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ABSTRACT The influence of welding residual stresses in stiffened panels on effective stress intensity
factor (SIF) values and fatigue crack growth rate is studied in this paper. Interpretation of
relevant effects on different length scales such as dislocation appearance and microstruc-
tural crack nucleation and propagation is taken into account using molecular dynamics
simulations as well as a Tanaka–Mura approach for the analysis of the problem. Mode
I SIFs, KI, were calculated by the finite element method using shell elements and the
crack tip displacement extrapolation technique. The total SIF value, Ktot, is derived by
a part due to the applied load, Kappl, and by a part due to welding residual stresses, Kres.
Fatigue crack propagation simulations based on power law models showed that high
tensile residual stresses in the vicinity of a stiffener significantly increase the crack growth
rate, which is in good agreement with experimental results.

Keywords dislocation; fatigue crack growth rate; microstructurally small cracks; residual stress.

NOMENCLATURE a = half crack length
a0 = initial crack length
afin = final crack length
C = material constant of the Paris equation

CRSS = critical resolved shear stress
d = slip band length

da/dN = crack growth rate
E = Young’s modulus

F →r ; tð Þ = interatomic force
Fmax = maximum applied force
Fmin = minimum applied force
G = shear modulus
K = stress intensity factor (SIF)

Kappl = stress intensity factor due to the applied load
Kres = stress intensity factor due to weld residual stresses
Kth = stress intensity factor threshold
Ktot = total stress intensity factor
m = atomic mass
m = material constant of the Paris equation
N = number of stress cycles for the fatigue crack propagation
Nf = number of stress cycles for fatigue failure
Ng = number of stress cycles required for crack nucleation in a single grain
Nini = number of stress cycles needed for the initiation of a small crack
R = stress ratio

Reff = effective stress intensity factor ratio
U →r ; tð Þ = interatomic embedded atom method pair potential

Wc = specific fracture energy per unit area
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ΔF = applied force range
ΔK = stress intensity factor range

ΔKeff = effective stress intensity factor range
Δσ = average applied stress range
Δτ = average shear stress range on the slip band
σ0 = yield stress

I NTRODUCT ION

Structural health monitoring and damage detection in
aircraft, ship, and offshore and other structures are highly
important for their fitness for service assessment. Under
cyclic loading, fatigue cracks may initiate at sites of stress
concentration and further propagate, which can eventu-
ally result in unstable fracture and structural failure. In
aircraft, ships and other thin-walled structures stiffened
panels are widely used owing to their light weight and
high strength and stiffness. Welded stiffened panels are
mostly implemented in the deck and side structure of a
ship. The crack growth rate in welded stiffened panels
can be significantly affected by the residual stresses that
are introduced by the welding process. The high heat
input from the welding process causes tensile residual
stresses in the vicinity of a stiffener. These tensile stresses
are equilibrated by compressive stresses in the region
between the stiffeners. Residual stresses should be taken
into account for a proper fatigue life assessment of
welded stiffened panels under cyclic tension loading.

From a physics point of view, the fatigue phenomenon
involves multiple length scales due to the presence of
microcracks or inclusions that are small compared with
the large size of structural components. Therefore, it is
necessary to consider the fatigue process at all scales. A
scale-dependent physics-based model is required for
accurate simulation and understanding of material behav-
iour in various operational environments to assess fatigue
life of a structure.1–5

The process of fatigue failure of mechanical compo-
nents may be divided into the following stages: (1) crack
nucleation, (2) small crack growth, (3) long crack growth
and (4) occurrence of final failure. In engineering applica-
tions, the first two stages are usually termed as the ‘crack
initiation or small crack formation period’ while long
crack growth is termed as the ‘crack propagation period’.

In pure metals and some alloys without pores or inclu-
sions, irreversible dislocations glide under cyclic loading.
This leads to the development of persistent slip bands,
extrusions and intrusions in surface grains that are opti-
mally oriented for slip. Dislocation development can be
simulated by using the molecular dynamics (MD) simula-
tion code IMD.6 To analyse dislocation development,
atomistic scale simulation methods are implemented.7–10

With continued strain cycling, a fatigue crack can be

nucleated at an extrusion or intrusion within a persistent
slip band.11–18 Non-metallic inclusions, which are present
in commercial materials as a result of the production
process, can also act as potential sites for fatigue crack
nucleation. In the high-cycle regime, fatigue cracks
initiate from inclusions and defects on the surface of a
specimen or component. For very high-cycle fatigue,
fatigue cracks initiate from defects located under the
surface of the specimen.19,20 Microcrack nucleation can
be analysed by using the Tanaka–Mura model or some
of its modifications.11,21–24

Fatigue crack growth prediction models based on
fracture mechanics have been developed to support the
damage tolerance concepts in metallic structures.25 A
well-known method for predicting fatigue crack propaga-
tion under constant stress range is the power law
described by Paris and Erdogan.26 Dexter et al.27 and
Mahmoud and Dexter28 analysed the growth of long
fatigue cracks in stiffened panels and simulated the crack
propagation in box girders with welded stiffeners. They
conducted cyclic tension fatigue tests on approximately
half-scale welded stiffened panels to study propagation
of large cracks as they interact with the stiffeners. Mea-
sured welding residual stresses were introduced in the
finite element (FE) model, and crack propagation life
was simulated. Sumi et al.29 studied the fatigue growth
of long cracks in stiffened panels of a ship deck structure
under cyclic tension loading. For that purpose, fatigue
tests were carried out on welded stiffened panel speci-
mens damaged with a single crack or an array of collinear
cracks.

In order to analyse the total fatigue life of a structural
component or a test specimen, from crack initiation
through cyclic slip mechanism up to long crack propaga-
tion and final failure, a multiscale approach is needed.
Figure 1 shows a schematic description of bridging
between the three considered scales: nanoscale, microscale
and macroscale. The relevant material’s property param-
eter from atomistic scale needed for the micromechanics
modelling is the critical resolved shear stress (CRSS).
The CRSS is inferred from MD simulation, and it is
the input parameter for a modified Tanaka–Mura model.
The modified Tanaka–Mura micromechanics model
provides information on the number of loading cycles
to initiate a small crack and its size. This information is
further an input for the macroscale fatigue crack growth
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model based on power law equations, by means of which
then a total fatigue life up to fracture as a final event can
be assessed. Based on the presented procedure, the
fatigue behaviour of a material can be simulated, and
new materials can be modelled and analysed. In this
way, Wöhler curves can be obtained for new materials
without experiments.

This paper presents a study of the influence of
welding residual stresses in stiffened panels on effective
stress intensity factor (SIF) values and fatigue crack
growth rate. A total SIF value, Ktot, was obtained by a
linear superposition of the SIF values due to the applied
load, Kappl, and due to weld residual stresses, Kres.
The effective SIF value, Keff, was considered as a crack
growth driving force in a power law model.30,31 Mode I
SIF values, KI, were calculated by the FE software
package ANSYS using shell elements and the crack
tip displacement extrapolation method in an automatic
post-processing procedure.32 Simulated fatigue crack
propagation life was compared with the experimental
results as obtained by Sumi et al.29 The MD simulation
was implemented to analyse dislocation development in
an iron cuboid model with a triangular notch tip. Numer-
ical simulations of the fatigue crack initiation and growth
for martensitic steel, based on modified Tanaka–Mura
model, were carried out.

MOLECULAR DYNAMICS S IMULAT ION OF
D ISLOCAT ION DEVELOPMENT IN IRON

Methods and model

Taking a close look on dislocation development leads to
the necessity of atomistic scale simulation methods.
Therefore, we used for the present work the MD simula-
tion code IMD.6 It was developed at the Institute of
Theoretical and Applied Physics belonging to the
University of Stuttgart. In MD, the atoms are seen as
mass m points at the position →r for which the elementary
Newton’s equations of motion

F →r ; tð Þ ¼ m � ∂² →r
∂²t

(1)

are solved in every time step. The force F →r ; tð Þ is given by
the derivative of the interatomic embedded atom
method7 pair potential U →r ; tð Þ (2):

F →r ; tð Þ ¼ �∇U →r ; tð Þ: (2)

The systemwe investigated contains about half a million
iron atoms (Fig. 2). They form a cuboid of the size
286 × 143×143Å3 where a notch (dimension 15×90Å2)
with a triangular notch tip was inserted along the (110) plane.

Fig. 1 A schematic description of bridging between the three considered scales.
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Cyclic deformation of the simulation box was applied
in the [001]-direction. Therefore, the z-component of
the simulation cell was elongated with a constant rate of
5 × 10�7 at each time step. The value 5 × 10�7 represents
a factor by which z-components of the system are multi-
plied at each time step; therefore, it is without units. The
strain rate could be calculated as 2.5 × 108 s�1. Such high
strain rates are typical for MD simulations but very high
for experimentalists. After reaching a strain of 7%, we
applied pressure at the same rate until we reach 7% of
strain in compression. Seven percent tends to be at the
upper end of the elastic elongation regime. In order to
reduce computation time and still observe changes in

the structure already in the very first cycles, one has to
apply these high values of maximum strain. Still, this
value should be realistic. For that reason, the authors
used an input strain value of 7%. There have been other
simulations with lower maximum strain, where the for-
mation of dislocations occurs after a higher number of
cycles. The loading and unloading was repeated continu-
ously. The temperature was chosen to be room tempera-
ture (300K). The time step was fixed to 2 fs. Periodic
boundary conditions were used in every direction.

Results and discussion

During the continuous cyclic change from elongation to
compression, different stages of the systemappeared (Fig. 3).

• Stage I: Configuration under no pressure.
• Stage II: Initiation of reversible local restructuring

under tensile loading.
• Stage III: Formation of one continuous plane with face

centred cubic (fcc) structure.
• Stage IV: Compression leads to a resolution of the

deformation introduced in the previous steps into the
structure and to bending of the middle of the notch
surfaces towards each other up to a minimum distance
of 6.8 Å.

• Stage V: During the fourth loading cycle, dislocations
are initiated. The dislocation extraction algorithm9 de-
tects ‘defect surfaces’. ‘The defect surface consists of

Fig. 2 Body centred crystal iron cuboid 286 × 143 × 143Å3 with a
15 × 90Å2 notch on a (110) plane. The 486 000 atoms are colour
coded via von Mises stress (red indicates high stress and blue low
stress). Image by MegaMol™.8 Full periodic boundary conditions
are applied. The loading direction is marked by the arrows.

Fig. 3 Stress (MPa) in z-direction in terms of the time (ns) during cyclic loading of a nanostructure of a notched iron cuboid. System config-
urations at different times are depicted: blue are according to dislocation extraction algorithm9 ‘defect surfaces’, and red represents disloca-
tions. The view is from lower left.
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those parts of the interface mesh, which have not been
swept by elastic Burgers circuits.’10

• Stage VI: Dislocations still remain in the structure
even though no pressure remains in the system.

The MD simulations presented here illustrate the
development of the system from reversible plastic defor-
mation to irreversible plastic deformation including dis-
location nucleation, propagation, backpropagation and
multiplication. The quite high stress level of the system
in the regime of 5.5GPa during dislocation nucleation
is attributed to the fact that the underlying model is
assumed to be an internally defect-free single crystal,
except for the external notch, and to a minor degree to
the high strain rate that is applied in this simulation.
Strain rate effects in MD simulations have been previ-
ously discussed in literature, for example,33 and will thus
not be taken into further account here. The stress to
propagate an artificially introduced dislocation in an
MD model is frequently obtained via pure shear simula-
tions in literature34 and at the IMWF as demonstrated,
for example, by Kohler et al.35 At 10 K Kumar et al.36

obtained a value of 81 MPa with the FeCFe potential
presented by Bonny et al.7 which is in close agreement
with about 84 MPa which we have found in our group
for 0 K.

In the presented simulations here, the intention was
to force dislocation nucleation and to study such natu-
rally formed dislocations as a realistic basis for disloca-
tion movement analyses rather than to use artificially
implanted dislocations in the model. In the first two
peaks, a reversible body centred crystal–fcc Bain transi-
tion from α-Fe to γ-Fe takes place (stage III, Fig. 3).
The oscillation of the stress–time curve (stage III,
Fig. 3) is explained by the formation of stacking faults
inside the transition fcc phase. In contrast to Farkas
et al.,37 where it was believed that the emission of
Shockley partial dislocations is relevant for the stacking
fault formation, no dislocations are observed in our
simulation at this early stage.

Dislocation nucleation takes place as the irreversible
deformation begins. The small spikes in the stress–time
curve are identified as single dislocation movement. The
height of the spike, which is related to the CRSS to move
a dislocation, is calculated to a value of 293MPa, taking
into account that this value is higher than the CRSS
because of the angle of the dislocations glide plane with
respect to the loading axis and the, thus, involved Schmid
factor that amounts to 0.40 in the present case: The CRSS
value obtained from the present simulation is calculated
according to Schmid’s law to be τ = 293MPa cos 26.5°
cos 63.5° = 117MPa, which is in very good agreement to
pure shear simulations mentioned earlier36 and to an even
better degree with an experimental value of 108MPa,

which has been previously used for microscale model-
ling of fatigue by Jezernik et al.24 for the present
material.

MICROSTRUCTURAL CRACK NUCLEAT ION AND
PROPAGAT ION

To solve problems of crack nucleation, the Tanaka–Mura
model11,21–24 is frequently used. In the two articles,21,22

Tanaka andMura proposed dislocationmodels for treating
fatigue crack nucleation at slip bands. Tanaka and Mura
envisioned that fatigue crack nucleation occurs by the
accumulation of dislocation dipoles in a single grain during
strain cycling. In the theory of fatigue crack nucleation in
slip bands, the forward and reverse plastic flows within slip
bands are caused by dislocations with different signs
moving on two closely located layers. It is assumed that
their movements are irreversible. Based on the Tanaka–
Mura model, the monotonic build-up of dislocation
dipoles is systematically derived from the theory of con-
tinuously distributed dislocations. The number of stress
cycles up to the nucleation of a crack about one grain diam-
eter in length is reached when the self-strain energy of the
accumulated dislocation dipoles reaches a critical value.
The number of stress cycles Ng required for crack nucle-
ation in a single grain can be determined as follows:

Ng ¼ 8GWc

π 1� νð Þd Δτ � 2CRSSð Þ2 : (3)

Equation (3) presumes that cracks form along slip
bands within grains, depending on slip band length d
and average shear stress range Δτ on the slip band. Slip
band length represents distance along the slip band
between grain boundaries in a single grain. Other material
constants (shear modulus G specific fracture energy per
unit area Wc, Poisson’s ratio ν and frictional stress of dis-
locations on the slip plane, i.e. CRSS) can be found in the
specialized literature23 or calculated by means of MD
(CRSS). According to Nakai,38 the initiation conditions
of small fatigue cracks still have not been clarified
enough, because no method for successive, direct and
quantitative observation of the process had been devised.
In the presented model, cracks nucleate sequentially but
on the segmental level. In each simulating iteration, just
one segment of a particular grain is broken. It means that
in one iteration, a segment belonging to one grain brakes,
while in the following iteration, a segment of some other
grain can break. In the presented case, the number of
segments in each individual grain is equal to four. The
total number of stress cycles Nini needed for the initiation
of a small crack is calculated by summing the cycles spent
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to nucleate all cracks, including those coalesced to form
the final small crack.

Jezernik et al.24 used the Tanaka–Mura model to
numerically simulate the small crack formation process.
Three improvements were added to this model: (a) mul-
tiple slip bands inside each crystal grain as potential sites
for crack nucleation, (b) crack coalescence between two
grains and (c) segmented crack generation inside one
grain. A numerical model was directed at simulating
fatigue properties of thermally cut steel. The authors
took into account accompanying residual stresses in
order to simulate the properties of the thermally cut edge
as faithfully as possible. As residual stresses are not taken
into account in the original Tanaka–Mura model
according to Eq. (3), in the present study, they are
imposed as additional external loading. The super-
positioning principle in linear elastic micromechanics
analysis has been applied by taking residual stresses as part
of the total load into account, which leads to the shear
stress distribution shown in Fig. 4. Therefore, the residual
stresses are implicitly evaluated in the Tanaka–Mura
equation through the average shear stress range on the
slip band Δτ.

Figure 4 shows the shear stress distribution and
nucleated cracks for a typical high-cycle fatigue regime
load level (450MPa). In the beginning, cracks tended to
occur scattered in the model and form in larger grains that
are favourably oriented and show higher shear stresses.
But after a while, existing single grain cracks started coa-
lescing, causing local stress concentrations and amplifying
the likelihood of new cracks forming near already coa-
lesced cracks. When calculating cycles required for crack
initiation, no cycles were attributed to crack coalescences
(it is simulated as being instantaneous). The total number
of cycles of crack initiation equals the sum of cycles
needed for each microcrack to nucleate.

When the crack depth is less than a critical value, the
crack growth behaviour has been found to be highly de-
pendent upon the microstructure.39–41 With increasing

length, the growing cracks leave the originally 45° oriented
slip planes and tend to propagate perpendicular to the
external stress axis. The change of the crack plane from
the active slip plane to a non-crystallographic plane per-
pendicular to the stress axis is called the transition from
stage I (crystallographic propagation) to stage II (non-
crystallographic propagation) or transition from crack
initiation to crack propagation. In stage II of fatigue-crack
propagation, only one crack usually propagates while most
of other cracks usually stop within stage I.15 Stage II of
fatigue-crack propagation is simulated by using the power
law crack propagation models based on the linear elastic
fracture mechanics (LEFM).

MODELL ING AND S IMULAT ION OF CRACK
PROPAGAT ION IN WELDED ST I F FENED PANELS

It is well known that the residual stress in a welded stiffened
panel is tensile along a welded stiffener and compressive in
between the stiffeners. Residual stresses may significantly
influence the SIF values and fatigue crack growth rate. A
total SIF value, Ktot, is contributed by the part due to the
applied load, Kappl, and by the part due to weld residual
stresses, Kres, as given by Eq. (4):

Ktot ¼ Kappl þ Kres: (4)

The so-called residual SIF, Kres, is required in the
prediction of fatigue crack growth rates. The considered
analysis method is based on the superposition rule of
LEFM. The finite element method (FEM) has been
widely employed for calculating SIFs. In the FE software
package ANSYS,32 the command INISTATE is used for
defining the initial stress conditions. For evaluating Kres,
it is important to input correct initial stress conditions
to numerical models in order to characterize residual
stresses.28,42

The effective SIF range ΔKeff was considered in crack
growth models in order to take crack closure effects on
fatigue crack growth rate into account. The Elber30 and
Donahue31 crack growth models are employed to simu-
late fatigue lifetime for welded stiffened panel specimens.
In the Donahue model, the effective SIF range values are
calculated on the basis of the applied load, without taking
welding residual stresses into account. The Elber model
takes into account both the applied load and the welding
residual stresses, and the effective SIF range values are
calculated on the basis of the effective SIF ratio Reff,
which depends on the Ktot,max and Ktot,min values. It is
important to determine the total SIF values Ktot accu-
rately, to model effects of residual stresses on crack
propagation rate.

+2.254e+03
+9.600e+02
+8.800e+02
+8.000e+02
+7.200e+02
+6.400e+02
+5.600e+02
+5.800e+02
+4.000e+02
+3.200e+02
+2.400e+02
+1.600e+02
+8.000e+01
+0.000e+00

S, Mises
(Avg: 75%)

Fig. 4 Microcrack nucleation and subsequent coalescence.24
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Specimen’s geometry and loading conditions

Fatigue tests with constant stress range and frequency
were carried out on a stiffened panel specimen with a
central crack.29 The specimen geometry is shown in
Fig. 5. The material properties and chemical composition
of the used mild steel for welding are given in Table 1.43

Table 2 shows the fatigue test conditions applied in
the experiment. The cross-sectional area of the intact
section and the average stress range away from the notch
are denoted as A0 and Δσ, respectively. The force range
and the stress ratio are denoted by ΔF =Fmax�Fmin and
R =Fmin/Fmax, respectively. The applied stress range was
Δσ = 80MPa. The initial notch length was 2a = 8mm,
and the loading frequency was 3Hz.

In the experiment, the crack lengths were measured by
using the so-called crack gauges. The crack gauges are
bonded to a specimen’s surface in front of a crack tip in
order to measure the length of a growing crack with re-
spect to applied number of loading cycles. Different from
usual strain gauges, the grid of crack gauges is cut along
with crack development, resulting in resistance change.

Modelling of welding residual stresses in a stiffened
panel by using finite element method

The residual stress distribution implemented in the
present simulations follows Faulkner’s model44 in which
the tensile regions around the stiffeners are modelled as
rectangular shapes with a base width proportional to the
plate thickness. For ship structures, the rectangular width
typically ranges from 3.5 to 4 times the plate thickness.
Dexter et al.27 performed fatigue tests on half-scale welded
stiffened panel specimens that model a part of a ship deck
structure. The authors measured welding residual stresses
in stiffened panel specimens and observed that the mea-
sured stresses vary mostly between a rectangular shape
and a triangular shape.27,28 Subsequent crack growth simu-
lations showed that the residual stress distribution can be
well described by a rectangular shape, where the maximum
tensile stress equals to the yield stress of the considered
material and compressive stresses between the stiffeners
provide the equilibrium of internal forces.28

In this study, the distribution of welding residual stresses
in the stiffened panel specimen is taken into account in a
similar manner as in the model developed by Mahmoud
and Dexter.28 Residual stress distribution depicted in Fig. 6
was utilized for the considered specimen. This model pre-
sents the tensile regions around the stiffeners as rectangular
shapes with a base width equal to 10mm and with a stress
level equal to yield strength σ0 = 235MPa. Estimated base
width is in good agreement with Dexter’s model,28 where
approximately one fourth of the span between the two
stiffeners is exposed to tension. Compared with Faulkner’s
model, the base width used in this study is slightly shorter.
The compressive residual stresses between the stiffeners
and on the stiffeners were applied in the model to satisfy
equilibrium.

To evaluate the SIF value contributed by the residual
stresses, Kres, it is important to input correct initial stress
conditions in the numerical model. Experimental mea-
surements27,28 showed that the profiles of welding residual
stresses are almost identical along the axis parallel to the
weld line. Correspondingly, in the FE model, elements
with the same horizontal coordinate should have the same
initial stress condition. For that purpose, a regular 1mm
size FE mesh was used, so that elements can be selectedFig. 5 Stiffened panel specimen.

Table 1 Material properties

Mechanical properties

E – Young’s modulus ν – Poisson’s coefficient σ0 – Yield strength
206 000MPa 0.3 235MPa

Chemical composition (%)
Cmax Simax Mnmin Pmax Smax
0.18 0.35 0.70 0.035 0.035
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in columns and associated with the corresponding initial
stress level as given in Fig. 6. Applying initial stresses for
the used eight-node shell elements is based on the element
integration point. These initial stresses are equilibrated in
the first analysis step. Because of the symmetry of speci-
men’s geometry and loading conditions, it was sufficient
to model only one quarter of the specimen. In ANSYS
software package, the command INISTATE was imple-
mented to define assumed initial stress conditions.32

Figure 7 shows the σy component of the welding residual
stresses in the stiffened panel specimen obtained for the
implemented stress distribution as given in Fig. 6 (the σy
stress component acts parallel to the loading axis).

Stress intensity factors and fatigue crack growth rate

For evaluating SIFs by FEM, the crack tip displacements
extrapolation method was implemented.32 The SIFs were
determined in a linear elastic FE analysis. In the FE
modelling, the crack tip region was meshed by singular
elements. The procedure for the calculation of SIFs is based
on the application of well-known ‘quarter-point’ elements
introduced by Barsoum45 and Henshell and Shaw.46

The near crack tip displacements and stresses of
LEFM are usually related to the three fundamental de-
formation modes of fracture where mode I is the opening
mode, mode II is the shearing mode and mode III is the
tearing mode.25,32 Opening displacement v in the vicinity
of the crack tip, as depicted in Fig. 8, is given by Eq. (5).

v ¼ KI

4G

ffiffiffiffiffiffi
r
2π

r
2κ þ 1ð Þ sin θ

2
� sin

3θ
2

� �

þKII

4G

ffiffiffiffiffiffi
r
2π

r
2κ � 3ð Þ cos θ

2
þ cos

3θ
2

� �
;

(5)

where KI and KII are the SIFs associated with modes I and
II, G is the shear modulus, υ is the Poisson’s ratio, v is the
displacement in loading direction, and r and Θ are local
polar coordinates. The conversion factor κ for plain
stress conditions is given by Eq. (6).

κ ¼ 3� νð Þ= 1þ νð Þ: (6)

In Eq. (5), the higher-order terms are neglected, and
the equation is therefore only valid in the vicinity of the
crack tip. It should be noted that stress distribution is
singular for r = 0. When Eq. (5) is applied to the half
crack configuration illustrated in Fig. 8, the displace-
ments v, across the faces of the crack are given by Eq. (7).

v ¼ KI

2G

ffiffiffiffiffiffi
r
2π

r
1þ κð Þ: (7)

Table 2 Fatigue test conditions

A0 (mm2) ΔF (N) Δσ (MPa) R

1200 96000 80 0.0204

Fig. 6 Welding residual stress distribution.

Fig. 7 Welding residual stresses in the stiffened panel specimen.

Fig. 8 Crack opening profile for a half crack model.
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In the next step, we describe how K is obtained by
using FE results and the theoretical equations given
earlier. Attention is restricted to calculating the KI factor
for mode I displacements. The displacement v on the
crack face of the half crack configuration depicted in
Fig. 8 can be approximated by

v=
ffiffiffi
r

p ¼ Aþ Br; (8)

where A and B are constants determined from a linear
curve fit of nodal displacements. Once A and B are deter-
mined, the limit r→ 0 is taken.

lim
r→0

v=
ffiffiffi
r

p� � ¼ A (9)

By combining Eqs (7) and (9) for the half crack model,
the SIF is obtained as

KI ¼ 2G
ffiffiffiffiffiffi
2π

p
A

1þ κð Þ ; (10)

On the basis of the previously described technique, in
the general post-processing procedure, the KCALC
command was used to calculate the SIFs. The mode I
SIF values, KI, are determined for a stiffened panel spec-
imen for a loading stress range Δσ = 80MPa, assuming
the presence of residual stresses as described earlier.
The SIF values with respect to half crack length a are
given in Fig. 9. Kappl represents the SIF values due to
the applied stress range only, without residual stresses.
Ktot represents the SIF values for the case when the
residual stresses are taken into account along with the
external loading stress range. It can be seen that residual
stresses significantly increase Ktot values for shorter crack
lengths, where tensile residual stresses prevail. Between
the stiffeners, residual stresses reduce the Ktot values.

A well-known method for predicting fatigue crack
propagation under constant stress range is the power
law (11) introduced by Paris and Erdogan.26 In Eq. (11),
da/dN and ΔK represent the crack growth rate and the
SIF range, respectively. C and m are material constants,
which are determined experimentally.

da
dN

¼ C ΔKð Þm (11)

Elber30 and Donahue et al.31 further developed Paris’
law assuming an effective SIF range, ΔKeff, as the crack
growth driving force parameter. Donahue et al.31 defined
the effective SIF range as ΔKeff =Kmax�Kth, where Kmax

is the maximum SIF value in a loading cycle and Kth is
an SIF threshold value below which no crack propagation
occurs. Božić et al.47,48 used this model to analyse fatigue
crack propagation in plates damaged with single and mul-
tiple cracks, respectively. Assuming the stress ratio R = 0
as applied in the experiment, the threshold SIF value
for the used mild steel was taken as Kth = 6.8MPa.49

The Donahue model predicted well fatigue lifetime and
crack growth rate for centrally cracked un-stiffened plate
specimens without welds and with a constant stress ratio
R = 0.47,48 However, this model does not take into ac-
count variable stress ratio R, which occurs in welded
specimens due to residual stresses and can significantly
influence the fatigue crack growth rate.

Elber30 observed that crack closure decreases the
fatigue crack growth rate by reducing the effective SIF
range. He proposed an equation for the effective SIF
range, which takes the load ratio R into account:

ΔKeff ¼ 0:5þ 0:4Rð ÞΔKappl : (12)

In the present study, the nominal ratio R in Eq. (12)
was replaced by the effective SIF ratio Reff, in order to
take into account the influence of welding residual
stresses on fatigue crack propagation rate. The effective
SIF ratio Reff is defined as follows:

Reff ¼ Ktot;min

Ktot;max
¼ Kappl;min þ Kres

Kappl;max þ Kres
: (13)

This superposition method based on the principle of
LEFM was originally proposed by Glinka50 and was
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Fig. 9 Ktot and Kappl values.

Table 3 Material’s constantsa

Model C m

Donahue 6.50 × 10�11 2.75
Elber 1.67 × 10�10 2.75

aThe units for ΔK and Δa/ΔN are MPa ·m1/2 and m, respectively.
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recently implemented in the FE modelling of fatigue
crack growth rate in welded butt joints by Servetti and
Zhang.51 As the crack propagates under cyclic loading,
the effective SIF ratio Reff changes due to the presence
of residual stresses.

The number of constant amplitude loading cycles due
to which a crack propagates from its initial crack length,
a0, to a final crack length, afin, can be determined by the
integration of Eq. (11), which becomes the following:

N ¼ ∫
afin

a0
da

C ΔKeff
� �m : (14)

The integration of Eq. (14) can be performed numer-
ically. Fatigue life was simulated for the specimen by
integrating Eq. (14), where the material constants C and
m were as given in Table 3. The exponent m for the
considered material was determined in a previous study
by means of crack growth rate diagrams based on a–N
data obtained for centrally cracked plate specimens.47

The C constants from Table 3 were estimated in a way
to provide a good agreement of simulated fatigue lifetime
with experimentally obtained a–N curve.

The Donahue model was implemented to the welded
stiffened panel specimen, considering the effective SIF
range values due to applied load only, ΔKeff =Kappl�Kth,
without taking into account residual stresses. The Elber
model takes into account the influence of residual stresses
on fatigue crack growth rate by using the effective SIF
range defined by Eq. (12) and the effective SIF ratio Reff

given by Eq. (13). For the two cases considered, the
fatigue crack propagation life was obtained as shown in
Fig. 10a and b. The presented measured crack lengths a
are to be considered as averaged half crack lengths. These
values are obtained by averaging measured crack lengths
of the two propagating crack tips with respect to applied
number of cycles N. The averaged half crack lengths are
used in order to be comparable with the simulation

results for semi-crack lengths obtained by the FE model
where only one quarter of the specimen was modelled.

The FE analysis for the stiffened panel specimens
showed that high tensile residual stresses in the vicinity
of a stiffener significantly increase Kres and Ktot, as shown
in Fig. 9. Correspondingly, the simulated crack growth
rate was higher in this region, which is in good agree-
ment with experimental results, as can be seen in Fig. 10b.
Compressive weld residual stresses decreased the total
SIF value Ktot. The Donahue model, which does not take
account of welding residual stresses, could not simulate
high crack growth rates in the vicinity of the stiffener,
as can be seen in Fig. 10a. Fatigue crack growth simula-
tion based on the Elber model, which takes into account
the welding residual stresses, provides thus better agree-
ment with experimental results in terms of crack growth
rate and total number of cycles. In conclusion, residual
stresses in welded stiffened panels should be taken into
account for a proper evaluation of SIFs and fatigue crack
growth rates.

In further work, one should do microstructural analyses
in experiment and simulation (microscale and nanoscale)
in order to foster the multiscale procedure and use the
method to predict materials with improved fatigue prop-
erties in the future.

CONCLUS IONS

Simulation of cyclic loading to model dislocation nucle-
ation as an initial step in fatigue initiation is possible in
MD. Already after the very few cycles, essential changes
in the system behaviour were observed under respective
loading conditions. Contrary to the first cycles, where
reversible changes were dominant, not dissolving restruc-
turing occurs in the sense of dislocations and remaining
lattice defects or, in other words, plasticity.

Numerical simulations of the fatigue crack initiation
and growth of martensitic steel, based on a modified
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Fig. 10 Fatigue crack growth life for the applied stress range Δσ0 = 80MPa: (a) without residual stresses and (b) including residual stresses.
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Tanaka–Mura model, were presented. A simulation
model related to the microcrack nucleation along slip
bands was presented. Results obtained by using the
proposed simulation model were compared to high cyclic
fatigue tests and showed reasonably good agreement.

Crack propagation simulation based on numerical
integration of a power law equation, taking account of
welding residual stresses, was implemented to welded
stiffened panel specimens. The FE analysis of the stiff-
ened panel specimens showed that high tensile residual
stresses in the vicinity of a stiffener significantly increase
Kres and Ktot. The simulated crack growth rate was higher
in this region, which is in good agreement with experi-
mental results. Compressive welding residual stresses
decreased the total SIF value Ktot and the crack growth
rate between the two stiffeners. Residual stresses should
thus be taken into account for a proper evaluation of SIFs
and fatigue crack growth rates in welded stiffened panels.
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