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CONTINUOUS FUNCTION

Boris Muha

Department of Mathematics, Faculty of Science
University of Zagreb
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Abstract. The purpose of this note is to prove a version of the Trace Theorem

for domains which are locally subgraph of a Hölder continuous function. More

precisely, let η ∈ C0,α(ω), 0 < α < 1 and let Ωη be a domain which is
locally subgraph of a function η. We prove that mapping γη : u 7→ u(x, η(x))

can be extended by continuity to a linear, continuous mapping from H1(Ωη)

to Hs(ω), s < α/2. This study is motivated by analysis of fluid-structure
interaction problems.

1. Introduction. The Trace Theorem for Sobolev spaces is well-known and widely
used in analysis of boundary and initial-boundary value problems in partial differ-
ential equations. Usually, for the Trace Theorem to hold, the minimal assumption is
that the domain has a Lipshitz boundary (see e. g. [1, 5, 7]). However, when study-
ing weak solutions to a moving boundary fluid-structure interaction (FSI) problem,
domains are not necessary Lipshitz (see [2, 6, 9, 4, 13]). FSI problems have many
important applications (for example in biomechanics and aero-elasticity) and there-
fore have been extensively studied from the analytical, as well as numerical point of
view, since the late 1990s (see e.g. [2, 3, 6, 8, 9, 10, 12] and the references within).
In FSI problems the fluid domain is unknown, given by an elastic deformation η,
and therefore one cannot assume a priori any smoothness of the domain. In [2, 6, 9]
an energy inequality implies η ∈ H2(ω), ω ⊂ R2. From the Sobolev embeddings
one can see that in this case η ∈ C0,α(ω), α < 1, but η is not necessarily Lipschitz.
Nevertheless, in Section 1.3 in [2], and Section 1.3. in [6], a version of the Trace
Theorem for such domains was proved, which enables the analysis of the considered
FSI problems (see also [9], Section 2).

The proof of a version of the Trace Theorem in [6] (Lemma 2) relies on Sobolev
embeddings theorems and the fact that η ∈ H2(ω) and ω ⊂ R2. Even though the
techniques from [6] can be generalized to a broader class of Sobolev class boundaries,
the result and techniques from [6] cannot be applied to some other cases of interest
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in FSI problems, for example to the coupling of 2D fluid flow with the 1D wave
equation, where we only have η ∈ H1(ω) (see [4, 13]) The purpose of this note
is to fill that gap and generalize that result for ω ⊂ Rn−1, n > 1, and arbitrary
Hölder continuous functions η. Hence, we prove a version of the Trace Theorem for
a domain which is locally a subgraph of a Hölder continuous function. We use real
interpolation theory (see [11]) and intrinsic norms for Hs spaces, where s in not an
integer.

2. Notation and preliminaries. Let n ∈ N, n ≥ 2. Let ω ⊂ Rn−1 be a Lipschitz
domain and let 0 < α < 1. Furthermore, let η satisfy the following conditions:

η ∈ C0,α(ω), η(x) ≥ ηmin > 0, x ∈ ω, η|∂ω = 1. (1)

We consider the following domain

Ωη = {(x, xn) : x ∈ ω, 0 < xn < η(x)},
with its upper boundary

Γη = {(x, xn) : x ∈ ω, xn = η(x)}.

We define the trace operator γη : C(Ωη)→ C(ω)

(γηu)(x) = u(x, η(x)), x ∈ ω, u ∈ C0(Ωη). (2)

In [2] (Lemma 1) it has been proven that γη can be extended by continuity to an
operator γη : H1(Ωη) → L2(ω). This result holds with an assumption that η is
only continuous. Our goal is to extend this result in a way to show that Im(γη) is
a subspace of Hs(ω), for some s > 0, when η is a Hölder continuous function.

Remark 1. Notice that γη is not a classical trace operator because γη(u) is a
function defined on ω, whereas the classical trace would be defined on the upper
part of the boundary, Γη. However, this version of a trace operator is exactly
what one needs in analysis of FSI problems. Namely, in the FSI setting the Trace
Theorem is applied to fluid velocity which, at the interface, equals the structure
velocity, where the structure velocity is defined on a Lagrangian domain (in our
notation ω).

The Sobolev space Hs(ω), 0 < s < 1 is defined by the real interpolation method
(see [1, 11]). However, Hs(ω) can be equipped with an equivalent, intrinsic norm
(see for example [1, 7]) which is also used in [5]

‖u‖2Hs(ω) = ‖u‖2L2(ω) +

∫
ω×ω

|u(x1)− u(x2)|2

|x1 − x2|n−1+2s
dx1dx2, (3)

where 0 < s < 1.

3. Statement and proof of the result.

Theorem 3.1. Let α < 1 and let η be such that conditions (1) are satisfied. Then
operator γη, defined by (2), can be extended by continuity to a linear operator from
H1(Ωη) to Hs(ω), 0 ≤ s < α

2 .

Proof. We split the main part of the proof into two Lemmas. The main idea of the
proof is to transform a function defined on Ωη to a function defined on ω × (0, 1)
and to apply classical Trace Theorem to a function defined on the domain ω×(0, 1).
Throughout this proof C will denote a generic positive constant that depends only
on ω, η and α.
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Let u ∈ H1(Ωη). Define

ū(x, t) = u(x, η(x)t), x ∈ ω, t ∈ [0, 1]. (4)

Let us define function space (see [11], p. 10):

W (0, 1; s) = {f : f ∈ L2(0, 1;Hs(ω)), ∂tf ∈ L2(0, 1;L2(ω))},

where 0 < s < 1. Our goal is to prove ū ∈W (0, 1; s). However, before that we need
to prove the following technical Lemma:

Lemma 3.2. For every x0, x1 ∈ ω, there exists a piece-wise smooth curve param-
eterized by

Θx0,x1
: [0, 2]→ Ωη

such that Θx0,x1
(0) = (x0, η(x0)), Θx0,x1

(2) = (x1, η(x1)) and

|Θ′x0,x1
(r)| ≤ C|x1 − x0|α, a. e. r ∈ [0, 2], (5)

where C does not depend on x0, x1.

Proof. First we define xr as a convex combination of x0 and x1:

xr = (1− r1/α)x0 + r1/αx1 = x0 + r1/α(x1 − x0), r ∈ [0, 1].

Furthermore we define yr in the following way:

yr = η(x0)− ‖η‖C0,α(ω)|xr − x0|α = η(x0)− ‖η‖C0,α(ω)r|x1 − x0|α, r ∈ [0, 1].

By using Hölder continuity of η we get

yr ≤ η(xr), r ∈ [0, 1]. (6)

Therefore curve (xr, yr) stays bellow the graph of η for r ∈ [0, 1]. Now, let us
consider whether this curve intersects the hyper-plane xn = ηmin. Since yr is a
strictly decreasing function in r, we distinguish between the two separate cases.

Case 1. yr ≥ ηmin, r ∈ [0, 1]. We define Θx0,x1 in the following way:

Θx0,x1(r) =

 (xr, yr) , 0 ≤ r ≤ 1,

(x1, (2− r)y1 + (r − 1)η(x1)) , 1 < r ≤ 2.
(7)

From (6), the definition of Θx0,x1
(7) and the definition of Ωη it follows immediately

that Θx0,x1
(0) = (x0, η(x0)), Θx1,x2

(2) = (x1, η(x1)) and Θx0,x1
(r) ∈ Ωη, r ∈ [0, 2].

Therefore it only remains to prove (5). We calculate

Θ′x0,x1
(r) =

 ( 1
αr

1/α−1(x1 − x0),−‖η‖C0,α(ω)|x1 − x0|α) , 0 ≤ r ≤ 1,

(0, η(x1)− y1) , 1 < r ≤ 2.

Since ω is bounded, we can take C ≥ ‖η‖C0,α(ω) such that

|x− y| ≤ C|x− y|α, x, y ∈ ω.

Using this observation we can get an estimate:

|Θ′x0,x1
(r)| ≤ C|x0 − x1|α, r ∈ [0, 1).

Furthermore, analogously using the definition of yr and η ∈ C0,α(ω) we have

|η(x1)− y1| ≤ |η(x1)− η(x0)|+ ‖η‖C0,α(ω)r|x1 − x0|α ≤ C|x0 − x1|α.

Therefore, (5) is proven.
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Case 2. There exists r0 ∈ (0, 1) such that yr = ηmin. In this case we define Θx0,x1

in the following way:

Θx0,x1
(r) =


(xr, yr) , 0 ≤ r ≤ r0,

(xr, ηmin) , r0 < r ≤ 1,

(x1, (2− r)ηmin + (r − 1)η(x1)) , 1 < r ≤ 2.

(8)

Analogous calculation as in Case 1 shows that estimate (5) is valid in this case as
well. This completes the proof of the Lemma.

Now we are ready to prove the following lemma:

Lemma 3.3. Let u ∈ H1(Ωη) and let 0 < s < α. Then ū ∈ W (0, 1; s), where ū is
defined by formula (4).

Proof. Let us first take u ∈ C∞c (Rn). For x1,x2 ∈ ω, t ∈ (0, 1) we have

|ū(x1, t)− ū(x2, t)| = |u(x1, η(x1)t)− u(x2, η(x2)t)|

Notice that tη ∈ C0,α(ω) and therefore we can apply Lemma 3.2 to function tη
(we just need to replace ηmin with tηmin in the proof of the Lemma 3.2) to get
Φtx1,x2

: [0, 2]→ Ωη such that:

Θt
x1,x2

(0) = (x1, η(x1)t), Θt
x1,x2

(2) = (x2, η(x2)t),

| d
dr

Θt
x1,x2

(r)| ≤ C|x1 − x2|α, a. e. r ∈ [0, 2],

where C does not depend on x1, x2 and t. Define

f tx1,x2
(r) = u(Θt

x1,x2
(r)), r ∈ [0, 2].

Now we have

|u(x1, η(x1)t)− u(x2, η(x2)t)|2 = |
∫ 2

0

d

dr
f tx1,x2

(r)dr|2

≤ ‖ d
dr

Θt
x1,x2

(r)‖2L∞(0,2)

∫ 2

0

|∇u(Θt
x1,x2

(r))|2dr

≤ C|x1 − x2|2α
∫ 2

0

|∇u(Θt
x1,x2

(r))|2dr.

(9)

Using (9) we get the following estimates:

‖ū‖2L2(0,1:Hs(ω)) =

∫ 1

0

‖ū(., t)‖2Hs(ω)dt =

∫ 1

0

dt

∫
ω×ω

|ū(x1, t)− ū(x2, t)|2

|x1 − x2|n−1+2s
dx1dx2

≤ C
∫ 1

0

dt

∫
ω×ω

dx1dx2

|x1 − x2|n−1+2(s−α)

∫ 2

0

|∇u(Θt
x1,x2

(r))|2dr.

≤ C‖∇u‖2L2(Ωη)

∫
ω×ω

dx1dx2

|x1 − x2|n−1+2(s−α)
.

(10)
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To estimate the last integral in (10), we introduce a new variable h = x1 − x2

and the change of variables (x1,x2) 7→ (h,x2) to get:∫
ω×ω

dx1dx2

|x1 − x2|n−1+2(s−α)
≤ C

∫ R

−R

dh

|h|1+2(s−α)
, (11)

where R = diam(ω). Recall that s < α < 1. Therefore by combining (10) and (11),
we get:

‖ū‖L2(0,1:Hs(ω)) ≤ C‖u‖H1(Ωη), u ∈ C∞c (Rn) (12)

Since C∞c (Rn) is dense in H1(Ωη) (see [1], Thm 2, p. 54 with a slight modification
near ∂ω × {1}, see also [2], proof of Lemma 1 and [9], Prop A.1.), by a density
argument we have

ū ∈ L2(0, 1;Hs(ω)), u ∈ H1(Ωη).

Now, it only remains to prove ∂tū ∈ L2((0, 1) × ω). However, this can be proven
with direct calculation by using the chain rule:

∂tū(x, t) = η(x)∂xnu(x, η(x)t).

Since η is Hölder continuous on ω, from the above formula we have ∂tū ∈ L2((0, 1)×
ω) which completes the proof of the Lemma.

Now we use continuity properties of W (0, 1; s) ([11], p. 19, Thm 3.1.), i.e.

W (0, 1; s) ↪→ C([0, T ];Hs/2(ω)),

where this injection is continuous. Therefore, from Lemma 3.3 we have

ū ∈ C([0, T ];Hs/2(ω)), u ∈ H1(Ωη). (13)

We finish the proof by noticing that γη(u) = ū(., 1).

Remark 2. In [6], Lemma 2, a special case of Theorem 3.1 was proved. Namely, for
n = 3 and η ∈ H2(ω) it was proved that γη is a continuous operator from H1(Ωη)
to Hs(ω), 0 ≤ s < 1

2 . This result follows from Theorem 3.1 because of the Sobolev

embedding H2(ω) ↪→ C0,α(ω), α < 1. However, the techniques from [6] rely on
Sobolev embeddings and the fact that ∇η is more regular then L2(ω) and therefore,
cannot be extended for the case of arbitrary Hölder continuous functions.
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[9] D. Lengeler and M. Ružička, Weak solutions for an incompressible newtonian fluid interacting

with a linearly elastic koiter shell, Arch. Ration. Mech. Anal., 211 (2014), 205–255.
[10] J. Lequeurre, Existence of strong solutions for a system coupling the Navier-Stokes equations

and a damped wave equation, J. Math. Fluid Mech., 15 (2013), 249–271.
[11] J.-L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications.

Vol. I, Translated from the French by P. Kenneth, Die Grundlehren der mathematischen

Wissenschaften, Band 181, Springer-Verlag, New York, 1972.
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