FINGERPRINTS OF HOPPING CONDUCTIVITY IN DISORDERED CHARGE DENSITY WAVE SYSTEMS

D. Dominko¹, D. Starešinić¹, I. Jurić¹, K. Biljaković¹, M. Đekić^{1,2}, A. Salčinović Fetić^{1,2}

¹Institut of Physics, Bijenička c. 46, Hr-10000 Zagreb, Croatia ²Faculty of Science, Zmaja od Bosne 33-35, Sarajevo, Bosnia and Herzegovina

Electric conductivity of charge density wave (CDW) systems exhibits rich variety of behavior; thermal activation across the gap at low fields below transition temperature $T_{\rm P}$, collective contribution (nonlinear conductivity channel) above the threshold field ($E_{\rm T}$) and variable range hopping (VRH) at low temperatures¹ and in granulated thin films in the whole temperature range². Particularly the origin of the hopping conductivity is still unclear.

We have investigated the influence of disorder on conductivity phenomena in CDW systems TaS_3 and blue bronze (BB: $K_{0.3}MoO_3$) in a wide range of temperatures and electric fields using both the DC and pulse measurements at low and high fields respectively. Disorder has been introduced in several ways: (1) synthesis of TaS_3 samples doped with Nb, (2) irradiation of nominally pure TaS_3 samples and (3) deposition of granular thin BB films by pulsed laser deposition (PLD).

Our results show that the nonlinear conductivity can be described by VRH already below 50 K in contrast to the linear channel, where it appears only below 20 K¹. Moreover, the point defects in TaS₃ introduced by doping and irradiation have no effect on VRH. Together with the dielectric data, it suggests the microscopic picture of soliton hopping in CDW at low temperatures^{3,4}. In granular thin BB films, on the other hand, the influence of grain boundaries is overwhelming even above T_P , which is in contrast to the previous experiments on thin BB films⁵. The results can be understood by applying recent theoretical results for Beloborodov's Efros-Shlovskii VRH in granular materials⁶.

^[1] M. E. Itkis, F. Ya. Nad, and P. Monceau, J. Phys. Cond. Matt. 2 (1990) 8327

^[2] M. Đekić et al, Vacuum 98 (2013) 93-99

^[3] W. F. Pasveer, P. A. Bobbert, and M. A. J. Michels, Phys. Rev. B 74 (2006) 165209

^[4] A. S. Rodin and M. M. Fogler, Phys. Rev. B 80 (2009) 155435

^[5] O. C. Mantel, C. A. W. Bal, C. Langezaal, C. Dekker and H. S. J. Van Der Zant, J. App. Phys. 86, 4440 (1999)

^[6] I. Beloborodov, A. Lopatin, V. Vinokur, and K. B. Efetov, Rev. Mod. Phys. 79 (2007) 469-518