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Abstract
The lipophilicity of polyphenols inherent in food, beverages, and medicinal plants was modelled by using 3D descrip-

tors derived from optimized 3D molecular structures in combination with 2D descriptors. The training sets were gene-

rated by manual selection or by cluster formation, and statistically robust predictive models were obtained in both cases.

The most relevant structural features for the lipophilicity of polyphenols are depicted by the statistically most significant

variables: the number of donor atoms for the H bonds is unfavorable for lipophilicity, and the enhanced number of ring

secondary C atom (sp3) also decreases lipophilicity, while the increased atomic polarizability implies higher lipophili-

city of polyphenols. The study also revealed the importance of a three-dimensional distribution of atomic electronegati-

vity for the lipophilicity of molecules.
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1. Introduction

Specific groups of food and medicinal plants are rich
sources of one or more subclasses of polyphenols.1 These
compounds have been reported to possess multiple biolo-
gical activities including vasodilatatory, anti-inflamma-
tory, anti-carcinogenic, anti-bacterial, and antioxidant ef-
fects.2–6 However, the health effects of polyphenols also
depend on the amount consumed and their bioavailability.1

Bioavailability in humans differs greatly from one polyp-
henol to another. Gallic acid and the isoflavones are readi-
ly absorbed, followed by the catechins, the flavanones, and
the quercetin glucosides, while the least well absorbed are
the proanthocyanidins and the anthocyanins.7 The oral bi-
oavailability of pharmacologically active substances de-
pends on their hydrophilicity-lipophilicity balance. Strong
hydrophilicity of a compound implies good water solubi-
lity and good dissolution in gastrointestinal fluid. Howe-
ver, lipophilic compounds have the ability to diffuse passi-
vely through biological barriers owing to the lipoid nature
of the cell membranes.8 Besides, the quantitative structure-
activity relationship (QSAR) studies have revealed that the

lipophilicity of polyphenols is an important factor regar-
ding their activity in biological systems.9 Our recent
QSAR studies have indicated that the antioxidant activity
of flavonoids and the vasodilatory effect of phenolic acids
are strongly related to lipophilicity.3,10 The application of
quantitative structure-property relationship (QSPR) ap-
proaches in developing models to predict the physicoche-
mical properties of polyphenols using topological indices
has been reported previously.11 However, it is well know
that many physical, chemical, or biological properties of
compounds depend on the three-dimensional arrangement
of atoms in a molecule.12,13 Here, in view of the importan-
ce of the three-dimensional shape of molecules for passive
diffusion through biological membranes, our attempt was
to develop QSPR models that relate the experimentally de-
termined lipophilicity of polyphenols to descriptors deri-
ved from optimized 3D molecular structures in combina-
tion with 2D descriptors. Due to the importance of rigid
model validation, the dataset must be divided into a trai-
ning set and a test set. Therefore, the goal of this study has
also been to determine which of the two splitting methods
(manual selection and cluster analysis) give better results.



2. Results and discussion

Data set I
After the classification of 51 compounds into 11

structurally different classes of polyphenols, 12 compounds
(Table 1) were selected for the test set manually, and the
rest of the initial data set for the training set (n = 39, or 76%
of the full data size). The best QSAR models with two and

three descriptors (I = 2 and 3), generated by using MLR and
the best-subset method, are given in Table 2.

Data set II
We have classified the initial dataset into clusters us-

ing the Tree Clustering method (Fig. 1) performed on the
set of values of 580 selected descriptors. Members of the
test set (n = 12) have been chosen from each cluster. The
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Table 1. Chemical structure of polyphenols used in the current study

Class of polyphenol Comp.no. Supstituents* Name of polyphenol log PExp.

1 3-OCH3; 4-OH; R = OH Vanillic acid 1.43

2 3,5-OCH3; 4-OH; R = OH Syringic acid 1.04

3 3,4,5-OH; R = OH Gallic acid 0.70

4 2-OH; R = OH Salicylic acid 2.26

5 4-OH; R = OH p-Hydroxybenzoic acid 1.58

6 3-OH; R = OH m-Hydroxybenzoic acid 1.50

7 3,4-OH; R = OH Protocatehuic acid 0.86

8 2,5-OH; R = OH Gentisic acid 1.74

9 2,5-OH; R = H 2,5-Dihydroxybenzaldehide 0.54

10 3-OCH3; R = OH 3-Methoxybenzoic acid 2.02

11 3,4-OCH3; R = OH Veratric acid 1.61

12 2,3-OH; R = OH Pyrocatechuic acid 1.20

13 3,4,5-OH; R = OCH2CH3 Ethyl gallate 1.30

14 2-OH; R = OH o-Coumaric acid 1.59

15 4-OH; R = OH p-Coumaric acid 1.79

16 3-OCH3; 4-OH; R = OH Ferulic acid 1.51

17 3,4-OH; R = OH Caffeic acid 1.15

3,4-OH; R =

18 Chlorogenic acid 0.30

19 trans-4-OH; R = OH trans-p-Coumaric acid 1.46

20 4-OCH3; R = OH 4-Methoxycinnamate 2.68

21 Mandelic acid 0.62

22 Catechin 0.51

23 3´,4´-OH; R = OH Quercetin 1.82

24 2´,4´-OH; R = OH Morin 1.84

25 4´-OH; R = OH Kaempferol 3.11

26 3´,4´-OH; R = SU1 Quercetin-3-O-glucoside 0.76

27 3´,4´-OH; R = SU2 Rutin -0.64
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Class of polyphenol Comp.no. Supstituents* Name of polyphenol log PExp.

28 5,3´-OH; 4´-OCH3 Hesperetin 2.60

29 3´,4´-OH Fustin 0.87

30 5,3´,4´-OH Taxifolin 0.95

31 Flavanone 3.14

32 5,7,4´-OH Naringenin 2.60

33 5,7,3´,4´-OH Eriodictyol 2.27

34 5,4´-OH, 7-SU2 Naringin -0.44

35 4´-OH 4’-Hydroxyflavanone 3.20

36 5,3´-OH; 4´-OCH3, 7-SU2 Diosmin 0.14

37 5,7,3´-OH; 4´-OCH3, Diosmetin 3.10

38 5,7,4´-OH Apigenin 2.92

39 5,7,3´,4´-OH Luteolin 2.53

40 5,7-OH Chrysin 3.52

41 Flavone 3.56

42 5-OH 5-Hydroxyflavone 4.30

43 7-OH 7-Hydroxyflavone 3.62

44 5,3´,4´-OH 5,3´,4´-Trihydroxyflavone 3.31

45 7,4´-OH Equol 3.20

46 7,4´-OH Daidzein 2.51

47 5,7,4´-OH Genistein 3.04

48 7,4´-OH, 6-OCH3 Glycitein 1.97

49 5, 4´-OH, 7-SU1 Genistin 0.97

50 3,5, 4´-OH Resveratrol 3.32

51 Eugenol 2.27

* In these compounds, the substituent groups corresponding to the SUgar moieties have been abbreviated as SU suffixed with a number as: SU1 =

O-β-D-glucopyranosyl; SU2 = O-(6-deoxy-á-L-mannopyranosyl)-β-D-glucopyranosyl. 

best QSAR models with two and three descriptors (I = 2
and 3), generated by using MLR and the best-subset met-
hod, are given in Table 2. The correlation matrix, obtained
from the initial data set, given in Table 3, shows that the
descriptors included in Eqs. 1–4 are independent. A scat-
ter plot of log Pexp versus log Ppred values calculated by
Eq. 4, for the studied polyphenols, is shown in Fig. 2. In

order to investigate the applicability of the prediction mo-
del 4 and to detect the possible outliers, leverage of the
training set was plotted against the residuals (Fig. 3). As it
can be seen from the plot, there are no compounds outside
the domain of applicability of the model, since their leve-
rage values are not greater than the warning leverage (h* =
0.308). Moreover, none of the analysed compounds were
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considered as outliers because their standardized residuals
were not greater than ± 2.

The F-test reflects the ratio of variance explained
by the model and variance that is due to an error in the
model. The high values of F-test indicate that the model
is statistically significant. The values of Fisher ratio (F)
for QSPR models (Eqs. 1–4) ranging from 65.147 to
76.811 (Table 2) suggest that all QSPR models are stati-
stically significant at the 95% level. However, the main
disadvantage of this statistical parameter is that it is high-
ly sensitive to the number of descriptors in an equation.
An increase in the number descriptors from 2 to 3 in
equations causes a reduction of F value. Better indicators
for the statistical significance of QSPR model are the
squared correlation coefficient (r2) and the standard de-
viation (s). The closer the value of r2 to the unity and the
smaller the value of s, the better the QSPR models.14,15

Although all obtained models have a high value of re-
gression coefficients and a low standard deviation, better
results are obtained when using models with three des-
criptors (Eqs. 2 and 4).

The stability of models is proved by the close values
of R2

LOO and R2
L-10-O. The robustness of the developed mo-

dels was checked by using the Y-randomization techni-
que. After five randomizations, the resulting models had a
significantly lower R2 than the original model (Table 4).
This proves that neither of the developed models is a re-
sult of chance correlation. The values of experimental and

predicted log P values obtained by using Eqs. 2 and 4 are
given in Table 5. 

Leonard and Roy16 claim that the quality of the de-
veloped models depends considerably on the algorithm
used for the selection of the training and test sets. They
have performed a validation of QSAR models for the da-
ta sets generated by three different methods of division
and the best results were obtained when the training test
and the test set were selected by the K-means cluster. Ho-
wever, our best model was obtained by Eq. 2, where the
training and test sets were selected by manual division,
and the model obtained by Eq. 4, where the data set was
divided by the tree clustering method. Both models have
comparable results, such as R2 value of 0.848 and 0.850
for models obtained by Eqs. 2 and 4, respectively. Since
the difference in the parameters of quality is rather small
in both models, we cannot decide about the better method
for the division of data set into the training set and the
test set.

The four best models include: zero-dimensional des-
criptors (constitutional), one-dimensional descriptors
(functional groups counts), two-dimensional descriptors
(information and 2D autocorrelations descriptors), and
three-dimensional descriptors (RDF and GETAWAY des-
criptors). All descriptors have been generated from opti-
mised three-dimensional structures of molecules.

The most relevant structural features for the lipophi-
licity in Eqs. 2 and 4 are depicted by the statistically most

Fig. 1. Dendrogram of a cluster formation of 51 polyphenols
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Table 3. Correlation coefficient among descriptors included in Eqs. 1–4 and log Pexp

MATS4p MATS4e HATSe RDF030e Mp nHDon nCrs IC0 log Pexp

MATS4p 1.00

MATS4e 1.00 1.00

HATSe 0.17 0.17 1.00

RDF030e 0.37 0.37 0.34 1.00

Mp 0.58 0.58 –0.03 –0.32 1.00

nHDon 0.16 0.16 0.30 0.89 –0.47 1.00

nCrs 0.22 0.22 0.24 0.90 –0.44 0.80 1.00

IC0 –0.43 –0.43 0.20 0.26 –0.65 0.59 0.23 1.00

log Pexp 0.52 0.52 –0.16 –0.48 0.82 –0.65 –0.57 –0.72 1.00

Fig. 3. Applicability domain of the QSAR model for logIC50 expresses by Eq. 4

Fig. 2. Plot of predicted lipophilicity (log PPred.) for the training set (39 molecules) against the observed values

(log PExp.) according to Eq. 4
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significant variables (according to the absolute values of
standardized regression coefficients β and t-values) – the
functional group count: nCrs (β = 0.612; t = 8.480) and
nHDon (β = 0.583; t = 6.724). According to Eqs. 2 and 4,
an increased number of ring secondary C atom (sp3) and
an increased number of donor atoms for H bonds decrease
the lipophilicity of polyphenols. The functional groups
that donate atoms for H bonds, and thus increase the solu-
bility of molecules in water, at the same time decreasing
the lipophilicity of polyphenols, are the hydroxyl groups.
The influence of the number of hydroxyl groups on lipop-
hilicity, as the donor atoms for H bonds, is obvious in the
case of flavanones (31–35). The lipophilicity of flavano-
nes increases in the series: 5,7, 3’,4’-tetrahydroxyflavano-
ne (33) < 5,7,4’-trihydroxyflavanone (32) < 4’-hydroxyf-
lavanone (35) < flavanone (31). The lowest lipophilicity is
that of glucoside naringin (log P = –0.44).

The negative impact of an increased number of ring
secondary C atoms on lipophilicity is observed in chloro-
genic acid (18), catechin (22), the dihydroflavonols
(28–30), and the flavonoid glycosides (26, 27, 34, 36, 49).
The structures of dihydroflavonols possess a two-ring se-
condary C atom (C2-C3 double bond is lacking), which
with the presence of hydroxyl groups in A and B rings de-
creases their lipophilicity. The relevance of C2–C3 double
bond for increased lipophilicity is evident in the compari-
son of the lipophile flavonol quercetin (23) and the dihy-
droflavonol taxifolin (30), which posses an identical sub-
stitution pattern (5,7,3,3’,4’-OH). Probably the absence of
a C2–C3 double bond in taxifolin produces a significantly
lower log P (0.95) than is the case with quercetin (1.82).

The flavonoid glycosides also have a maximum num-
ber of ring secondary C atoms present in sugar moieties.
Therefore, the glucosides of flavonoides have the lowest
log P values such as diosmin (36) (log P = 0.14), rutin (27)
(log P = –0.27), and naringin (34) (log P = –0.44). Glycosi-
lation increases the polarity of flavonoid molecules, which
is necessary for storage in the cell vacuoles of plants.17

The second most significant variable in Eq. 2 is
MATS4e (β = 0.468; t = 6.065), as in Eq. 4 MATS4p (β =
0.398; t = 4.238). Both descriptors belong to the 2D auto-
correlation molecular descriptors that describe how a con-
sidered property is distributed along a topological mole-
cular structure.18 MATS4e and MATS4p correspond to the
Moran autocorrelation –lag 4/weighted by atomic Sander-
son electronegativities and by atomic polarizability, res-

pectively. It is evident from the sign of regression coeffi-
cient that the descriptors MATS4e and MATS4p have con-
tributed positively to the lipophilicity of polyphenols. It
means that, for higher lipophilicity, the polyphenols
should have atoms at the topological distance 4 with diffe-
rent electronegativities/polarizabilities as a tendency.

The least relevant in Eq. 2 is the information index
ICO, which reflects a neighborhood symmetry of order 0.
According to the Eq. 2, it is expected that the increasing
values of IC0 (possessing a negative regression coeffi-
cient) would tend to predict lower lipophilicity. Mean ato-
mic polarizability (Mp) is the last relevant variable in Eq.
4. Its positive coefficient indicates that the lower values of
Mp imply a lower lipophilicity of polyphenol compounds.
Since the oxygen atom has a lower value of polarizability,
molecules with more hydroxyl groups tend to have lower
lipophilicity.

The three-dimensional descriptors RDF030e and
HATSe are included in Eqs. 1 and 3. Descriptor RDF030e
belongs to the RDF (Radial Distribution Function) group
of descriptors, while HATSe belongs to the GETWAY des-
criptors. Both descriptors offer information about the
three-dimensional distribution of electronegativity in mo-
lecules. The presence of descriptor RDF030e (β = 0.754; t
= 9.628) in Eq. 1 suggests the occurrence of some linear
dependence between lipophilicity and the 3D molecular
distribution of electronegativity, calculated at the radius of
3.0 Å from the geometrical centers of each molecule, whi-
le descriptor HATSe (β = 0.401; t = 5.422) in Eq. 3 consi-
ders the atomic electronegativity of all atoms in molecu-
les. The high absolute values of standardized regression
coefficients β and t-values of both descriptors imply a
great impact of the three-dimensional arrangement of
atoms on the lipophilicity of molecules, especially of
atoms with higher electronegativity, such as oxygens.

3. Materials and Methods 

3. 1. Data Set
The experimentally determined lipophilicity values

(expressed as log P) for 51 polyphenols were collected
from the ChemIDplus Advanced database (United States
National Library of Medicine, http://chem.sis.nlm.nih.
gov/chemidplus/chemidheavy.jsphttp://chem.sis.nlm.
nih.gov/chemidplus/chemidheavy.jsp) and from literatu-
re.19,20 All experimental values were determined by the sa-
me experimental method.

3. 2. Descriptor Calculation

The 3D structures of 51 polyphenols were optimized
applying the HyperChem 7.0 (HyperCube, Inc., Gainesville,
FL) using the semi-empirical AM1 method.21 The molecular
structures were optimized using Polak-Ribiere algorithm
until the root mean square gradient was 0.01 kcal mol–1.

Table 4. Values of R2 after the randomization for Eqs. 2 and 4

Y-randomization R2 after Y-randomization
Model 2 Model 4

1 0.033 0.027

2 0.015 0.057

3 0.099 0.051

4 0.015 0.048

5 0.019 0.037



After geometry optimization, several physicochemi-
cal parameters were calculated with HyperChem: the en-
ergy of the highest occupied molecular orbital (EHOMO),

the energy of the lowest unoccupied molecular orbital
(ELUMO), the difference between EHOMO and ELUMO (GAP),
the heat of formation (Hf), the hydration energy (EHYDR),
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Table 5. Experimentally determined values (log PExp.) and predicted values (log PPred.) with associated resi-

duals obtained using Eqs. 2 and 4

Comp.no. log PExp. log PPred. Residual Comp.no. log PPred. Residual
(model 2) (model 4)

1 1.43 1.10 0.33 *1 1.16 0.24
*2 1.04 1.41 –0.37 2 1.33 0.29
3 0.70 0.75 –0.05 *3 0.47 0.23
4 2.26 2.15 0.11 4 2.40 –0.14
5 1.58 0.93 0.65 5 1.31 0.27
6 1.50 0.88 0.62 6 1.26 0.24
7 0.86 0.61 0.25 7 0.67 0.19

*8 1.74 1.40 0.34 8 1.39 0.35
9 0.54 1.63 –1.09 *9 1.93 2.47

10 2.02 1.48 0.54 10 1.68 0.34
11 1.61 1.45 0.16 11 1.63 –0.02
12 1.20 1.41 –0.21 12 1.39 –0.19
13 1.30 1.37 –0.07 13 0.98 0.32
14 1.59 2.00 –0.41 14 2.02 –0.43
15 1.79 2.15 –0.36 15 2.15 –0.36
16 1.51 1.87 –0.36 16 1.78 –0.27

*17 1.15 1.67 –0.52 *17 1.54 –0.39
18 0.30 0.16 0.14 18 0.31 –0.01
19 1.46 2.15 –0.69 19 2.15 –0.69
20 2.68 2.45 0.23 20 2.44 0.24

*21 0.62 1.54 0.08 *21 1.36 –0.74
22 0.51 1.33 –0.82 22 1.31 –0.80
23 1.82 2.12 –0.30 23 1.75 0.07

*24 1.84 2.24 –0.40 24 1.91 –0.07
25 3.11 2.40 0.71 *25 2.19 0.95
26 0.76 0.68 0.08 26 0.08 0.68
27 –0.64 –0.49 –0.15 *27 –0.68 –0.39
28 2.60 1.96 0.64 28 2.33 0.27
29 0.87 1.41 –0.54 29 1.72 –0.85
30 0.95 1.49 –0.54 30 1.48 –0.53
31 3.14 3.08 –0.06 *31 3.77 –0.37
32 2.60 2.31 0.29 *32 2.67 –0.07

*33 2.27 1.88 0.39 *33 2.16 0.11
34 –0.44 –0.77 0.33 34 –0.05 –0.39

*35 3.20 3.09 0.11 35 3.41 –0.21
*36 0.14 –0.13 0.27 36 0.84 –0.70
37 3.10 2.55 0.55 37 2.59 0.51
38 2.92 2.93 –0.01 38 2.93 –0.01
39 2.53 2.52 0.01 39 2.29 0.24
40 3.52 3.42 0.10 *40 3.59 –0.07
41 3.56 3.72 –0.16 41 4.03 –0.47
42 4.30 3.62 0.68 42 3.91 0.39

*43 3.62 3.40 0.22 43 3.71 –0.09
*44 3.31 2.53 0.78 44 2.59 0.72
*45 3.20 2.98 0.22 45 2.71 0.49
*46 2.51 2.98 –0.47 46 2.71 –0.20
47 3.04 2.86 0.18 47 2.87 0.17
48 1.97 2.42 –0.45 48 2.62 –0.65
49 0.97 1.09 –0.12 *49 1.07 –0.10
50 3.32 3.09 0.23 50 2.49 0.83
51 2.27 2.83 –0.56 51 1.98 0.93

* compound member of the test set



788 Acta Chim. Slov. 2013, 60, 781–789

Rastija et al.:  Quantitative Relationships Between Structure ...

and the volume (V) of the molecule. The 2D and 3D mole-
cular descriptors used in this study were calculated by
applying the online software Parameter Client (Virtual
Computational Chemistry Laboratory, http://146.107.217.
178/lab/pclient/), an electronic remote version of the Dra-
gon program.22 17 groups of Dragon’s descriptors were
used to generate the QSAR models: constitutional, topo-
logical, walk and path counts, connectivity, information,
2D autocorrelations, edge adjacency, BCUT (Burden ei-
genvalues), topological charge, eigenvalue-based, geome-
trical, RDF (Radial Distribution Function), 3D-MoRSE
(3D-molecular representation of structure based on elec-
tron diffraction), WHIM (WeigHted Covariance Matri-
ces), GETAWAY (Geometry, Topology, and Atom
Weights AssemblY) descriptors, functional group counts,
and molecular properties.18

3. 3. Training and Test Set Compounds 
Selection
The 51 molecules were divided into a training test 

(n = 39) and a test set (n = 12) in two ways:
1. (Data set I) The 51 molecules were divided into

several classes of polyphenols (Table 1). Mem-
bers of a certain class were selected manually for
the test set. 

2. (Data set II) The second training set was generated
by cluster analysis using the Joining (Tree Cluste-
ring) method based on the descriptor values wit-
hout log P values. As the distance measure we used
the Euclidean distance with the Single linkage as a
linkage rule. The cluster analysis was performed
by using Statistica 7.0 (StatSoft, Inc.; Tulsa, USA).

3. 4. Regression Analysis 

The selection of descriptors based on the best-subset
method and the multiple regression analysis (MLR) was
performed with the use of Statistica 7.0. The number of
descriptors (I) in the multiple regression equation was li-
mited to three, in consideration of the fact that the number
of compounds in the training set was 39. 

The initial number of 1210 calculated molecular in-
dices and physicochemical properties was reduced to 49
descriptors using the following procedure: 

1. Descriptors in which values were degenerated,
and which weakly correlated to log P (R ≤ 0.30),
were eliminated. 

2. Further selection of the predictor variables was
performed by the best-subset method for the pre-
diction of log P.

3. In order to avoid overfitting, the terminal selec-
tion of models was based on the inter-correlation
study between the variables included in the equa-
tion. Models with highly inter-correlated (|R| ≥
0.70) descriptors were discarded. The best models

were selected based on the squared correlation
coefficient (R2), adjusted squared correlation
coefficient (R2

adj), standard deviation of regres-
sion (Sfit), and Fisher ration values (F). 

If the overall model is significant for the prediction
of dependent variables in multiple linear regression, the
statistical significance of each independent variable in the
mode can be tested separately by the t-test:

t = βj / Sβ j (1)

where βj is the standardized regression coefficients of the
independent variable j and Sβ j is the standard error of βj.
The higher t-test values mean that the independent variab-
le is more significant.

In all presented equations, variables are listed accor-
ding to their statistical signification according to β and 
t-values.14,15

3. 5. Validation of Models

The generated QSPR models were validated by us-
ing the classical Leave-One-Out (LOO) cross-validation
technique, and also by the Leave-Many-Out (LMO), more
precisely the Leave-10-Out (L-10-O) cross-validation
procedure. The statistical stability of a model was revea-
led by the high values of correlation coefficient R2 Leave-
One-Out (R2

LOO) and coefficient R2 Leave-10-Out (R2
L-10-

O). Additionally, the Y-randomization technique was ap-
plied to validate and check the robustness of MLR equa-
tion.23 Cross-validation and Y-randomization were perfor-
med using the data mining software Weka (http://www.cs.
waikato.ac.nz/ml/ weka/). Detection of outliers was car-
ried out by investigating the applicability domain of a pre-
diction model.24

3. 6. Identifying Outliers

Investigation of the applicability domain of a predic-
tion model was performed by leverage plot (plotting resi-
duals vs. leverage of training compounds). Detection of
outliers was carried out for compounds that have values of
standardized residuals greater than two standard deviation
units. The leverage h* of a compound is the measure of its
influence on the model and is defined as:

h* = 3 × p’ / n (2)

where n is the number of training compounds and p’ is the
number of model-adjustable parameters.

4. Conclusions

Multiple linear regression is used to estimate the li-
pophilicity of polyphenols present in medicinal plants and
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food, using descriptors calculated from an optimized
three-dimensional molecular structure. In order to deter-
mine the best method for dividing the data set into the trai-
ning and test sets, two methods were performed: manual
division and cluster analysis. No great difference was ob-
served in the quality of models from the training and test
sets obtained by using these methods. Since the best mo-
dels that relate to the experimentally obtained log P values
are generated using two-dimensional descriptors, it is pos-
sible that the three-dimensional structure of polyphenols
is irrelevant for their lipophilicity. The structural lipophili-
city models presented in this study revealed, besides the
well known fact that the number of donor atoms for H
bonds is unfavourable for lipophilicity, that the enhanced
number of ring secondary C atom (sp3) also decreases li-
pophilicity, while the increased atomic polarizability im-
plies a higher lipophilicity of polyphenols. The study also
confirmed the importance of a three-dimensional arrange-
ment of atomic electronegativity for the lipophilicity of
molecules. The above-mentioned descriptors could be
used for further QSPR investigation of polyphenols, and
the proposed models could potentially provide informa-
tion about the lipophilicity of other biological active
polyphenols, such as the anthocyaninis, the anthocyani-
dins, and the procyanidins, which are normally commer-
cially unavailable or expensive, and their separation from
the plant and food samples and their accurate identifica-
tion requires techniques with especially high running
costs.
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Povzetek
Lipofilnost polifenolov, ki so prisotni v hrani, pija~ah in medicinskih rastlinah, smo modelirali z 3D deskriptorji, ki iz-

hajajo iz 3D molekularnih struktur v kombinaciji z 2D deskriptorji. U~ni set smo ustvarili z ro~no izbiro ali z gru~an-

jem, v obeh primerih smo dobili robustne predikcijske modele. Najpomembnej{e strukturne lastnosti, pomembne za li-

pofilnost polifenolov, so opisane z statisti~no najzna~ilnej{imi spremenljivkami: {tevilo donorskih atomov H vezi je

neugodno za lipofilnost, pove~ano {tevilo obro~ev sekundarnih C atomov  (sp3) prav tako zni`a lipofilnost, medtem ko

pove~ana polarnost atomov nakazuje na pove~ano lipofilnost polifenolov. [tudija je pokazala tudi pomembnost tridi-

menzionalne razporeditve elektronegativnosti atomov za lipofilnost molekul. 


