of matrices A, B, and E to the m-Hessenberg–triangular–
triangular form in more details, and we start with notation. Let us denote by [c,s,r] = givens(a,b) a routine that computes
c = cosφ and s = sinφ which determine a Givens rotation such that[

c −s
s c

]τ [ a
b

]
=

[
r
0

]
,

where r =
√

a2 +b2. Next, let us denote by [x,y] = givens update(c,s,x,y) a routine that applies a Givens rotation deter-
mined by c = cosφ and s = sinφ to a pair of row or column vectors:[

x
y

]
=

[
c −s
s c

]τ [ x
y

]
if x and y are row vectors

[
x y
]
=
[

x y
][ c −s

s c

]
if x and y are column vectors
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Besides the routine givens update, for the blocked algorithm we need a routine that applies a sequence of Givens
rotations to a matrix. Since the rotations applied from the left and from the right are generated simultaneously, and at the
beginning of the algorithm only aggregated rotations from the left are used, cosines and sines of the rotations applied from
the right, generated in one column block sweep are stored into two-dimensional fields CC and SS. When the matrices Uk are
not used for rotations applied from the left any more, they are reused for storing aggregated rotations from the right. Before
that happens, we have to update the matrix A after every m columns with the sequence of Givens rotations from the right,
generated in one subblock. To be precise, if j is the last column of the subblock, then we have to apply the Givens rotations
from the right to A( jc + 1 : n, j−m+ 1 : n). For that we use X = seq givens update(cc,ss,X), which is similar to the
LAPACK routine dlasr. This routine updates a matrix X ∈ Rp×r with the following sequence of Givens rotations from the
right:

P = G̃(1)
r−1,rG̃(1)

r−2,r−1 · · · G̃
(1)
1,2G̃(2)

r−1,rG̃(2)
r−2,r−1 · · · G̃

(2)
2,3 · · · G̃

(m)
r−1,rG̃(m)

r−2,r−1 · · · G̃
(m)
m,m+1.

(r−1)×m fields cc and ss contain cosines and sines for the Givens rotations G̃( j)
k,k+1 from the sequence, where

G̃( j)
k,k+1 =

1

. . .
1

cc(k, j) −ss(k, j)

ss(k, j) cc(k, j)

1

. . .
1

k

k+1

k k+1

The matrix X is transformed to X = XP where P is an orthogonal matrix obtained as the product of the Givens rotations.
Hence, the Givens rotations are reordered as illustrated in Figure 3.6.

The aggregated Givens rotations from the right are generated when all rotations are available. We can generate the ma-
trices Uk one at a time, and the rotations are multiplied in the order similar to the product generated by seq givens update.

We need some extra memory storage for auxiliary variables in the blocked algorithm, such as Ū1, . . . ,Ūlb+1, CC and SS.
Dimensions of this variables are given in the following table:

Variable Dimension
Ūk , k = 1, . . . , lb 2nb×2nb
Ūlb+1 dim0×dim0
CC n×nb
SS n×nb

where lb =
⌊

n
nb

⌋
−1 and dim0 = n− lbnb.

A.1 Form of the aggregated Givens rotations Uk

As we see in Figure 3.3 the starting local group of Givens rotations forming U3 (Uk with the largest index) is a bit different
from all other local groups. The groups forming U1 and U2 consist of the same number of rotations and have a similar form.
We can call them as in [14] “regular groups”. Let us illustrate the accumulation of U2 for the example with n = 13 and nb = 4
first (see [12]). The Givens rotation G( j)

i−1,i affects only the i−1-th and i-th coordinates, for any j. In Figure 3.3 we see that

among all Givens rotations forming U2 the one with the smallest index i is G(1)
5,6, and with the largest index i is G(4)

11,12. Thus,
U2 affects only coordinates 5,6, . . . ,12, and has the basic form

U2 =

 I4
Ū2

1

 ,
where I4 ∈ R4×4 is the identity matrix, and Ū2 ∈ R8×8 = R2nb×2nb . Further, we illustrate the form of Ū2 in Figure A.1.

– Elements denoted by j = 1 are introduced by multiplication G(1)
8,9G(1)

7,8G(1)
6,7G(1)

5,6.

– Elements denoted by j = 2 are introduced by postmultiplication with G(2)
9,10G(2)

8,9G(2)
7,8G(2)

6,7.

– Elements denoted by j = 3 are introduced by postmultiplication with G(3)
10,11G(3)

9,10G(3)
8,9G(3)

7,8.
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Fig. A.1: Form of Ū2.

– Elements denoted by j = 4 are introduced by postmultiplication with G(4)
11,12G(4)

10,11G(4)
9,10G(4)

8,9.

U1 also affects 8 coordinates: 1,2, . . . ,8, with the basic form

U1 =

[
Ū1

I5

]
,

where Ū1 has the same form as Ū2 shown in Figure A.1.
On the other hand, the matrix U3 affects only 5 coordinates: 9,10, . . . ,13, and has the form

U3 =

[
I8

Ū3

]
,

where I8 ∈ R8×8 is the identity matrix, and Ū3 ∈ R5×5 has a smaller dimension than Ū1 and Ū2.

�����

�����

�����

�����

�����

j = 1 j = 2 j = 3 j = 4

Fig. A.2: Form of Ū3.
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ALGORITHM 6: The blocked algorithm for reduction of matrices A, B, and E to the m-
Hessenberg–triangular–triangular form.

Input: matrices A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, E ∈ Rn×n; block dimension nb
Output: upper m-Hessenberg matrix A = Qτ AZ, upper triangular matrix B = Qτ B, matrix C =CZ, upper triangular

matrix E = Qτ EZ; Q and Z can be accumulated if needed

1 Perform the QR factorization on E to determine the orthogonal matrix QE such that E = Qτ
E E is upper triangular;

2 A = Qτ
E A;

3 B = Qτ
E B;

4 imb = 1;
5 for jc = 0 : nb : n−1 do
6 jc,max = min{ jc +nb,n−1};
7 nb = min{nb,n−1− jc};
8 if nb = 0 then
9 return;

10 end

11 lb =
⌊

n− jc
nb

⌋
−1;

12 dim0 = n− jc− lbnb;
13 for k = 1 : lb do
14 Ūk = I2nb ;
15 end
16 Ūlb+1 = Idim0 ;
17 for j = jc +1 : jc,max do
18 for i = n :−1 : j+1 do

// Annihilate B(i, j) or A(i, j−m) if j > m by a Givens rotation applied from

the left. Update the corresponding matrix Ūk from the right, and the

matrix E from the left by this rotation. Annihilate E(i, i−1) by a Givens

rotation applied from the right, and update rows jc +1 : i−1 of E by this

rotation from the right.

19 block 1;
20 end

// If j is the last column of the subblock, then update A( jc +1 : n, j− imb+1 : n) by

all Givens rotations from the right that were generated in the current

subblock. If this is not the last column of the column block, then update

B( jc +1 : n, j+1) or A( jc +1 : n, j−m+1) for j ≥ m by the aggregated rotations

from the left.

21 block 2;
22 end

// Update B( jc +1 : n, jc,max +1 : m) or A( jc +1 : n, jc,max−m+1 : n) if jc,max ≥ m by the

aggregated rotations from the left.

23 block 3;
// Generate the aggregated Givens rotations from the right and apply them to

A(1 : jc, jc +1 : n), E(1 : jc, jc +1 : n), and C(1 : p, jc +1 : n).
24 block 4;
25 end
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Further, due to the special form of the matrices Ūk (see Figure A.1 and Figure A.2) we can reduce the operation count
in the accumulation process.

line 10 in block 1 can be replaced by the following lines

lo = ii− j+ jc;
up = dim0;
[Ūlb+1(lo:up,ii−1),Ūlb+1(lo:up,ii)] = givens update(c,s,Ūlb+1(lo:up,ii−1),Ūlb+1(lo:up,ii));

line 14 in block 1 can be replaced by the following lines

lo = ii− j+ jc;
up = nb + j− jc;
[Ūk(lo:up,ii−1),Ūk(lo:up,ii)] = givens update(c,s,Ūk(lo:up,ii−1),Ūk(lo:up,ii));

line 8 in block 4 can be replaced by the following lines

lo = ii− j+ jc;
up = dim0;
[Ūlb+1(lo:up,ii−1),Ūlb+1(lo:up,ii)] =
givens update(CC(i+ j− jc−1, j− jc),−SS(i+ j− jc−1, j− jc),Ūlb+1(lo:up,ii−1),Ūlb+1(lo:up,ii));

line 15 in block 4 can be replaced by the following lines

lo = ii− j+ jc;
up = nb + j− jc;
[Ūk(lo:up,ii−1),Ūk(lo:up,ii)] =
givens update(CC(i+ j− jc−1, j− jc),−SS(i+ j− jc−1, j− jc),Ūk(lo:up,ii−1),Ūk(lo:up,ii));

ALGORITHM 7: block 1: Annihilate B(i, j) or A(i, j−m) if j > m by a Givens rotation
applied from the left. Update the corresponding matrix Ūk from the right, and the matrix E
from the left by this rotation. Annihilate E(i, i−1) by a Givens rotation applied from the right,
and update rows jc +1 : i−1 of E by this rotation from the right.
1 if j <= m then
2 [c,s,B(i−1, j)] = givens(B(i−1, j),B(i, j));
3 B(i, j) = 0;
4 else
5 [c,s,A(i−1, j−m)] = givens(A(i−1, j−m),A(i, j−m));
6 A(i, j−m) = 0;
7 end
8 if i > n− jc−dim0 + j then
9 ii = i−n+dim0;

10 [Ūlb+1(1:dim0 ,ii−1),Ūlb+1(1:dim0 ,ii)] = givens update(c,s,Ūlb+1(1:dim0,ii−1),Ūlb+1(1:dim0,ii));
11 else
12 k =

⌊
i− j−1

nb

⌋
+1;

13 ii = i− jc− (k−1)nb;
14 [Ūk(1:2nb ,ii−1),Ūk(1:2nb,ii)] = givens update(c,s,Ūk(1:2nb ,ii−1),Ūk(1:2nb ,ii));
15 end
16 [E(i−1,i−1:n),E(i,i−1:n)] = givens update(c,s,E(i−1,i−1:n),E(i,i−1:n));
17 [CC(i, j− jc),SS(i, j− jc),E(i,i)] = givens(E(i,i),E(i,i−1));
18 E(i,i−1) = 0;
19 [E( jc+1:i−1,i−1),E( jc+1:i−1,i)] = givens update(CC(i, j− jc),−SS(i, j− jc),E( jc+1:i−1,i−1),E( jc+1:i−1,i));
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ALGORITHM 8: block 2: If j is the last column of the subblock, then update A( jc + 1 :
n, j− imb+ 1 : n) by all Givens rotations from the right that were generated in the current
subblock. If this is not the last column of the column block, then update B( jc +1 : n, j+1) or
A( jc +1 : n, j−m+1) for j ≥ m by the aggregated rotations from the left.
1 if (imb = m) or ( j = jc,max) then
2 A( jc+1:n, j−imb+1:n) = seq givens update(CC( j−imb+2:n, j− jc−imb+1: j− jc),−SS( j−imb+2:n, j− jc−imb+1: j− jc),

A( jc+1:n, j−imb+1:n));
3 imb = 0;
4 end
5 imb = imb+1;
6 if j < jc,max then
7 ii = n−dim0;
8 if j < m then
9 B(ii+1:n, j+1) = Ūτ

lb+1B(ii+1:n, j+1);
10 else
11 ja = max{ j−m,0};
12 A(ii+1:n, ja+1) = Ūτ

lb+1A(ii+1:n, ja+1);
13 end
14 for i = lb :−1 : 1 do
15 ii = jc +(i−1)nb;
16 if j < m then
17 B(ii+1:ii+2nb , j+1) = Ūτ

i B(ii+1:ii+2nb , j+1);
18 else
19 A(ii+1:ii+2nb , ja+1) = Ūτ

i A(ii+1:ii+2nb , ja+1);
20 end
21 end
22 end

ALGORITHM 9: block 3: Update B( jc+1 : n, jc,max+1 : m) or A( jc+1 : n, jc,max−m+1 : n)
if j ≥ m by the aggregated rotations from the left.
1 ja = max{ jc,max−m,0};
2 ii = n−dim0;
3 if jc,max < m then
4 B(ii+1:n, jc,max+1:m) = Ūτ

lb+1B(ii+1:n, jc,max+1:m);
5 end
6 A(ii+1:n, ja+1:n) = Ūτ

lb+1A(ii+1:n, ja+1:n);
7 for i = lb :−1 : 1 do
8 ii = jc +(i−1)nb;
9 if jc,max < m then

10 B(ii+1:ii+2nb , jc,max+1:m) = Ūτ
i B(ii+1:ii+2nb, jc,max+1:m);

11 end
12 A(ii+1:ii+2nb , ja+1:n) = Ūτ

i A(ii+1:ii+2nb , ja+1:n);
13 end



Efficient Algorithm for Simultaneous Reduction to the m-Hessenberg–Triangular–Triangular Form 25

ALGORITHM 10: block 4: Generate the aggregated Givens rotations from the right and apply
them to A(1 : jc, jc +1 : n), E(1 : jc, jc +1 : n), and C(1 : p, jc +1 : n).
1 for k = 1 : lb do
2 Uk = I2nb ;
3 end
4 Ulb+1 = Idim0 ;
5 for i = n :−1 : n−dim0 +2 do
6 for j = jc +1 : min{ jc +n− i+1, jc,max} do
7 ii = i+ j− jc−1−n+dim0;
8 [Ūlb+1(1:dim0 ,ii−1),Ūlb+1(1:dim0 ,ii)] =

givens update(CC(i+ j− jc−1, j− jc),−SS(i+ j− jc−1, j− jc),Ūlb+1(1:dim0 ,ii−1),Ūlb+1(1:dim0 ,ii));
9 end

10 end
11 for k = lb :−1 : 1 do
12 for i = jc + knb +1 :−1 : jc +(k−1)nb +2 do
13 for j = jc +1 : jc,max do
14 ii = i+ j−2 jc−1− (k−1)nb;
15 [Ūk(1:2nb ,ii−1),Ūk(1:2nb,ii)] =

givens update(CC(i+ j− jc−1, j− jc),−SS(i+ j− jc−1, j− jc),Ūk(1:2nb ,ii−1),Ūk(1:2nb ,ii));
16 end
17 end
18 end
19 ii = n−dim0;
20 A(1: jc ,ii+1:n) = A(1: jc ,ii+1:n)Ūlb+1;
21 E(1: jc ,ii+1:n) = E(1: jc ,ii+1:n)Ūlb+1;
22 C(1:p,ii+1:n) =C(1:p,ii+1:n)Ūlb+1;
23 for i = lb :−1 : 1 do
24 ii = jc +(i−1)nb;
25 A(1: jc ,ii+1:ii+2nb) = A(1: jc ,ii+1:ii+2nb)Ūi;
26 E(1: jc,ii+1:ii+2nb) = E(1: jc,ii+1:ii+2nb)Ūi;
27 C(1:p,ii+1:ii+2nb) =C(1:p,ii+1:ii+2nb)Ūi;
28 end


