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[1] In this paper, we use numerical simulations based on a Lagrangian framework to study
contaminant transport through highly heterogeneous porous media due to advection and
local diffusion (under local diffusion, we assume coupled effect of mechanical dispersion
and molecular diffusion). The analysis of the concentration field is done for the case of a
two-dimensional hydraulic conductivity domain representing the aquifer, with three log-
conductivity structures that differ in spatial correlation. In addition to different conductivity
structures, we focus our investigation on mild and highly heterogeneous porous media
characterized by the values of hydraulic log-conductivity variance �2

Y

� �
being equal to 1

and 8. In the concentration moment analysis, we show that a linear relationship exists
between higher-order to second-order normalized concentration moments on a log-log scale
up to the fourth-order moment. This leads to the important finding that moments of a higher
than the second order can be derived based on information about the first two concentration
moments only. Such a property has been observed previously for boundary-layer water
channels, wind tunnels, and turbulent diffusion in open terrain and laboratory experiments.
Normalized moments are shown to collapse for different types of hydraulic conductivity
structures, Peclet (Pe) numbers and �2

Y values. In the case of local diffusion absence, a
linear log-log relationship is derived analytically and is set as a lower limit. The deviation
from the lower limit is explained to be predominantly caused by the local diffusion, which
needs time to evolve. In the case of local diffusion presence, we define the moment deriving
function (MDF) to describe the linear log-log relationship between higher-order
concentration moments to the second-order normalized one. Finally, the comparison
between numerical results and those obtained from the Columbus Air Force Base
Macrodispersion Experiment (MADE 1) is used to demonstrate the robustness of the
moment collapse.
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1. Introduction

[2] In the turbulent diffusion field of research, many inves-
tigators were focused on analyzing the concentration probabil-
ity density function (pdf) and its related moments. Those
findings range from the exponential [Lewis and Chatwin,
1996; Yee and Chan, 1997b] distribution to the Clipped-
Normal [Yee and Chan, 1997a, 1997b], generalized Pareto
[Lewis and Chatwin, 1996; Schopflocher and Sullivan, 2002],
Gamma [Lewis and Chatwin, 1996; Klein and Young; 2011],
Clipped-Gamma [Klein and Young, 2011; Yee and Chan,

1997a; Yee, 2008], and �-� [Mole, 1995; Yee and Chan,
1997b] distribution. It is important to realize that investigators
of the atmospheric turbulent diffusion problems had not only
numerical tools at their disposal but also extensive data sets
obtained through detailed concentration fluctuation experi-
ments in open terrain [Lewis and Chatwin, 1996; Klein and
Young, 2011; Yee and Chan, 1997a], wind tunnels [Schop-
flocher and Sullivan, 2005; Yee et al., 2006], and water chan-
nels [Yee and Wilson, 2000; Yee et al., 2006; Yee, 2008,
2009]. One of the general findings in these studies is the fact
that higher-order concentration moments do provide valuable
additional information for the shape of the concentration pdf.

[3] Furthermore, the studies conducted by Yee [2008,
2009] and Yee and Chan [1997a, 1997b], using a data set
of large concentration fluctuations collected under different
conditions, showed a remarkable collapse of data on a sin-
gle curve when comparing various higher-order normalized
concentration moments h c=Cð Þni (n¼ 3, 4, 5, 6, 7, and 8)
versus the second-order normalized concentration moment
h c=hCið Þ2i. With c we denote the concentration variable
while C presents the concentration ensemble mean.
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[4] Concentration moments of solute released through
aquifers, atmosphere, and water channels have been of
great interest in the last few decades. The analyses of con-
centration moments in heterogeneous aquifers have been
considered in a few studies [Andricevic, 1998; Bellin et al.,
1994; Caroni and Fiorotto, 2005; Dagan and Fiori, 1997;
Fiori and Dagan, 2000; Fiori, 2003; Fiorotto and Caroni,
2002; Kapoor and Kitanidis, 1998]. In an early attempt to
characterize groundwater contaminant transport, Dagan
[1982] showed that in the absence of local diffusion and for
point sampling, the concentration pdf is a two-state process
of initial concentration, C0, or zero. The same feature is
valid even in the atmosphere and water channel flow. Bellin
et al. [1994] analyzed the cumulative distribution function
(cdf) and the first two concentration moments as a function
of sampling size. In later works, local diffusion is consid-
ered and its influence is analyzed through the first two
moments, concentration mean and variance [Andricevic,
1998; Caroni and Fiorotto, 2005; Dagan and Fiori, 1997;
Fiori and Dagan, 1999, 2000; Fiori, 2003; Fiorotto and
Caroni, 2002; Tonina and Bellin, 2008], in both Eulerian
and Lagrangian frameworks. The calculation of concentra-
tion moments of an order higher than two is commonly
constrained by a number of physical (number of measure-
ments and its scale) and numerical reasons (number of real-
izations, extensive computational resources, and numerical
accuracy). In order to avoid some of the above-mentioned
facts, one needs to increase the number of realizations.
This procedure is time consuming and reveals the necessity
for finding effective tools that can determine higher-order
moment values based on information about lower order
ones.

[5] Knowledge of the statistical properties of concentra-
tion fluctuations in a moving plume is important in assess-
ing the risk from adverse effects of certain highly toxic
chemicals, ranging from industrial chemicals to even cer-
tain chemical warfare agents. Risk assessment studies
require the knowledge of concentration fluctuations [Andri-
cevic et al., 2012; Tartakovsky, 2007], which are described
by one-point concentration pdf. At any point in space and
time, the concentration pdf contains all the information
about concentration fluctuations and embodies all the
higher-order concentration moments.

[6] Following the first suggestion of a Beta distribution
for the subsurface concentration made by Fiori [2001],
Caroni and Fiorotto [2005] showed the applicability of
Beta distribution and a good fit for Monte Carlo (MC)
results conducted in 2-D heterogeneous aquifer. Bellin and
Tonina [2007] confirmed results by Caroni and Fiorotto
[2005] showing Ito Stochastic Differential Equation leads
to Beta pdf. Also, in comparison with Gaussian and Log-
normal distribution, Beta showed better features in order to
capture the ensemble fluctuations. Schwede et al. [2008]
reached very good agreement with Beta by semianalytical
method even in 3-D, but for unity �2

Y and multi-Gaussian
(MG) field. Joint velocity-concentration pdf method has
been developed by Meyer et al. [2010] and compared with
results by Caroni and Fiorotto [2005] up to �2

Y ¼ 2. The
accuracy of this method is shown to decrease for Pe� 100
when compared with standard MC. All the above-
mentioned results indicate the asymmetric shape of the
concentration pdf [Cirpka et al., 2011b], for a wide range

of parameters. Although the Beta distribution has shown
relatively good features in capturing concentration fluctua-
tions phenomena, some limitations have been noted [Bellin
and Tonina, 2007; Caroni and Fiorotto, 2005]. For the
sometimes complex structure of the concentration field, the
mean and variance may not be sufficient and higher-order
statistical moments are required to accurately define the
concentration pdf shape. Furthermore, most of the concen-
tration findings in groundwater transport research to date
have been focused on a lower range of aquifer heterogene-
ity �2

Y < 2
� �

and a common MG log-conductivity field.
[7] The objective of this paper is to investigate the fea-

tures of the statistical properties of a plume spreading in a
heterogeneous aquifer as manifested through the higher-
order concentration moments (third and fourth), and their
relationship to second-order normalized ones. In view of
this, the question we pose is as follows: Does the concen-
tration in a groundwater plume transported through aquifers
of high heterogeneity, different Pe values and different log-
conductivity fields exhibit a collapse of the higher-order
concentration moments on the second-order concentration
moment? If so, we can use this collapse feature to obtain
moments of a higher order than the second one, solely from
information about the first two moments.

[8] To address above questions, we will employ the two-
dimensional Monte Carlo numerical experiments. Using our
recently presented simulation methodology, Adaptive Fup
Monte Carlo Method (AFMCM) [Gotovac et al., 2007,
2009a]; this methodology supports the Eulerian-Lagrangian
formulation and separates the flow from the transport prob-
lem. A heterogeneous aquifer is modeled with a log-
conductivity variance ranging from 1 to 8 (e.g., describing
highly heterogeneous cases), including three fundamentally
different log-conductivity fields [Zinn and Harvey, 2003],
and Pe value ranging from 100 to 10,000.

2. Statement of the Problem and Methodology

[9] Consider incompressible and steady groundwater
flow taking place through a heterogeneous aquifer, result-
ing in divergence free flow r � v xð Þ ¼ 0. A velocity vector
is defined on the finite volume, surrounding position vector
x, which corresponds to Darcy scale at any time t. In gen-
eral, we fully follow the numerical procedure explained in
detail in Srzic et al. [2013] and briefly summarized below
for completeness.

[10] If a finite volume of a conservative tracer with cor-
responding mass is introduced into an aquifer, we rely on
the mass conservation law in the form

@c x; tð Þ
@t

¼ �r � v xð Þc x; tð Þ½ � þ r � D xð Þrc x; tð Þ½ � ð1Þ

[11] The concentration scalar field is denoted by c(x, t)
and defined as the contaminant mass per aquifer volume
surrounding x at time t. D(x) is dispersion tensor, represent-
ing coupled effect of mechanical dispersion and molecular
diffusion.

[12] For the solution of equation (1), the Random Walk
Particle Tracking (RWPT) method is used to simulate con-
taminant transport of a conservative tracer in the form
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XP t þ Dtð Þ � XP tð Þ ¼ v XP; tð Þ þ r � D XP; tð Þ½ � � Dt þ B XP; tð Þ
� � tð Þ

ffiffiffiffiffi
Dt
p

ð2Þ

where the first term on the right-hand side is the drift vector
while the displacement matrix B(XP ;t) defines the strength
of local diffusion, n(t) presents a vector of independent,
normally distributed random variables with zero mean and
unit variance. Equation (2) presents the solution of the
advection-dispersion equation presented in equation (1) as
the number of particles tends to infinity [Gardiner, 1990].

[13] In the form of the backward random walk particle
tracking (BRWPT) scheme, equation (2) can be used for
calculating particle displacement except the starting posi-
tion of each particle, which is located inside the sampling
volume [Caroni and Fiorotto, 2005; Fiorotto and Caroni,
2002]. The number of particles NP is distributed normally
or uniformly inside a sampling volume, surrounding loca-
tion x, and tracked back toward the source volume using
equation (2). If n of total number of particles NP released
from sampling volume, in any time step Dt is found inside
the source volume, the resident concentration [Parker and
van Genuchten, 1984] can be evaluated as

c x; tð Þ ¼ C0
n

NP
ð3Þ

where C0 presents the initial concentration and refers to a
situation in which all released particles are found inside the
source volume.

[14] The numerical procedure used here for the calcula-
tion of concentration values consists of four steps:

[15] 1. generating random hydraulic conductivity field
with defined statistical properties using [Bellin and Rubin,
1996]

[16] 2. evaluation of Eulerian velocity and head field
using AFMCM [Gotovac et al., 2007, 2009a] for numerical
domain with defined boundary conditions solving flux bal-
ance equation

[17] 3. evaluating particles displacements in any time
step using equation (2)

[18] 4. resident concentration evaluation using equation (3).

[19] The numerical method AFMCM [Gotovac et al.,
2007, 2009a] used in this paper for the flow and transport
problem solution is based on Fup basis functions with com-
pact support (related to the other localized basis functions
such as splines or wavelets) and the Fup collocation trans-
form (FCT), which is closely related to the discrete Fourier
transform needed for the multiresolution representation of
all flow and transport variables. Fup basis functions and the
FCT are presented in Gotovac et al. [2007]. Other
improved Monte Carlo (MC) methodology steps were also
utilized: (i) the Fup regularized transform (FRT) for data
or function (e.g., log conductivity) approximations in the
same multiresolution fashion as FCT, but computationally
more efficient, (ii) the adaptive Fup collocation method
(AFCM) for approximation of the flow differential equa-
tion, (iii) the backward random walk particle tracking algo-
rithm based on the Runge-Kutta-Verner explicit time
integration scheme and FRT, and (iv) MC statistics repre-
sented by Fup basis functions.

[20] In this paper, we use the numerical setup shown in
Figure 1 for simulation of contaminant transport in order to
analyze the influence of log-conductivity variance, Pe num-
ber, and different conductivity structure types on concen-
tration moments. To minimize the impact of boundary
conditions, transport is simulated inside an inner domain,
8IY from upper and lower no-flux boundaries, and 12IY

away from left-side and right-side constant head bounda-
ries. For the same numerical setup in the study conducted
by Gotovac et al. [2009b], by inspection of velocity var-
iance in both longitudinal and transversal directions, it is
confirmed that the boundary effects are avoided even for
highest �2

Y ¼ 8. In comparison, Salandin and Fiorotto
[1998] used 4IY to minimize the boundary effects. Based on
ensemble convergence study presented in detail in Appen-
dix A, 2500 �2

Y ¼ 8
� �

and 500 �2
Y ¼ 1

� �
statistically inde-

pendent contaminant transport realizations are generated
by releasing 400 particles, uniformly distributed inside
each of the 43 sampling volumes. The spatial discretization
used in our model corresponds to IY/4 [Gotovac et al.,
2009a; Salandin and Fiorotto, 1998], while the sampling
volume is also set to be IY/4, except for the purpose of
checking moment collapse convergence (Figures 4a and
4b). Heterogeneity grid is selected based on the study

Figure 1. Numerical setup.
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conducted in our previous paper [Srzic et al., 2013], where
we demonstrated the sensitivity of the concentration
moments to the grid scale in case of �2

Y ¼ 8. Our results
rely on Figure 12 by Gotovac et al. [2009a], where they
demonstrated that both Eulerian velocity component var-
iances differ less than 4.5% when the number of cells per
integral length is changed from 4 to 8 for �2

Y ¼ 8. More-
over, Gotovac et al. [2009a] in Figure 16 showed that the
transversal displacement and the travel time pdf are almost
identical for both discretization levels, n¼ 4 and 8. Our
results correspond to �2

Y being either 1 or 8 for three types
of conductivity structures [Zinn and Harvey, 2003] with an
isotropic Gaussian variogram. The log-conductivity struc-
tures we use here are generic and do not strictly provide in-
formation about any real case. The effects of local
diffusion are analyzed for Pe 100 and 10,000. The latter
value can be considered to describe advection-dominated
transport. For purpose of numerical simulations dispersion
tensor from equation (1) is assumed as isotropic one with
constant value calculated by D¼UIY/Pe. U denotes mean
velocity. Regarding the backward random-walk particle-
tracking scheme, the source dimension is set to be signifi-
cantly larger than the sampling volume. Its dimension in
the longitudinal direction is L1¼ 2IY, while in the transver-
sal direction it is set equal to L2¼ 10IY. For the initial con-
dition, the concentration inside the source area is uniformly
distributed taking C0 value, while outside the source area it
is set to be equal to zero.

[21] All three hydraulic conductivity structures consid-
ered here have identical lognormal univariate conductivity
distributions, as well as isotropic spatial covariance func-
tions. The connectivity of the same log-conductivity pat-
terns is interpreted as a possible consequence of the
geological processes that generated the aquifer itself. The
three structures differ in the pattern by which high-
conductivity or low-conductivity regions are connected:

[22] 1. ConNected—CN field with well-connected high-
conductivity channels, but poorly connected low and mean
conductivity zones. This type of structure is characterized
by an effective conductivity greater than the geometric
mean and large variations in fluid velocity.

[23] 2. DisconNected—DN field with well-connected
low conductivity zones such that mass transfer occurs
through low value conductivity fields. This type of struc-
ture is characterized by an effective conductivity less than
the geometric mean and smaller velocity variations.

[24] 3. Multi-Gaussian—MG field, where extreme con-
ductivity values are poorly connected, while mean conduc-
tivity zones are well connected. This structure is (for the 2-
D flow case) consistent with first-order theory.

3. Concentration Moment Collapse

3.1. Zero Local Diffusion Case

[25] In the case of advection only (local diffusion ab-
sence), the point concentration of a conservative tracer
released from a source with uniformly distributed concen-
tration C0 is either equal to initial concentration C0 or zero,
depending on whether the sampler is located inside or out-
side of the solute body. Therefore, the concentration field
must be characterized as a two-state process, taking values
equal to zero or C0. Without loss of generality, we here nor-

malize the concentration by C0, so that the concentration
takes values equal to 0 or 1. Then, the concentration pdf
possesses a bimodal feature and takes the following mathe-
matical form

p c; x; tð Þ ¼ �0 x; tð Þ� c x; tð Þ � 1ð Þ þ 1� �0 x; tð Þð Þ� c x; tð Þð Þ ð4Þ

[26] The first term on the right-hand side (RHS) presents
the probability of concentration to be equal to the concen-
tration value inside a plume, while the second one presents
the probability that the concentration value is zero, i.e., the
sampling location is outside of the plume. Moreover,
�0(x,t) is a so-called intermittency factor, defined as a prob-
ability of concentration to be greater than zero, represent-
ing the situation in which the sampling point is within the
plume [Chatwin and Sullivan, 1989]. The absolute
moments of concentration pdf presented in equation (4) are
expressed as

mn x; tð Þ ¼
Z1

0

c x; tð Þnp c; x; tð Þdc ¼ �0 x; tð Þ; n � 1 ð5Þ

[27] In the case of zero local diffusion and point sam-
pling, intermittency is equal to the concentration mean like
all other higher moments. This can occur because there is
no mechanism that causes concentration reduction.

[28] Let us examine the possible relationship, already
observed in turbulent diffusion in open terrain and labora-
tory experiments, water channel, and wind tunnel experi-
ments [Lewis and Chatwin, 1996; Klein and Young ; 2011,
Yee and Chan, 1997a; Schopflocher and Sullivan, 2005;
Yee and Wilson, 2000, Yee et al. ; 2006, Yee, 2008, 2009],
of higher-order normalized concentration moments to the
second-normalized moment:

mn x; tð Þ
m1 x; tð Þð Þn ¼

m2 x; tð Þ
m1 x; tð Þð Þ2

 !n�1

; n > 2 ð6Þ

[29] After introducing moment values from equation (5)
in both sides of equation (6), we can confirm the above
equality, which will serve as the lower limit relationship
for the case where local diffusion effects are present. Equa-
tion (6) states that all higher-order moments are directly
related to the first two concentration moments. Taking the
logarithm of equation (6), all higher moments are linearly
(with the slope factor equal to n� 1) related to the ratio of
the second to the first concentration moment.

3.2. Nonzero Local Diffusion Case

[30] Consider now the case with a finite Pe number indi-
cating nonzero local diffusion as a mechanism that reduces
concentration values inside a plume; thus, at any sampling
location one can observe that concentration values are
between 0 and 1 (again utilizing normalization by C0). If
sampling is located inside the plume boundaries, the
observed value is greater than zero c x; tð Þ 2 h0; 1ð �Þ, while
otherwise the observed concentration value outside the
plume is equal to 0. Because equation (4) is limited to
account for binary concentration values only, we wish to
modify it such that all concentration values inside a plume
boundary can be captured. To this end, we propose
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introducing a new function g(c ;x,t) that generalizes equa-
tion (4) in the following form:

p c; x; tð Þ ¼ � x; tð Þg c; x; tð Þ þ 1� � x; tð Þð Þ� c x; tð Þð Þ ð7Þ

where the intermittency factor is now denoted by �(x,t) to
present the probability of concentration to be greater than
zero (as in the advection-only case), but now accounting
for local diffusion; in this case, equation (5) is not applica-
ble. The function g(c ;x,t) possesses a pdf property (finite
integral over the range bounded by 0 and 1, equal to 1—
easily proved by integrating equation (7)) and presents the
probability of concentration values greater than zero to
occur, or in other words, the function g(c ;x,t) presents a
pdf of nonzero concentration values. Although g(c ;x,t) pos-
sesses a pdf property, p(c ;x,t)and g(c ;x,t) are not the same
because of different values of samples taken into account.
The number of samples for g(c ;x,t) is equal to the total
number of nonzero c(x,t) values, while in the case of
p(c ;x,t), sampling over all concentration values (zero and
nonzero) is made. After scaling g(c ;x,t) by �(x,t) and by
adding zero values probability (second part of the right-
hand side in equation (7)), equation (7) is satisfied. There-
fore, we use the same concept in equation (7) as in equation
(4), separating the meandering effect from the concentra-
tion values inside the plume, caused by advection and local
diffusion.

[31] In the case of nonzero local diffusion, we modify
equation (6) by using equation (7) and obtain a new rela-
tionship between the higher concentration moments to the
second normalized concentration moment as

mn x; tð Þ
m1 x; tð Þ
� �n ¼ �n x; tð Þ m2 x; tð Þ

m1 x; tð Þ
� �2

 !n�1

; n > 2 ð8Þ

where a function �n(x,t) is introduced to account for the influ-
ence of local diffusion. �n(x,t) is referred to as the moment
deriving function (MDF), and its value will be examined
using numerical simulations. Equation (8) implies that higher
normalized concentration moments are still related to the sec-
ond concentration moment but are now scaled with the func-
tion �n(x,t), depending on the heterogeneity structure, �2

Y ,
and local diffusion. The following section will analyze how
�n(x,t) behaves under different conditions.

[32] From the application viewpoint, under the real aqui-
fer conditions we can measure only the function g(c ;x,t)
and its moments in a single realization (e.g., MADE [Zheng
et al., 2010]). Therefore, it is important to verify equation
(8) even in such cases. We start from the absolute moments
of p(c ;x,t)

mp
n x; tð Þ ¼ � x; tð Þ

Z1

0

c x; tð Þng c; x; tð Þdc

þ 1� � x; tð Þð Þ
Z1

0

c x; tð Þn� c x; tð Þð Þdc ð9Þ

[33] Due to the properties of integrating Dirac’s delta
function, second part on the RHS vanishes and we get

mp
n x; tð Þ ¼ � x; tð Þmg

n x; tð Þ ð10Þ

[34] After introducing equation (10) into equation (8), it
is obvious that independent of concentration moments used
mp

n x; tð Þ or mg
n x; tð Þ, equality presented by equation (8) is

satisfied while at the same time �n(x,t) is unaffected regard-
less of the moments used (mp

n x; tð Þ or mg
n x; tð Þ). This indi-

cates that the moment collapse feature, equation (8) should
be applicable even in field experiments, a point that will be
investigated in section 4.2.

4. Results

4.1. Concentration Moments Collapse

[35] The numerical procedure presented in section 2 was
used to produce concentration values resulting from the
advection-dispersion processes. For all 43 sampling loca-
tions presented in Figure 1 and a dimensionless time do-
main ranging between 0 and 100, normalized concentration
values are evaluated. To prove the linear log-log relation-
ship defined by equation (8) between higher-order and
second-order normalized concentration moments derived in
the previous section, a few selected results are presented in
Figures 2a–2c (third-normalized versus second-normalized
moments) and Figures 3a–3c (fourth-normalized versus
second-normalized moments). Each scattergram consists of
172,000 normalized concentration values. It can be seen
that the lower limit considered in the case of zero local dif-
fusion has never been failed and all numerical values are
positioned above this lower limit. Some differences
between different hydraulic conductivity structure types
(MG, CN, and DN), Pe values, and log-conductivity var-
iances are presented in the scattergrams. To capture the
properties of each scattergram, we use a linear regression
model to calculate correlation coefficient �n and MDF (�n)
values for all considered cases up to the sixth moment order
in Tables 1 and 2. Note that we use here MDF without spa-
tial and temporal notation, because it presents the collapse
for all dimensionless snapshots and sampling locations at
once. Subscript n denotes the order of higher concentration
moments in a linear relationship with a second-order nor-
malized one. Linear regression analysis is performed with a
slope equal to the lower limit case, while the only differ-
ence appears in the ordinate value (representing �n).

[36] �2
Y is shown to be dominant in influencing �n and �n

values. Higher �2
Y causes increased Lagrangian integral

scale as shown by several studies [Gotovac et al., 2009b,
Figure 8a; Meyer and Tchelepi, 2010, Figures 8a and 8b;
Salandin and Fiorotto 1998, Figures 5a and 5b]. In combi-
nation with slow advection as a consequence of portion of
mass being stacked in low-velocity areas, the plume
spreading is enhanced. This is more obvious in the case of
CN field compared with MG and especially DN structure.
The CN structure is characterized by significant correlation
values of extremely high velocities characterizing con-
nected high log-conductivity channels, but also with very
large surfaces of isolated low log-conductivity zones that
enhance retention. This makes the plume more dispersed
over a larger aquifer area and results with larger surface
area available for contaminant transfer to the zones outside
the plume boundaries, reducing concentration values. In
addition, Figures 4a and 4b couples the effect of sampling
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Figure 2. Normalized concentration third versus second
moment (a) ln K variance¼ 8, Pe¼ 10,000, MG field, (b)
ln K variance¼ 1, Pe¼ 100, CN field, and (c) ln K var-
iance¼ 1, Pe¼ 100, DN field.

Figure 3. Normalized concentration fourth versus second
moment: (a) ln K variance¼ 8, Pe¼ 10,000, MG field, (b)
ln K variance¼ 1, Pe¼ 100, CN field, and (c) ln K var-
iance¼ 1, Pe¼ 100, DN field.
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volume with local diffusion, particularly for the MG field.
In the case of pure advection and point sampling (lower
limit), �n¼ 1 for all n as explained in the previous section.
A relatively small sampling volume (IY/64) for the
advection-only case confirms that numerical and statistical
errors in our computational methodology are fairly small,
even for a high heterogeneity case. To achieve a lower limit
for MDF in case of pure advection, the sampling size must
be very small (less than IY/64). This is particularly true for
high heterogeneity cases and higher-order concentration
moments. Therefore, the sampling volume cannot be
ignored under certain transport conditions, due to the intro-
duction of additional mixing [Andricevic, 1998; Bellin
et al., 1994; Tonina and Bellin, 2008].

[37] The Pe number as a measure of local diffusion pres-
ence has a key influence in defining �n values. Higher Pe
values cause the scattergram to be closer to the lower limit,
and thereby �n closer to one. For smaller Pe values, local
diffusion starts to dominate, and the deviation from the
lower limit case is more pronounced. These features are
presented in Figures 2a–2c, 3a–3c, 4a, and 4b. In the case
of higher-order normalized moments, the deviation from
�n¼ 1 is much more pronounced, which is in agreement
with Srzic et al. [2013]. The high correlation coefficients �n

show that the moment collapse property of each scatter-
gram is present, regardless of different Pe number, �2

Y
value, and hydraulic conductivity structures.

[38] To further explain the properties of scattergrams, it
is necessary to closely examine the scatter structure. The
�n(x,t) is generally characterized by spatial and temporal
dependencies in the same way as the moment values

mn(x,t), while the local diffusion process is time dependent,
evolving with time increases. Since �n(x,t) is predomi-
nantly dependent on the Pe number (local diffusion), in
Figures 5a and 5b, we present the relationship between
higher-order (third and fourth order) normalized moments
and the second-order moment normalized for three ran-
domly selected snapshots (at tU/IY¼ 5, 20, and 50, where
the mean velocity is denoted by U) in the case of a CN
field, �2

Y ¼ 8 and Pe¼ 10,000. For each snapshot, we cal-
culate �n(t) with linear regression and evaluate the correla-
tion coefficient �n. Figures 5a and 5b show two very
important findings:

[39] 1. Regardless of how many sampling locations the
plume covers, the �n(x,t) values show very weak spatial de-
pendence due to the significant correlation, i.e. �n(x,t) !
�n(t).

[40] 2. The �n(t) values increase with the plume travel
time and converge approximately to a constant value at

Table 1. Moment Deriving Function (MDF) and Correlation
Coefficient Values Numerical Results in Case of Third, Fourth,
Fifth and Sixth Order for ln K Variance¼ 1

Field CN MG DN

Peclet Number 100 10,000 100 10,000 100 10,000

�3 0.978 0.977 0.973 0.977 0.975 0.976
�3 1.248 1.177 1.241 1.191 1.198 1.180
�4 0.952 0.951 0.941 0.950 0.947 0.948
�4 1.719 1.485 1.693 1.534 1.588 1.499
�5 0.933 0.932 0.916 0.931 0.926 0.927
�5 2.496 1.939 2.427 2.054 2.112 1.983
�6 0.918 0.917 0.897 0.916 0.912 0.911
�6 3.736 2.584 3.584 2.814 2.950 2.684

Table 2. Moment Deriving Function (MDF) and Correlation
Coefficient Values Numerical Results in Case of Third, Fourth,
Fifth and Sixth Order for ln K Variance¼ 8

Field CN MG DN

Peclet Number 100 10,000 100 10,000 100 10,000

�3 0.938 0.950 0.972 0.954 0.947 0.954
�3 1.808 1.788 1.701 1.698 1.589 1.537
�4 0.877 0.905 0.947 0.907 0.904 0.918
�4 4.521 4.073 3.675 3.582 3.152 2.768
�5 0.838 0.875 0.931 0.873 0.880 0.896
�5 13.381 10.390 9.277 8.361 7.013 5.368
�6 0.812 0.853 0.919 0.848 0.864 0.881
�6 43.386 28.108 25.325 20.599 16.620 10.839

Figure 4. MDF value versus order of moment related
with second-order normalized moment depending on sam-
pling volume: (a) unit log-conductivity variance, MG field
and (b) log-conductivity variance equal to 8, MG field.
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large time. This temporal dependence coincides with the
local diffusion evolution in time.

[41] Thus, we can consider MDF from now on only time
dependent (�n(t)) with a significant correlation coefficient
indicating the remarkable moment collapse property.

[42] Figures 6a and 6b presents the development of �n(t)
for the relationship of third- and fourth-normalized concen-
tration moments to the second-normalized concentration
moment. It is evident that for high �2

Y , �n(t) increases due
to the increase in concentration fluctuations resulting in
larger surface area of the plume with stronger concentration
gradients, which in turn enhance the local diffusion effect.
Increasing �n(t) results in a shift of moment collapse away
from the lower pure advection minimum as seen in Figures
5a and 5b. After some time of plume development

(e.g., after tU/IY¼ 40), it can be seen that the �n(t) asymp-
totically converges to its stable value (�3(t)¼ 1.25 and
�4(t)¼ 1.6 for �2

Y ¼ 1, while �3(t)¼ 1.65 and �4(t)¼ 3.5
for �2

Y ¼ 8). After tU/IY¼ 40, the plume starts to exceed
the domain resulting in fewer sampling locations in our
simulations, which in turn reduces the MDF. The conductiv-
ity structure types do not significantly affect MDF values,
even for higher-order moments (we checked up to sixth
order but the results are not shown). Generally, the highest
MDF values are characterized in the case of the CN field.
Transport in the case of a CN field occurs through both
highly connected zones (preferential channels) [Boggs et al.,
1992; Rehfeldt et al., 1992; Wen and Gomez-Hernandez,
1998; Zheng et al., 2010; Zinn and Harvey, 2003] where the
concentration field is characterized by sharp gradients, as
well as through the low permeable zones where the mass
amount is stacked. As we noted previously, the consequence
is enhanced plume spreading with increased plume surface

Figure 5. (a) Selected snapshots (tU/IY¼ 5, 20, and 50)
normalized concentration third-order versus second-order
moment, ln K variance¼ 8, Pe¼ 10,000, CN field and (b)
selected snapshots (tU/IY¼ 5, 20 and 50) normalized con-
centration fourth-order versus second-order moment, ln K
variance¼ 8, Pe¼ 10,000, CN field.

Figure 6. MDF values as a function of dimensionless
time: (a) second versus third normalized moment and (b)
second versus fourth normalized moment.

SRZIC ET AL.: HIGHER-ORDER CONCENTRATION MOMENTS COLLAPSE IN GROUNDWATER

4758



available for mass transfer to the neighboring zones primar-
ily by transverse local diffusion [Cirpka and Kitanidis,

2000; Cirpka et al., 2011a]. On the other hand, as expected,
the plume characterizing DN field has a more compact form
compared with CN and MG structures and exhibits the low-
est MDF values.

4.2. Field Experiment and Moment Collapse Feature

[43] In subsurface flow and transport studies, it is very
rare to find concentration statistics based on field measure-
ments. This is especially true for the higher concentration
moments, which provide information about the concentra-
tion fluctuations and the shape of the plume. In this section,
the presented feature of normalized higher concentration-
moment collapse will be examined using concentration
data from the conservative Bromide tracer test obtained
from the macrodispersion experiment (MADE 1) at Colum-
bus Air Force Base in Mississippi [Boggs et al., 1992;
Rehfeldt et al., 1992]. The natural gradient experiment was
performed in a shallow alluvial aquifer consisting of heter-
ogeneous, lenticular deposits of sand and gravel. The
experiment was initiated with the injection of 10.07 m3 of
groundwater containing bromide with an initial concentra-
tion set to 2500 mg/L [Boggs et al., 1992]. Eight snapshots
were conducted over a period of approximately 20 months.
The time interval between plume samplings ranges from 5
to 19 weeks. A network of 258 sampling wells, each with
up to 30 sampling points in the vertical direction, was used
to monitor the tracer plumes in three dimensions.

[44] The absolute moment values of g(c ;x,t) and p(c ;x,t)
differ by an intermittency factor, and log-log moment col-
lapse as defined by equation (8) is valid for both pdfs
g(c ;x,t) and p(c ;x,t). We consider under real aquifer condi-
tions only concentration values greater than zero (or more
precisely above detected threshold) inside the plume and
evaluate the pdf g(c ;x,t). Adopting the assumption that the
plume in each of the eight snapshots fulfills the ergodic con-
ditions (through the time plume covers from two (first snap-
shot) to more than 20 (eighth snapshot) correlation lengths
in longitudinal direction [Adams and Gelhar, 1992]), spa-
tially integrated normalized concentration moments [Andri-
cevic, 1998] are calculated for each snapshot excluding
concentration values below the threshold limit equal to 0.1
mg/L for snapshots 1–4 and 0.01 mg/L for snapshots 5–8
[Boggs et al., 1992] (due to the different measurement tech-
nique used). Evaluated moments are normalized, and the ra-
tio between higher-order (third and fourth) and second-
order normalized moment is displayed in Figures 7a and 7b.
Bromide data analysis shows that �3(t) is stabilizing at
1.451, while �4(t) reaches 2.504 with correlation coeffi-
cients 0.998 and 0.994. The field data examination shows a
striking agreement with the numerical simulations when
compared with Figures 6a and 6b. The log-conductivity var-
iance characterizing the Columbus site varies depending on
the conductivity scale; Rehfeldt et al. [1992] reported an

Figure 7. MADE—MDF values derived from Conserva-
tive Bromide tracer normalized spatially integrated
moments for eight different snapshots taken 9, 49, 126,202,
279, 370, 503, and 594 days since injection: (a) second ver-
sus third normalized moment, (b)second versus fourth nor-
malized moment, and (c) third-order and fourth-order MDF
values plot versus real time.
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overall variance of the horizontal log-conductivity equal to
4.5 with correlation length 12.8 m in longitudinal and 1.6 m
in transversal direction, the study conducted by Harvey and
Gorelick [2000] at the submeter scale raises up the value to
20 for the single location (borehole), while results made by
Bohling et al. [2012] based on direct-push techniques at the
centimeter scale indicate log-conductivity variance close to
7. The sampling volume, used in the MADE site, is much
smaller than correlation length [Boggs et al., 1992], so the
assumption of point sampling is valid. Including the fact
that the Pe value in field experiments varies in the range of
102�103 [Fiori and Dagan, 1999], qualitatively good agree-
ment in �n values has been achieved.

[45] It is also interesting to analyze the first data point
from bromide concentration in Figure 7c. Namely, this
point corresponds to only 9 days since injection began and
the plume has not been developed yet ; consequently, the
effect from local diffusion is comparatively small. All other
data points reflect a well-developed plume and some form
of equilibrium between advection in stretching the plume
and local diffusion as a smoothing mechanism. This bal-
ance between advection and local diffusion has been previ-
ously observed [Andricevic, 1998] and seems to be closely
related to the MDF in reaching the constant value.

[46] In Figure 7c, we reinforce our discussion above,
showing how quickly the field data present the stabilization
of MDF. This is particularly true for �3(t) while for the
fourth moment some increased fluctuations are noticed for
snapshots, but still, global stabilization and increased form
are observable.

[47] The fact that MDF values in the limit t ! 0
approach unity clearly indicates that the early transport
time is advection dominated and MDF is close to 1 for all
moments. Only when the plume starts to stretch out, pro-
viding local diffusion with more surface area to become an
important process, the MDF values start to increase. The
flattening out at some later time is connected with a balanc-
ing between the advection strength (function of �2

Y ) and
local diffusion.

5. Discussion

[48] In this study, we determine the linear log-log rela-
tionship between the higher-order (third and fourth) nor-
malized concentration moments to the second-order
normalized concentration moment for subsurface transport
(Figures 2 and 3) independent of sampling location and
time since injection. This moment collapse feature was al-
ready observed in the atmospheric turbulent diffusion prob-
lems [Yee and Chan, 1997a, 1997b; Yee, 2008, 2009], but
its behavior and peculiarities for the groundwater problems
and comparison with some field data [Boggs et al., 1992;
Zheng et al., 2010] are provided in this study. The fact that
there exists such a higher moment collapse relative to the
second order one is of great importance for further studies
focusing on concentration pdf and consequently the proba-
bilistic risk assessment [Andricevic et al., 2012; Tartakov-
sky, 2007].

[49] To reach the functional relationship between higher
normalized concentration moments to the second order
one, we start with the concentration pdf presented with two
terms in equation (7). The first one corresponds to the non-

zero concentration found within the plume, and the second
one presents the probability of zero concentration to occur.
In the case of zero local diffusion, the moment collapse fea-
ture follows exactly equation (6) having a linear coefficient
equal to n� 1 on the log-log scale.

[50] The case of pure advection and the point sampling
with uniform initial concentration we use as the base case,
as well as the proof of moment collapses robustness, since
the exact relationship equation (6), with �n equal to unity,
which is identical to the correlation coefficient. In this case,
we conclude that the moment collapse (or the scaling fea-
ture of the normalized concentration moments) exists inde-
pendent of the flow field or structure. Furthermore, the no-
diffusion case implies that the moment collapse cannot be
constrained by the physical problem dimensionality.
Although our study has been conducted in 2-D, the concen-
tration pdf equation (4) in the case of local diffusion ab-
sence and the point sampling still captures all possible
concentration values (zero or C0) regardless of problem
dimensionality. In other words, the moment collapse pre-
sented by equation (6) holds even in 3-D. The higher-order
concentration moment collapse occurs independent of the
media in which pure advective transport takes place. In
fact, a number of published works deal with concentration
moment collapse in the atmosphere, open terrain and labo-
ratory measurements, water channels, and wind tunnels.
Finally, we note that the injection mode does not affect
equation (6), as it affects for instance the travel time and/or
breakthrough curves [Demmy et al., 1999; Gotovac et al.,
2010; Jankovic and Fiori, 2010], in the case of pure advec-
tion, point sampling, and uniform initial concentration; this
is because all concentration moments are equal to intermit-
tency �0(x,t). Although in case of in flux injection mode,
the initial mass is distributed proportionally to the velocity
field along the source line, according to the definition of
the flux-averaged concentration [Demmy et al., 1999;
Parker and van Genuchten, 1984], the initial condition is
interpreted as a constant C0 since the ratio between the
mass flux and water flux is constant.

[51] When local diffusion acts together with advection
(as in natural subsurface transport), we introduce the new
function called Moment Deriving Function (�n) to describe
the influence of local diffusion. The relationship in equa-
tion (8) is examined numerically for finite Pe values and
evaluated using field data from the MADE site. Our results
suggest that the new function �n(t) is a function of time; in
the limit t ! 0, it is equal to 1 (advection only) and starts
to increase due to the combined effect of advection and
local diffusion. Even when analyzed with a different Pe,
different log-conductivity variances and three different log-
conductivity structures, �n(t) behaves in a consistent man-
ner, showing robustness when evaluated as a function of
transport time. Both �2

Y and the log-conductivity structure
affect MDF through the local diffusion. Although �n(t) is
computed by linear regression model (with the assumption
that the slope is equal to 1 in the zero local diffusion case)
significant correlation is observed for each snapshot. The
correlation coefficients obtained for each snapshot in Fig-
ures 5a and 5b reflect the MDF’s dependence primary on
time with significant correlation coefficient values that
decrease as the order of normalized moment increases. The
decreased correlation is to be expected since the
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fluctuations of the moments increase with increasing order.
The variability of the correlation coefficients for each snap-
shot and higher-order moment needs to be investigated
additionally in order to determine the moment collapse ac-
curacy and eventual cause of deviations from the unity cor-
relation coefficient, accounting for different possible
sources of error (numerical, statistical).

[52] To demonstrate the influence of such errors and ac-
curacy of the numerical procedure used, we presented
results in Figures 4a and 4b, where we clearly show the
convergence of the MDF toward unity as the Pe is
increased and the sampling volume decreased; in other
words, the convergence of the MDF toward the advection
and point sampling case is demonstrated. However, it is im-
portant to note that even for the smallest sampling used,
some concentration reduction is present due to the finite
sampling size.

[53] The potential relevance of the moment collapse is
its uniqueness, since we showed that it can be applied to
whole concentration data sets including zero values as well
when applied to just nonzero values that are the only ones
measured in reality: independent of the data set used, MDF
maintains the same value. This was confirmed by introduc-
ing equation (10) into equation (8). We also examined the
behavior of �n(t) by evaluating concentration data obtained
from the MADE site (first experiment), exposing the strik-
ing feature of moment collapse. The interesting finding is
that the �n(t) behaves in the same way as found in the nu-
merical simulations. Assuming ergodicity was necessary to
compare spatially integrated moment values with ensemble
ones obtained from numerical simulations. Although the
longitudinal plume dimension ranges between 2 and more
than 20 correlation lengths, the MDF calculated from
MADE data sets is shown to have the characteristic qualita-
tive features as those obtained by numerical simulations.
Additionally, observed concentration at MADE is flux
averaged [Boggs et al., 1992] with the continuous uniform
pulse injection (48.5 h), with a minimal disturbance to the
natural flow field (corresponds to in flux injection mode).
These facts reinforce the robustness of the MDF for differ-
ent conditions and dimensionality even with transient head
boundary conditions.

[54] The suggested concentration pdf models used in
previous investigations [Bellin et al., 1994; Bellin and
Tonina, 2007; Caroni and Fiorotto, 2005; Fiorotto and
Caroni, 2002; Klein and Young ; 2011; Lewis and Chatwin,
1996; Schopflocher and Sullivan, 2002; Yee and Chan,
1997a, 1997b] are a priori defined analytically. These anal-
yses have been made by fitting field results, laboratory
measurements, or numerically generated concentration val-
ues to the above analytical pdf models that are regularly
defined by the first two concentration moments at least.
The examination of conditions under which the pdf is
adequate to characterize the concentration fluctuations was
commonly constrained by log-conductivity variance up to
2 and the MG fields in the subsurface [Bellin et al., 1994;
Bellin and Tonina, 2007; Caroni and Fiorotto, 2005; Fior-
otto and Caroni, 2002]. The concept of MDF presented in
this paper enables one to use information about the first
two concentration moments (based on collected or meas-
ured data) to produce higher-order moments that are neces-
sary to capture the non-Gaussian pdf shape [Bellin and

Tonina, 2007; Caroni and Fiorotto, 2005; Cirpka et al.,
2011b; Dentz and Tartakovsky, 2010; Meyer et al., 2010;
Schwede et al., 2008].

[55] For higher-order concentration moments calculated
by the moment collapse, the moment inversion technique
enables evaluation of the concentration pdf for a variety of
heterogeneity structures and variably Pe values. The accu-
racy of the higher-order concentration moments calculated
from the moment collapse approximation and their separate
contribution to the concentration pdf is a part of our
ongoing research. The preliminary results indicate the
decreased contribution of the concentration moment to the
pdf, as the moment order increases. Also, the results sug-
gest increased number of moments in case of a poorly
mixed plume, usually in the near zone. For a well-mixed
plume, it appears that just three moments are sufficient
under specific conditions for relatively accurate estimates
of the pdf.

[56] The possible improvements and further studies for
finite Pe, we see in increased number of samplings in order
to better capture the moment fluctuations for the MDF cal-
culation. Although we showed the validity and the robust-
ness of the moment collapse for a wide range of conditions,
the MDF calculation is affected by the setup parameters,
like source size, sampling volume, log-conductivity var-
iance and structure, injection mode, and dimensionality; so
all the combinations require separate determination of
MDF through time in order to apply the moment collapse
for the higher-order moments calculation for finite Pe.
Although we believe that the combination of advection het-
erogeneity and the local diffusion leads to the scaling of the
concentration moments, the possible influence of other
mechanisms relevant in the subsurface, such as retention
and/or decay, needs to be further investigated.

6. Conclusions

[57] Although the moment collapse has been demon-
strated previously in the turbulent diffusion field, to the
best of our knowledge, this paper is the first one dealing
with its properties and peculiarities in groundwater trans-
port. We base our study on a combination of analytical and
numerical results for pure advection and advection com-
bined by local diffusion, respectively. Throughout the
manuscript, we offer a large set of results that support our
findings and explain the phenomenon referred to as
moment collapse when applied to groundwater contaminant
transport. Also, we establish a relation of the moment col-
lapse with the physical mechanisms acting on the concen-
tration field. Below, we summarize the highlights arising
from this study:

[58] 1. When advection is the only present mechanism
and the sampling is a point with uniform initial concentra-
tion, the higher-order concentration moments collapse was
shown to be exact and robust for a wide range of setup pa-
rameters with the constant MDF value equal to unity. This
holds for all moments up to order of n.

[59] 2. If local diffusion is present as an additional mech-
anism to advection, the MDF is primarily a temporal func-
tion, increasing from one following the local diffusion
evolution.
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[60] 3. Both the log-conductivity variance and structure
affect the MDF through the local diffusion causing a con-
centration reduction due to different plume features that are
controlled by heterogeneity and the spatial correlation of
the log-conductivity patterns.

[61] 4. The sampling volume involves artificial concen-
tration reduction (smoothing) due to spatial averaging. This
causes additional deflection of the MDF from the lower
limit (i.e., the advection case) even for small sampling size.

[62] 5. MADE data confirmed the robustness and the va-
lidity of the moment collapse under conditions that strictly
differ from those of our numerical simulations. This rein-
forces the main merit of the moment collapse; its existence
and applicability in real cases that arise from the insensitiv-
ity to the moments used (mp

n or mg
n) and prevailing bound-

ary conditions.

Appendix A: Monte Carlo Convergence

[63] For investigation of higher-order normalized
concentration moments convergence, we use numerical
setup presented in Figure 1. The number of flow and
transport realizations (NR) is increased, starting from 10,
until convergence in third-order and fourth-order
normalized moment is reached. As CN conductivity field is
characterized by highest spatial variability in velocity field
[Zinn and Harvey, 2003], we select it as representative.

Convergence tests are done for both �2
Y ¼ 1and 8, and Pe

values equal to 100 and 10,000. In Figures A1a and A1b,
we show the results for �2

Y ¼ 8 and Pe¼ 100. Figure A1a
presents relatively rapid convergence of third-order nor-
malized moment, independent of the distance from the
source and position inside the plume boundaries (plume
core or plume fringes). After NR¼ 1500, the third moment
shows very low sensitivity, changes in moment values are
less than 6%. Finally, the difference between moment val-
ues for NR¼ 2400 and 2500 is less than 1%. Similar behav-
iour is observed even for fourth-order normalized moment
values in Figure A1b. For NR¼ 1500, the difference is less
than 10% reducing to 2.5%. To summarize, convergence
test of third-order and fourth-order normalized moments
showed that 2500 Monte Carlo realizations are sufficient to
achieve stable moment values for �2

Y ¼ 8. In the case of
lower heterogeneity level �2

Y ¼ 1
� �

, this number is 500.
[64] In order to reach stability of �n(t) values, we use the

number of Monte Carlo (NR) realizations defined in previ-
ous convergence analysis of higher-order moments and
check for �3(t) and �4(t) values. Three different dimension-
less snapshots (tU/IY¼ 2, 20, and 50) are selected that show
convergence of MDF for CN and DN fields and �2

Y ¼ 8.
In Figures A2a and A2b, it is shown that convergence for
both �3(t) and �4(t) is first observed for the earliest snap-
shot independent of the heterogeneity structure due to the
increased plume meandering effect as the time evolves. In
the case of �2

Y ¼ 1, MDF up to fourth order is shown to be
stable for 500 Monte Carlo realizations (Figure A2c).

Figure A1. Pe ¼100, ln K variance ¼8, CN field: (a) convergence of third-order normalized concen-
tration moment and (b) convergence of fourth-order normalized concentration moment.
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