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Abstract. For a nonautonomous dynamics defined by a sequence of
linear operators, we introduce the notion of an exponential dichotomy
with respect to a sequence of norms and we characterize it completely
in terms of the admissibility in lp spaces, both for the space of pertur-
bations and the space of solutions. This allows unifying the notions of
uniform and nonuniform exponential behavior. Moreover, we consider
the general case of a noninvertible dynamics. As a nontrivial applica-
tion we show that the conditional stability of a nonuniform exponential
dichotomy persists under sufficiently small linear perturbations.

1. Introduction

The objective of our paper is to characterize completely a generalization
of the notion of an exponential dichotomy in terms of the admissibility in lp

spaces, both for the space of perturbations and the space of solutions. More
precisely, we consider the notion of an exponential dichotomy with respect
to a sequence of norms, for a general nonautonomous dynamics defined by
a sequence of linear operators. While a uniform exponential behavior corre-
sponds to consider a constant sequence of norms, a nonuniform exponential
behavior can be defined in terms of a sequence of Lyapunov norms. Thus,
our work unifies the two notions as well as allows considering arbitrary
sequences of equivalent norms possibly with unbounded constants. Our ap-
proach consists in characterizing the notion of an exponential dichotomy
with respect to a sequence of norms in terms of the invertibility of certain
operators. This is partly inspired in a related approach of Henry in [12].

The study of admissibility goes back to pioneering work of Perron in [21]
and referred originally to the existence of bounded solutions of the equation

x′ = A(t)x+ f(t)

in Rn for any bounded continuous function f : R+
0 → Rn. This property can

be used to deduce the stability or the conditional stability under sufficiently
small perturbations of a linear equation.

A relatively simple modification of Perron’s work for continuous time
yields the following result for discrete time.
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Theorem 1. Let (Am)m∈N be a sequence of n × n matrices. If for each
bounded sequence (fm)m∈N ⊂ Rn there exists x0 ∈ Rn such that the sequence

xm = Am−1xm−1 + fm, m ∈ N (1)

is bounded, then any bounded sequence (Am · · ·A1x)m∈N tends to zero when
m→∞.

The assumption in Theorem 1 is called the admissibility of the pair of
spaces in which we take the perturbation (fm)m∈N and look for the solution
(xm)m∈N of equation (1). Up to the fact that Perron only considered con-
tinuous time, Theorem 1 is perhaps the first result discussing the relation
between admissibility and stability. There is an extensive related literature.
For some of the most relevant early contributions in the area we refer to the
books by Massera and Schäffer [17] (culminating the development initiated
with their paper [16]) and by Dalec′kĭı and Krĕın [11]. We also refer to [15]
for some early results in infinite-dimensional spaces. For a detailed list of
references, we refer to [7] and for more recent work to Huy [13]. We mention
in particular the papers [18, 24, 25] as an illustration of various approaches.
In [24] the authors consider the problem of the admissibility in lp spaces
for uniform exponential dichotomies assuming in addition that the evolu-
tion operator has bounded growth. We emphasize that the bounded growth
property fails for any nonuniform exponential dichotomy that is not uniform
(as it also fails for many uniform exponential dichotomies). In addition, the
admissibility of certain pairs of spaces is related to the invertibility or the
Fredholm properties of certain operators (see in particular [5, 6, 14, 20, 26]
and the books [7, 10, 11, 12, 17]).

As an application of our results, we give another proof of the robustness of
nonuniform exponential dichotomies. For uniform exponential dichotomies,
the problem was discussed by Massera and Schäffer [16] (see also [17]), Cop-
pel [9] and in the case of Banach spaces by Dalec′kĭı and Krĕın [11], with
different approaches and successive generalizations. For more recent works
we refer to [8, 19, 22, 23] and the references therein. We note that all these
works consider only the case of uniform exponential dichotomies. We refer
to [3, 4] for the general case of nonuniform exponential behavior.

A principal motivation to consider the notion of a nonuniform exponential
dichotomy is that from the point of view of ergodic theory almost all linear
variational equations have a nonuniform exponential behavior. More pre-
cisely, consider a flow (φt)t∈R defined by an autonomous equation x′ = f(x)
in Rn preserving a finite measure µ. This means that µ(φtA) = µ(A) for
any measurable set A ⊂ Rn and any t ∈ R. Then the trajectory of µ-
almost every point x with nonzero Lyapunov exponents gives rise to a linear
variational equation

v′ = Ax(t)v, with Ax(t) = dφtxf,

admitting a nonuniform exponential dichotomy. We refer to [2, 4] for details.
We refer the reader to [1] for related results in the case of continuous time.
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2. Characterization of dichotomies via l∞-admissibility

In this section we give a complete characterization of the notion of an
exponential dichotomy with respect to a sequence of norms in terms of the
admissibility in the space l∞.

We first introduce the notion of an exponential dichotomy with respect to
a sequence of norms. Let X = (X, ‖·‖) be a Banach space and let B(X) be
the space of all bounded linear operators on X. Given a sequence (Am)m∈Z
in B(X), we define

A(n,m) =

{
An−1 · · ·Am if n > m,

Id if n = m.

We say that (Am)m∈Z admits an exponential dichotomy with respect to a
sequence of norms ‖·‖m if:

1. there exist projections Pm : X → X for each m ∈ Z satisfying

AmPm = Pm+1Am for m ∈ Z (2)

such that each map Am| kerPm : kerPm → kerPm+1 is invertible;
2. there exist constants λ,D > 0 such that for each x ∈ X and n,m ∈ Z

we have

‖A(n,m)Pmx‖n ≤ De−λ(n−m)‖x‖m for n ≥ m (3)

and

‖A(n,m)Qmx‖n ≤ De−λ(m−n)‖x‖m for n ≤ m, (4)

where Qm = Id− Pm and where

A(n,m) = (A(m,n)| kerPn)−1 : kerPm → kerPn

for n < m.

We always assume in the paper that each norm ‖·‖m is equivalent to the
original norm ‖·‖.

Let Y be the set of all sequences x = (xm)m∈Z, xm ∈ X such that

‖x‖∞ := sup
m∈Z
‖xm‖m < +∞.

It is easy to verify that Y = (Y, ‖·‖∞) is a Banach space.
Our first result shows that the existence of an exponential dichotomy with

respect to a sequence of norms implies l∞-admissibility.

Theorem 2. If the sequence (Am)m∈Z admits an exponential dichotomy
with respect to the sequence of norms ‖·‖m, then for each y ∈ Y there exists
a unique x ∈ Y such that

xn −An−1xn−1 = yn (5)

for n ∈ Z.

Proof. Take a sequence y = (yn)n∈Z ∈ Y . For each n ∈ Z, let

x1
n =

∑
m≥0

A(n, n−m)Pn−myn−m (6)
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and

x2
n = −

∑
m≥1

A(n, n+m)Qn+myn+m. (7)

We have

‖x1
n‖n ≤

∑
m≥0

De−λm‖yn−m‖n−m ≤
D

1− e−λ
‖y‖∞

and similarly,

‖x2
n‖n ≤

De−λ

1− e−λ
‖y‖∞.

For each n ∈ Z, we define xn = x1
n+x2

n and let x = (xn)n∈Z. It follows from
the inequalities that x ∈ Y . Furthermore, it is easy to verify that (5) holds
for n ∈ Z.

Now we establish the uniqueness of x. Since the map x 7→ y defined
by (5) is linear, it is sufficient to show that if xn = An−1xn−1 for n ∈ Z,
with x = (xm)m∈Z ∈ Y , then xn = 0 for n ∈ Z. Let

xsn = Pnxn and xun = Qnxn.

Then xn = xsn + xun and it follows from (2) that

xsn = An−1x
s
n−1 and xun = An−1x

u
n−1

for n ∈ Z. Since xsk = A(k, k −m)xsk−m for m ≥ 0, we have

‖xsk‖k = ‖A(k, k −m)xsk−m‖k
= ‖A(k, k −m)Qk−mxk−m‖k
≤ De−λm‖xk−m‖k−m
≤ De−λm‖x‖∞.

(8)

Letting m → +∞ yields that xsk = 0 for k ∈ Z. Similarly, since xuk =
A(k, k +m)xuk+m for m ≥ 0, we have

‖xuk‖k = ‖A(k, k +m)xuk+m‖k
= ‖A(k, k +m)Pk+mxk+m‖k
≤ De−λm‖xk+m‖k+m

≤ De−λm‖x‖∞.

(9)

This implies xuk = 0 for k ∈ Z and hence xm = 0 for m ∈ Z. �

Now we establish the converse of Theorem 2. We note that the proof is
much more technical in comparison to that of Theorem 2.

Theorem 3. Assume that for each y ∈ Y there exists a unique x ∈ Y such
that (5) holds for n ∈ Z. Then the sequence (Am)m∈Z admits an exponential
dichotomy with respect to the sequence of norms ‖·‖m.

Proof. We divide the proof into steps.
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Step 1. Construction of auxiliary operators. Let T : D(T ) ⊂ Y → Y be the
linear operator defined by

(Tx)n = xn −An−1xn−1 (10)

in the domain D(T ) formed by all x ∈ Y such that Tx ∈ Y .

Lemma 1. The operator T : D(T ) ⊂ Y → Y is closed.

Proof of the lemma. Assume that (xk)k∈N is a sequence in D(T ) converging
to x ∈ Y and that Txk converges to y ∈ Y . Then

xn −An−1xn−1 = lim
k→+∞

(xkn −An−1x
k
n−1) = lim

k→+∞
(Txk)n = yn

for n ∈ Z. We conclude that x ∈ D(T ) and that Tx = y. Therefore, the
operator T is closed. �

It follows from the assumptions in the theorem that T is invertible. We
claim that G = T−1 : Y → Y has a closed graph in Y × Y . Indeed, let
(yk)k∈N be a sequence in Y converging to y ∈ Y and assume that xk = Gyk

converges to x ∈ Y . Then the sequence (xk, Txk) = (xk,yk), which is in
the graph of T , converges to (x,y). By Lemma 1, the operator T is closed
and hence x ∈ D(T ) and y = Tx. Therefore,

(yk, Gyk)→ (y,x) = (y, Gy)

when k →∞, which shows that G is closed. It follows from the closed graph
theorem that G is bounded.

For each n, k ∈ Z we define a linear operator Gn,k : X → X as follows.
Take y ∈ X and define y = (ym)m∈Z ∈ Y by yk = y and ym = 0 for m 6= k.
By hypothesis, there exists a unique x ∈ Y such that Tx = y and we set
Gn,ky = xn. We note that

‖Gn,ky‖n = ‖xn‖n ≤ ‖x‖∞ = ‖Gy‖∞
≤ ‖G‖ · ‖y‖∞ = ‖G‖ · ‖y‖k

for y ∈ X and that

Gn,k −An−1Gn−1,k =

{
Id if n = k,

0 if n 6= k
(11)

for n, k ∈ Z. Indeed,

Gn,ky −An−1Gn−1,ky = xn −An−1xn−1 = yn =

{
y if n = k,

0 if n 6= k.

We also establish a formula for the operator G.

Lemma 2. We have

(Gy)n =
+∞∑

k=−∞
Gn,kyk, n ∈ Z (12)

for all y ∈ Y such that yk = 0 for any sufficiently large |k|.
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Proof of the lemma. Take y ∈ Y such that yk = 0 for |k| > l, for some l ∈ N.
For every k ∈ Z with |k| ≤ l we define yk = (ykm)m∈Z ∈ Y by

ykm =

{
yk if m = k,

0 if m 6= k.

Clearly, y =
∑l

k=−l y
k. For each k ∈ Z with |k| ≤ l take xk ∈ Y such that

Txk = yk and let x =
∑l

k=−l x
k. Then x ∈ Y and Tx = y. Hence,

(Gy)n = xn =
l∑

k=−l
xkn =

l∑
k=−l

Gn,kyk =
+∞∑

k=−∞
Gn,kyk

for n ∈ Z. �

Step 2. Construction of projections and their invariance. Consider the maps
Pm = Gm,m. Using (11) it follows by induction that

Gn,m = A(n,m)Pm for n ≥ m (13)

and

A(m,n)Gn,m = −Qm for n < m, (14)

where Qm = Id− Pm.

Lemma 3. If the sequence xn+1 = Anxn, n ≥ m is bounded, that is,
supn≥m‖xn‖n < +∞, then Qmxm = 0.

Proof of the lemma. Let xn = 0 for n < m. Then x = (xn)n∈Z ∈ Y and

xn −An−1xn−1 =

{
xm if n = m,

0 if n 6= m

for n ∈ Z. Therefore, xn = Gn,mxm for n ∈ Z and in particular

xm = Gm,mxm = Pmxm.

Hence Qmxm = 0. �

Now we use Lemma 3 to show that each map Pm is a projection. Take
x ∈ X and let xn = Gn,mx. Then xn+1 = Anxn for n ≥ m and the sequence
(xn)n∈Z is bounded. It follows from Lemma 3 that Qmxm = 0. Therefore,

0 = QmGm,mx = (Id− Pm)Pmx.

Hence, Pmx = P 2
mx for x ∈ X, which shows that Pm is a projection. We

also note that if Qmx = 0, then xm = x. Since Pm+1xm+1 = xm+1, we have

Qm+1Amx = AmQmx when Qmx = 0. (15)

Lemma 4. If (xn)n≤m is a bounded sequence such that xn+1 = Anxn for
n < m, then Amxm ∈ kerPm+1.

Proof of the lemma. Let xn = 0 for n > m. Then x = (xn)n∈Z ∈ Y and
xn = −Gn,m+1Amxm for n ∈ Z. In particular,

0 = xm+1 = −Pm+1Amxm

and the lemma follows. �
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Take x ∈ kerPm and let yn = Gn,mx. Then the sequence (yn)n∈Z is
bounded and yn+1 = Anyn for n < m − 1. It follows from Lemma 4 that
Am−2ym−2 = ym−1 ∈ kerPm−1. Since ym = Pmx = 0 we have

0 = Gm,mx = (Am−1Gm−1,m + Id)x.

This implies that

−x = Am−1Gm−1,mx = Am−1ym−1 ∈ Am−1 kerPm−1.

Hence, kerPm ⊂ Am−1 kerPm−1. Now let ȳn = yn for n < m and ȳn =
An−1ȳn−1 for n ≥ m. Then

ȳm = Am−1ym−1 = −x

and the sequence (ȳn)n≤m is bounded. Again, it follows from Lemma 4 that
Amx ∈ kerPm+1. Hence, Am kerPm ⊂ kerPm+1. We conclude that

Am kerPm = kerPm+1 for m ∈ Z.

Finally, we show that the map

Am| kerPm : kerPm → kerPm+1 (16)

is an isomorphism. It is sufficient to prove that it is injective. Assume that
Amx = 0 for x ∈ kerPm. Then ȳn = 0 for n > m. It follows from Lemma 3
that Qmȳm = 0 and thus x = Qmx = 0.

In particular, if x ∈ kerPm = ImQm, then Amx ∈ kerPm+1 = ImQm+1

and thus Qm+1Amx = AmQmx. Since the equality also holds when Qmx = 0
(see (15)), we conclude that

Qm+1Am = AmQm for m ∈ Z.

Step 3. Norm bounds. In order to show that the sequence (Am)m∈Z admits
an exponential dichotomy, it remains to prove that (3) and (4) hold for
some constants D,λ > 0. Take x ∈ X and n ≥ m. We assume that
A(n,m)Pmx 6= 0. Then

φ−1
k := ‖A(k,m)Pmx‖k > 0 for m ≤ k ≤ n.

We have
n∑

k=m

A(n, k)PkA(k,m)Pmxφk = A(n,m)Pmx
n∑

k=m

φk,

which can be rewritten in the form
n∑

k=m

Gn,kA(k,m)Pmxφk = A(n,m)Pmx

n∑
k=m

φk.

Now let

yk = φkA(k,m)Pmx for m ≤ k ≤ n
and yk = 0 otherwise. Then y = (yk)k∈Z ∈ Y and ‖y‖∞ = 1. It follows
from Lemma 2 that

(Gy)n =

n∑
k=m

Gn,kA(k,m)Pmxφk
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and hence,

φ−1
n

n∑
k=m

φk =

∥∥∥∥A(n,m)Pmx
n∑

k=m

φk

∥∥∥∥
n

= ‖(Gy)n‖n ≤ ‖Gy‖∞ ≤ ‖G‖.

In particular,

‖G‖ ≥ φ−1
n

n∑
k=m

φk ≥ φ−1
n φn = 1

and in fact we conclude that ‖G‖ > 1 taking m < n. From now we assume
that m < n. Let ψn =

∑n
k=m φk. Then ψn−1 ≤ (1− ‖G‖−1)ψn and

φn ≥ ‖G‖−1(1− ‖G‖−1)m−nφm.

Therefore,

‖A(n,m)Pmx‖n ≤ ‖G‖(1− ‖G‖−1)n−m‖Pmx‖m
= ‖G‖(1− ‖G‖−1)n−m‖Gm,mx‖m
≤ ‖G‖2(1− ‖G‖−1)n−m‖x‖m,

(17)

provided that A(n,m)Pm 6= 0 and m < n. Moreover, the inequality holds
trivially when A(n,m)Pmx = 0 or m = n.

Now take x ∈ X and n < m such that A(n,m)Qmx 6= 0. Then,

ρ−1
k := ‖A(k,m)Qmx‖k > 0 for n < k ≤ m.

We have
m∑

k=n+1

A(n, k)QkA(k,m)Qmxρk = A(n,m)Qmx
m∑

k=n+1

ρk

which can be rewritten in the form

−
m∑

k=n+1

Gn,kA(k,m)Qmxρk = A(n,m)Qmx
m∑

k=n+1

ρk.

Proceeding in a similar manner to that for the sequence φm we obtain

ρ−1
n

m∑
k=n+1

ρk ≤ ‖G‖.

Let σn =
∑m

k=n+1 ρk. Then (1 + ‖G‖−1)σn ≤ σn−1 and

‖G‖−1(1 + ‖G‖−1)m−n−1ρm ≤ ρn.

Therefore, by (17), we obtain

‖A(n,m)Qmx‖n ≤ ‖G‖(1 + ‖G‖−1)n−m+1‖Qmx‖m
≤ ‖G‖(1 + ‖G‖−1)n−m+1(1 + ‖G‖)‖x‖m
≤ (1 + ‖G‖)2(‖G‖/1 + ‖G‖)m−n‖x‖m.

This completes the proof of the theorem. �
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3. Characterization of dichotomies via lp-admissibility

In this section we obtain corresponding results to those in Section 2 for
lp spaces obtained from a sequence of norms, for p < +∞. Namely, we give
a complete characterization of the notion of an exponential dichotomy with
respect to a sequence of norms in terms of the admissibility in the space lp.

Take 1 ≤ p < +∞. Let Y be the set of all sequences x = (xm)m∈Z,
xm ∈ X such that

‖x‖p :=

( ∞∑
m=−∞

‖xm‖pm

)1/p

< +∞.

It is easy to verify that Y = (Y, ‖·‖p) is a Banach space. We recall that if
a = (an)n∈Z and b = (bn)n∈Z are two sequences of real numbers, then their
convolution is the sequence a ? b defined by

(a ? b)n =

∞∑
m=−∞

ambn−m, n ∈ Z

and it satisfies Young’s inequality: if a ∈ lp, b ∈ lq and

1

p
+

1

q
=

1

r
+ 1

with 1 ≤ p, q, r ≤ +∞, then a ? b ∈ lr and

‖a ? b‖r ≤ ‖a‖p · ‖b‖q. (18)

The following is a version of Theorem 2 for lp spaces with p < +∞.

Theorem 4. If the sequence (Am)m∈Z admits an exponential dichotomy
with respect to the sequence of norms ‖·‖m, then for every y ∈ Y there
exists a unique x ∈ Y such that (5) holds for n ∈ Z.

Proof. Take a sequence y = (yn)n∈Z ∈ Y . For each n ∈ Z, let x1
n and x2

n be
as in (6) and (7).

Lemma 5. The sequences x1 = (x1
n)n∈Z and x2 = (x2

n)n∈Z belong to Y .

Proof of the lemma. We have

‖x1
n‖n ≤

∑
m≥0

De−λm‖yn−m‖n−m

for n ∈ Z. Let

an =

{
e−λn if n ≥ 0,

0 if n < 0
and bn = ‖yn‖n

for n ∈ Z. Clearly, a = (an)n∈Z ∈ l∞ and b = (bn)n∈Z ∈ lp. It follows
from (18) that a ? b ∈ lp and hence (‖x1

n‖n)n∈Z ∈ lp. Therefore, x1 ∈ Y .
One can show in a similar manner that x2 ∈ Y . �

It follows from Lemma 5 that x = x1 + x2 ∈ Y . The remainder of the
proof is identical to that of Theorem 2, simply replacing ‖x‖∞ by ‖x‖p in (8)
and (9). �
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Now we establish the converse of Theorem 4. We emphasize that a large
part of the argument substantially differs from that in the proof of Theo-
rem 3, reason for which we separated the two results.

Theorem 5. Assume that for each y ∈ Y there exists a unique x ∈ Y such
that (5) holds for n ∈ Z. Then the sequence (Am)m∈Z admits an exponential
dichotomy with respect to the sequence of norms ‖·‖m.

Proof. The first part of the proof has many similarities to Steps 1 and 2 in
the proof of Theorem 3 and so we only sketch the argument.

Let T be the closed linear operator defined by (10) in the domain D(T )
formed by all x ∈ Y such that Tx ∈ Y . As in the proof of Theorem 3, we
also consider its inverse G : Y → Y , which is bounded, and the operators
Gn,k : X → X for n, k ∈ Z. We note that

∞∑
n=−∞

‖Gn,ky‖pn =

∞∑
n=−∞

‖xn‖pn = ‖x‖pp = ‖Gy‖pp

≤ ‖G‖p · ‖y‖pp = ‖G‖p · ‖y‖pk
for y ∈ X. Moreover, the identities in (11) and (12) hold in the present
context and their proofs are identical.

Now we consider the maps Pm = Gm,m. Repeating the proof of Lemma 3
yields the following result.

Lemma 6. If the sequence defined by xn+1 = Anxn, for n ≥ m, satisfies∑∞
n=m‖xn‖

p
n < +∞, then Qmxm = 0.

Now we show that each map Pm is a projection. Take x ∈ X and let
xn = Gn,mx. Then xn+1 = Anxn for n ≥ m and

∞∑
n=m

‖xn‖pn ≤
∞∑

n=−∞
‖xn‖pn < +∞.

It follows from Lemma 6 that Qmxm = 0. This implies that

0 = QmGm,mx = (Id− Pm)Pmx.

Hence, Pmx = P 2
mx for x ∈ X, which shows that Pm is a projection. We

also note that if Qmx = 0, then xm = x. Since Pm+1xm+1 = xm+1 we have

Qm+1Amx = AmQmx when Qmx = 0. (19)

Similarly, repeating the proof of Lemma 4 yields the following result.

Lemma 7. If (xn)n≤m is a sequence such that
∑m

n=−∞‖xn‖
p
n < +∞ and

xn+1 = Anxn for n < m, then Amxm ∈ kerPm+1.

Take x ∈ kerPm and let yn = Gn,mx. Then
∑∞

n=−∞‖yn‖
p
n < +∞ and

yn+1 = Anyn for n < m − 1. It follows from Lemma 7 that Am−2ym−2 =
ym−1 ∈ kerPm−1. Since ym = Pmx = 0 we have

0 = Gm,mx = (Am−1Gm−1,m + Id)x.

This implies that

−x = Am−1Gm−1,mx = Am−1ym−1 ∈ Am−1 kerPm−1.
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Hence, kerPm ⊂ Am−1 kerPm−1. Now let ȳn = yn for n < m and ȳn =
An−1ȳn−1 for n ≥ m. Then

ȳm = Am−1ym−1 = −x

and
∑m

n=−∞‖ȳn‖
p
n < +∞. It follows from Lemma 7 that Amx ∈ kerPm+1.

Hence, Am kerPm ⊂ kerPm+1. We conclude that

Am kerPm = kerPm+1 for m ∈ Z.

Together with (19) this implies that

Pm+1Am = AmPm for m ∈ Z.

One can now proceed as in the proof of Theorem 3 to show that the map
Am| kerPm in (16) is an isomorphism, with the role of Lemma 3 now played
by Lemma 6.

It remains to show that (3) and (4) hold for some constants D,λ > 0.
This is the part of the proof that substantially differs from that of Theorem 3
(see Step 3).

We start with an estimate along vectors in ImPl.

Lemma 8. There exist constants D,λ > 0 such that

‖A(k, l)Plx‖k ≤ De−λ(k−l)‖x‖l (20)

for x ∈ X and k ≥ l.

Proof of the lemma. Take n,m ∈ Z with n ≥ m and x ∈ ImPm. We define

xk =

{
A(k,m)x if k ≥ m,

0 otherwise
and yk =

{
x if k = m,

0 otherwise.

Clearly, y = (yk)k∈Z ∈ Y . Moreover, by (13), we have

xk = A(k,m)x = A(k,m)Pmx = Gk,mx

for k ≥ m. It follows from the definition of Gk,m that (Gk,mx)k∈Z belongs
to Y and so does x = (xk)k∈Z. Moreover, Tx = y. Hence, one can write

‖G‖ · ‖x‖m = ‖G‖ · ‖y‖p ≥ ‖x‖p
≥ ‖xn‖n = ‖A(n,m)x‖n.

(21)

Now take n ∈ N such that

n+ 1 ≥
(
e‖G‖4

)p/(p−1)
(22)

and m ∈ Z. Let φk = ‖A(k,m)Pmx‖−1
k for m ≤ k ≤ m + n. Moreover, we

consider the sequence y = (yk)k∈Z defined by

yk =

{
A(k,m)Pmxφk if m ≤ k ≤ m+ n,

0 otherwise.
(23)



12 LUIS BARREIRA, DAVOR DRAGIČEVIĆ, AND CLAUDIA VALLS

By (21) we obtain

φ−1
n+m

n+m∑
k=m

φk = φ−1
n+m

n+m∑
k=m

1

‖A(k,m)Pmx‖k

≥ φ−1
n+m

n+m∑
k=m

1

‖G‖ · ‖Pmx‖m

≥
φ−1
n+m

‖G‖2‖x‖m
(n+ 1).

Hence,

‖A(m+ 2n,m)Pmx‖m+2n = ‖A(m+ 2n, n+m)A(n+m,m)Pmx‖m+2n

≤ ‖G‖ · ‖A(n+m,m)Pmx‖n+m

= ‖G‖φ−1
n+m

≤ ‖G‖
3‖x‖m

n+ 1
φ−1
n+m

n+m∑
k=m

φk.

(24)

On the other hand,

n+m∑
k=m

A(n+m, k)PkA(k,m)Pmxφk = A(n+m,m)Pmx

n+m∑
k=m

φk,

which can be rewritten in the form

n+m∑
k=m

Gn+m,kA(k,m)Pmxφk = A(n+m,m)Pmx

n+m∑
k=m

φk. (25)

For the sequence y defined by (23), it follows from (12) that

(Gy)n+m =
n+m∑
k=m

Gn+m,kA(k,m)Pmxφk.

Hence, by (25),

φ−1
n+m

n+m∑
k=m

φk = ‖(Gy)n+m‖n+m ≤ ‖Gy‖p

≤ ‖G‖ · ‖y‖p = ‖G‖(n+ 1)1/p

and it follows from (24) that

‖A(m+ 2n,m)Pmx‖m+2n ≤ ‖G‖4‖x‖m(n+ 1)1/p−1.

By (22) we obtain

‖A(m+ 2n,m)Pmx‖m+2n ≤
1

e
‖x‖m. (26)
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Now take k ≥ l and write k− l in the form k− l = t · 2n+ r, with t ∈ N and
0 ≤ r < 2n. It follows from (21) and (26) that

‖A(k, l)Plx‖k = ‖A(l + 2nt+ r, l)Plx‖l+2nt+r

≤ 1

et
‖A(l + r, l)Plx‖l+r

≤ ‖G‖
et
‖Plx‖l

≤ 2‖G‖2e−(k−l)/(2n)‖x‖l.

We conclude that (20) holds taking D = 2‖G‖2 and λ = 1/(2n). �

Now we obtain a corresponding estimate along vectors in ImQl.

Lemma 9. There exist constants D,λ > 0 such that

‖A(k, l)Qlx‖k ≤ De−λ(l−k)‖x‖l (27)

for x ∈ X and k ≤ l.

Proof of the lemma. Take n,m ∈ Z with n ≤ m and x ∈ ImQm. We define

xk =

{
A(k,m)x if k < m,

0 otherwise
and yk =

{
−x if k = m,

0 otherwise.

Clearly, y = (yk)k∈Z ∈ Y . Moreover, by (14), we have

xk = A(k,m)x = A(k,m)Qmx = −Gk,mx

for k < m. It follows from the definition of Gk,m that (Gk,mx)k∈Z belongs
to Y and so does x = (xk)k∈Z. Moreover, Tx = y. Hence,

‖G‖ · ‖x‖m = ‖G‖ · ‖y‖p ≥ ‖x‖p
≥ ‖xn‖n = ‖A(n,m)x‖n.

(28)

Now take n ∈ N such that

n ≥
(
e‖G‖4

)p/(p−1)
(29)

and m ∈ Z. Let φk = ‖A(k,m)Qmx‖−1
k for m− n+ 1 ≤ k ≤ m. Moreover,

we consider the sequence y = (yk)k∈Z defined by

yk =

{
A(k,m)Qmxφk if m− n+ 1 ≤ k ≤ m,

0 otherwise.
(30)

By (28) we obtain

φ−1
m−n

m∑
k=m−n+1

φk = φ−1
m−n

m∑
k=m−n+1

1

‖A(k,m)Qmx‖k

≥ φ−1
m−n

m∑
k=m−n+1

1

‖G‖ · ‖Qmx‖m

≥
φ−1
m−n

‖G‖2‖x‖m
n.



14 LUIS BARREIRA, DAVOR DRAGIČEVIĆ, AND CLAUDIA VALLS

Hence,

‖A(m− 2n,m)Qmx‖m−2n = ‖A(m− 2n,m− n)A(m− n,m)Qmx‖m−2n

≤ ‖G‖ · ‖A(m− n,m)Qmx‖m−n
= ‖G‖φ−1

m−n

≤ ‖G‖
3‖x‖m
n

φ−1
m−n

m∑
k=m−n+1

φk.

(31)

On the other hand,

m∑
k=m−n+1

A(m− n, k)QkA(k,m)Qmxφk = A(m− n,m)Qmx
m∑

k=m−n+1

φk,

which can be rewritten in the form

−
m∑

k=m−n+1

Gm−n,kA(k,m)Qmxφk = A(m− n,m)Qmx

m∑
k=m−n+1

φk. (32)

For the sequence y in (30), it follows from (12) that

(Gy)m−n =
m∑

k=m−n+1

Gm−n,kA(k,m)Qmxφk.

Hence, by (32),

φ−1
m−n

m∑
k=m−n+1

φk = ‖(Gy)m−n‖m−n ≤ ‖Gy‖p

≤ ‖G‖ · ‖y‖p = ‖G‖n1/p

and it follows from (31) that

‖A(m− 2n,m)Pmx‖m−2n ≤ ‖G‖4‖x‖mn1/p−1.

By (29) we obtain

‖A(m− 2n,m)Qmx‖m−2n ≤
1

e
‖x‖m. (33)

Now take k ≤ l and write l− k in the form l− k = t · 2n+ r, with t ∈ N and
0 ≤ r < 2n. It follows from (28) and (33) that

‖A(k, l)Qlx‖k = ‖A(l − 2nt− r, l)Qlx‖l−2nt−r

≤ 1

et
‖A(l − r, l)Qlx‖l−r

≤ ‖G‖
et
‖Qlx‖l

≤ 2‖G‖(1 + ‖G‖)e−(l−k)/(2n)‖x‖l.

We conclude that (27) holds taking D = 2‖G‖(1+‖G‖) and λ = 1/(2n). �

This completes the proof of the theorem. �
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4. Robustness of exponential dichotomies

In this section we show how the results of the former sections can be used
to establish the persistence of the notion of an exponential dichotomy under
sufficiently small linear perturbations. We shall use the characterization of
exponential dichotomies via lp-admissibility, although the same result can
also be established using the characterization of exponential dichotomies via
l∞-admissibility.

Theorem 6. Let (Am)m∈Z and (Bm)m∈Z be sequences of bounded linear
operators on X such that:

1. (Am)m∈Z admits an exponential dichotomy with respect to a sequence
of norms ‖·‖m;

2. there exists c > 0 such that

‖(An−1 −Bn−1)x‖n ≤ c‖x‖n−1 for n ∈ Z and x ∈ X. (34)

If c is sufficiently small, then the sequence (Bm)m∈Z admits an exponential
dichotomy with respect to the same sequence of norms.

Proof. Let Y be the Banach space introduced in Section 3 for 1 ≤ p < +∞
and let T be the linear operator defined by (10) in the domain D(T ) formed
by all x ∈ Y such that Tx ∈ Y . For x ∈ D(T ) we consider the graph norm

‖x‖′p = ‖x‖p + ‖Tx‖p.
Clearly, the operator

T : (D(T ), ‖·‖′p)→ (Y, ‖·‖p)
is bounded and for simplicity we denote it simply by T . Moreover, since
T is closed, (D(T ), ‖·‖′p) is a Banach space.

Now we define a linear operator L : D(T )→ Y by

(Lx)n = xn −Bn−1xn−1, x = (xn)n∈Z.

By (34) we have

‖(T − L)x‖p =

( ∞∑
n=−∞

‖(An−1 −Bn−1)xn−1‖pn

)1/p

≤

( ∞∑
n=−∞

cp‖xn−1‖pn−1

)1/p

= c‖x‖p ≤ c‖x‖′p

(35)

for x = (xm)m∈Z ∈ Y . By Theorem 4, the operator T is invertible. Hence, it
follows from (35) that if c is sufficiently small, then L is also invertible. By
Theorem 5, we conclude that the sequence (Bm)m∈Z admits an exponential
dichotomy with respect to the sequence of norms ‖·‖m. �

5. Nonuniform exponential dichotomies

In this section we consider the notion of a nonuniform exponential di-
chotomy and we establish its connection with the notion of an exponential
dichotomy with respect to a sequence of norms.
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Let X = (X, ‖·‖) be a Banach space. We say that a sequence (Am)m∈Z
in B(X) admits a nonuniform exponential dichotomy if:

1. there exist projections Pm : X → X for each m ∈ Z satisfying

AmPm = Pm+1Am for m ∈ Z

such that each map Am| kerPm : kerPm → kerPm+1 is invertible;
2. there exist constants λ,D > 0 and ε ≥ 0 such that for each n,m ∈ Z

we have

‖A(n,m)Pm‖ ≤ De−λ(n−m)+ε|m| for n ≥ m

and

‖A(n,m)Qm‖ ≤ De−λ(m−n)+ε|m| for n ≤ m,

where Qm = Id− Pm and

A(n,m) = (A(m,n)| kerPn)−1 : kerPm → kerPn

for n < m.

The following result shows that the notion of a nonuniform exponential
dichotomy can be characterized in terms of the notion of an exponential
dichotomy with respect to a sequence of norms.

Proposition 7. The following properties are equivalent:

1. (Am)m∈Z admits a nonuniform exponential dichotomy;
2. (Am)m∈Z admits an exponential dichotomy with respect to a sequence

of norms ‖·‖m satisfying

‖x‖ ≤ ‖x‖n ≤ Ceε|n|‖x‖, n ∈ Z, x ∈ X (36)

for some constants C > 0 and ε ≥ 0.

Proof. Assume first that the sequence (Am)m∈Z admits a nonuniform expo-
nential dichotomy. For x ∈ X and n ∈ Z, let

‖x‖n = sup
m≥n

(
‖A(m,n)Pnx‖eλ(m−n)

)
+ sup
m≤n

(
‖A(m,n)Qnx‖eλ(n−m)

)
.

It is easy to show that (36) holds. Moreover,

‖A(m,n)Pnx‖m = sup
k≥m

(
‖A(k,m)A(m,n)Pnx‖eλ(k−m)

)
= e−λ(m−n) sup

k≥m

(
‖A(k, n)Pnx‖eλ(k−n)

)
≤ e−λ(m−n)‖x‖n

for m ≥ n and

‖A(m,n)Qnx‖m ≤ e−λ(n−m)‖x‖n
for m ≤ n. This shows that (Am)m admits an exponential dichotomy with
respect to the sequence of norms ‖·‖m.

Conversely, assume that the sequence (Am)m admits an exponential di-
chotomy with respect to a sequence of norms ‖·‖m satisfying (36) for some
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constants C > 0 and ε ≥ 0. Then

‖A(m,n)Pnx‖ ≤ ‖A(m,n)Pnx‖m
≤ De−λ(m−n)‖x‖n
≤ CDe−λ(m−n)+ε|n|‖x‖

for x ∈ X and m ≥ n. Similarly,

‖A(m,n)Qnx‖ ≤ CDe−λ(n−m)+ε|n|‖x‖

for x ∈ X and m ≤ n. Therefore, (Am)m∈Z admits a nonuniform exponential
dichotomy. �

The persistence of the notion of a nonuniform exponential dichotomy
under sufficiently small linear perturbations now follows directly from The-
orem 6 and Proposition 7.
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