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Nonlinear underdetermined blind separation of nonnegative dependent sources consists in decomposing a set of
observed nonlinearly mixed signals into a greater number of original nonnegative and dependent component (source)
signals. This hard problem is practically relevant for contemporary metabolic profiling of biological samples, where
sources (a.k.a. pure components or analytes) are aimed to be extracted from mass spectra of nonlinear multicomponent
mixtures. This paper presents a method for nonlinear underdetermined blind separation of nonnegative dependent
sources that comply with a sparse probabilistic model, that is, sources are constrained to be sparse in support and ampli-
tude. This model is validated on experimental pure componentmass spectra. Under a sparse prior, a nonlinear problem is
converted into an equivalent linear one comprised of original sources and their higher-order, mostly second-order, mo-
nomials. The influence of thesemonomials, which stand for error terms, is reduced by preprocessing amatrix of mixtures
by means of robust principal component analysis and hard, soft and trimmed thresholding. Preprocessed data matrices
are mapped in high-dimensional reproducible kernel Hilbert space (RKHS) of functions by means of an empirical kernel
map. Sparseness-constrained nonnegative matrix factorizations in RKHS yield sets of separated components. They are
assigned to pure components from the library using a maximal correlation criterion. The methodology is exemplified
on demanding numerical and experimental examples related respectively to extraction of eight dependent components
from three nonlinear mixtures and to extraction of 25 dependent analytes from nine nonlinear mixture mass spectra
recorded in nonlinear chemical reaction of peptide synthesis. Copyright © 2014 John Wiley & Sons, Ltd.
Additional supporting information may be found in the online version of this article at the publisher’s web site.
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1. INTRODUCTION

Identification of pure components present in mixtures is a
traditional problem in spectroscopy (nuclear magnetic resonance,
infrared and Raman) and mass spectrometry [1–4]. Identification
proceeds often by matching separated component spectra with
a library of reference compounds [5–7], whereas the degree of
correlation depends on how well pure components are separated
from each other. Thereby, of interest are blind source separation
(BSS) methods that use only the matrix with recorded mixture
spectra as input information [8–11]. In majority of scenarios, sepa-
ration of pure components is performed by assuming that mixture
spectra are linear combinations of pure components [1–4]. While a
linear mixture model is adequate for many scenarios, a nonlinear
model offers a more accurate description of processes and interac-
tions occurring in biological systems. Living organisms are the best
examples of complex nonlinear systems that function far from
equilibrium. Internal and external stimuli (disease, drug treatment
and environmental changes) cause perturbations in the system
as a result of highly synchronized molecular interactions [12]. As
opposed to many BSS methods developed for linear problems,
the number of methods that address nonlinear BSS problem is

considerably smaller; see for example chapter 14 in [11]. This num-
ber is reduced further when a related nonlinear BSS problem is
underdetermined, that is, when the number of pure components
is greater than the number of mixtures. That is why metabolic pro-
filing, which aims to identify and quantify small-molecule analytes
(a.k.a. pure components or sources) present in biological samples
(typically urine, serum or biological tissue extract), is seen as one
of the most challenging tasks in systems biology [13]. Therefore,
the underdetermined problem is of practical relevance.

The aim of the paper is to present a method for blind separation
of pure components from a smaller number of multicomponent
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nonlinear mixturesmass spectra. Therefore, it is assumed that com-
ponents are nonnegative and sparse. To this end, we address an
underdetermined nonlinear nonnegative BSS (uNNBSS) problem
with sparse and dependent sources. As has been discussed at great
length in [4], even a linear underdetermined BSS problem com-
prised of dependent sources is challenging with only few algo-
rithms addressing it. There is basically no method proposed for a
uNNBSS problem. Herein, we propose a method for a uNNBSS
problem that can be considered as a generalization of the method
developed in [4] for underdetermined linear nonnegative BSS
(uLNBSS) problem comprised of dependent sources. The proposed
method constrains sources to be nonnegative and to comply with
a sparse probabilistic model [14,15], that is, sources are assumed to
be sparse in support and amplitude. The model is validated on
experimental mass spectrometry data and is therefore practically
relevant (Section 3.2). This represents the first original contribution
of the paper. Under this sparse prior, a nonlinear problem is
approximated by a linear one comprised of original sources and
their second-order monomials. This follows from analytical deri-
vations based on Taylor expansion of a nonlinear mixture model
(i.e., the vector function with vector argument) up to an arbitrary
order. Analytical derivation of the Taylor expansion based on the
Tucker model of tensor derivatives represents, arguably, the
second original contribution of the paper. The key contribution
of this paper is the reduction of the influence of higher-order mo-
nomials that stand for error terms. This is achieved by preprocess-
ing a matrix of mixtures by means of robust principal component
analysis (RPCA) [16,17] and hard (HT), soft (ST) [18] and trimmed
thresholding (TT) [19]. Preprocessed data matrices are mapped ob-
servation-wise in high-dimensional RKHS bymeans of an empirical
kernel map (EKM). Thus, one uNNBSS problem is converted into
four nonnegative BSS problems in RKHS with the same number
of observations but an increased number of mixtures. Sparse-
ness-constrained nonnegative matrix factorization (NMF) is
performed in RKHS to solve these nonnegative BSS problems.
Thereby, components separated by NMF are assigned to pure
components from the library using a maximal correlation criterion.

The rest of the paper is organized as follows. Section 2 gives an
overview of nonlinear BSS methods and presents the theory upon
which the proposed uNNBSS is built. Section 3 describes experi-
ments performed on computational and experimental data.
Section 4 presents and discusses the results of comparative perfor-
mance analysis between the proposed uNNBSS and some state-of-
the-art NMF algorithms. Concluding remarks are given in Section 5.

2. THEORY AND ALGORITHM

The aimed application of the proposed uNNBSS method is the
extraction of analytes from multicomponent nonlinear mixtures
of mass spectra. As emphasized in [4], mass spectrometry is cho-
sen because of its increasing importance in clinical chemistry,
safety and quality control as well as biomarker discovery and val-
idation. As in [4,5], we assume that a library of reference mass
spectra is available to evaluate the quality of components
extracted by the proposed method.1 For an example, the

National Institute of Science and Technology and Wiley-
Interscience universal spectral library [7] contains more than
800,000 mass spectra (corresponding to more than 680,000 com-
pounds). As opposed to [4], where a linear mixture model is
assumed, a nonlinear model is assumed herein. Thereby, a linear
model is implicitly included as a special case.
From the viewpoint of a uNNBSS problem with dependent

sources, existing algorithms for a nonlinear BSS problem have
at least one of the following deficiencies: (i) they assume that
the number of mixtures is equal to or greater than the unknown
number of sources [21–29]; (ii) they do not take into account the
nonnegativity constraint that is present when sources are pure
component mass spectra [21–32]; and (iii) they assume that
source signals are statistically independent [22–24,27–32] and,
sometimes, individually correlated [28,30,31]. None of these
assumptions holds true for the uNNBSS problem considered
herein. The algorithm described in [33] is developed for a
uNNBSS problem composed of nonnegative sources. However,
the assumption made by the algorithm is that a set of observa-
tion indexes exists such that each source is present alone in at
least one of these observations. This assumption seems too
strong for the considered uNNBSS problem where the mass
spectra of structurally similar pure components are expected to
overlap. This is especially the case if the resolution of the mass
spectrometer is low. Algorithms [34–36] execute nonlinear non-
negative BSS by means of NMF in a reproducible kernel Hilbert
space (RKHS). Nevertheless, unlike the uNNBSS method
proposed herein, they do not do the following: (i) enforce the
sparseness constraint that is shown herein to be an enabling
condition for solving otherwise intractable uNNBSS problems;
(ii) reduce the influence of higher-order monomials of the origi-
nal sources (error terms) induced by a nonlinear mixing process
and that is shown herein to be crucial for obtaining a reasonably
accurate solution of the uNNBSS problem. As seen in Section 2.2,
the uNNBSS problem is converted into an equivalent uLNBSS
problem with a large number of sources: the original ones and
their higher-order monomials induced by a nonlinear mixing
process. Without activation of a sparse probabilistic prior, an
equivalent uLNBSS problem is intractable.
As seen in Sections 3.1 and 3.2, the proposed methodology

significantly improves accuracy relative to the case when the
NMF algorithm is performed on an empirically kernel-mapped
matrix of mixture data without suppression of higher-order mono-
mials. It has already been discussed in [4,37] that the performance
of many NMF algorithms depends on optimal usage of parameters
required to be known a priori, such as the balance parameter that
regulates the influence of the sparseness constraint [38] or the
number of overlapping components that exist in mixtures [39].
Often, these parameters are difficult to select optimally in practice.
That is why the nonnegative matrix underapproximation (NMU)
algorithm [40] is proposed to solve nonnegative BSS problems in
RKHS. That is, it does not require a priori information from the user.
Thus, we propose herein to combine RPCA, HT, ST and TT prepro-
cessing transforms and EKM-based nonlinear mapping with the
NMU algorithm in mapping-induced high-dimensional RKHS,
hence the PTs-EKM-NMU algorithm. The PTs-EKM-NMU is exem-
plified on numerical and experimental problems. Nevertheless,
proposed preprocessing transforms can also be used in combina-
tion with other sparseness-constrained NMF (sNMF) algorithms.
Provided that the number of overlapping components can be rea-
sonably accurately inferred, an NMF algorithm with ℓ0-constraints
(NMF_L0) [39] is a good choice.

1Please note that any BSS algorithm when applied to experimental data re-
quires some kind of expert knowledge to evaluate the separation results.
Herein, the library of pure components is such an “expert.” The same concept
is used in hyperspectral image analysis where identification of minerals pro-
ceeds by comparison of estimated endmembers with spectral profiles stored
in the library; see for an example the ASTER spectral library in [20].
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2.1. Underdetermined nonlinear nonnegative blind source
separation with dependent sources

The uNNBSS problem with dependent sources is described as

xt ¼ f stð Þ t ¼ 1;…; T (1)

where xt∈RN�1
0þ stands for the nonnegative measurement vector

comprised of intensities acquired at some of T mass-to-charge
(m/z) channels and st∈RM�1

0þ stands for an unknown vector com-

prised of intensities of M nonnegative sources. f : RM0þ→RN0þ is an
unknown multivariate mapping such that f(st) = [f1(st)… fN(st)]

T

and f n : RM0þ→R0þ
� �N

n¼1. Problem (1) can be casted in the matrix
framework

X ¼ f Sð Þ (2)

such that X∈RN�T
0þ and S∈RM�T

0þ , where xtf gTt¼1 and stf gTt¼1 are col-
umn vectors of matrices X and S, respectively, and f(S) implies that
nonlinear mapping is performed column-wise such as in (1). It is

further assumed that stk k0≤L
� �T

t¼1, where ∥st∥0 stands for the ℓ0
quasi-norm that counts the number of nonzero coefficients of st
and L ¼ maxt¼1;…;T stk k0. Evidently, it applies that L≤M, where L
denotes the maximal number of sources that can be present at
any coordinate t. The uNNBSS problem implies that component

mass spectra, sm∈R1�T
0þ

� �M

m¼1 , ought to be inferred from mixture
data matrix X only. In this paper, the following assumptions are
made on the nonlinear mixture model (1)/(2):

A1) 0≤ xnt≤ 1 ∀ n= 1, …, N and ∀ t=1, …, T,
A2) 0≤ smt≤ 1 ∀ m= 1, …, M and ∀ t= 1, …, T,
A3) M>N,
A4) Amplitude smt obeys exponential distribution on (0, 1] in-

terval and discrete distribution at zero, see also Eqn (3),
A5) Components of the vector-valued function f sð Þ : f n sð Þ :

RM�1
0þ ↦R0þ;∀n ¼ 1;…;N are differentiable up to an

unknown order K and
A6) M≪ T.

To avoid confusion between column and row vectors, they
will be indexed by lowercase letters that correspond with up-
percase letters related to dimensions of the corresponding
matrix. As an example, st refers to the column and sm to the
row vector of matrix S∈RM�T

0þ . Evidently, uppercase bold letters
denote matrices, lowercase bold letters denote vectors and italic
lowercase letters denote scalars. In order to be useful, the solu-
tion of the uNNBSS problem is expected to be essentially
unique; that is, the estimated matrix of pure components
(sources) Ŝ and the true matrix of pure components S have to
be related through Ŝ ¼ PΛS, where P and Λ stand respectively
for M×M permutation and diagonal matrices. As discussed at
great length in [4], even a linear underdetermined BSS problem
requires constraints to be imposed on sources in order to en-
sure an essentially unique solution. A nonlinear BSS problem is
more difficult. Herein, we assume that pure components

smf gMm¼1 comply with the sparse probabilistic model imposed
by A4. It implies that each component will be zero at a great part
of its support (number of m/z channels T) and that nonzero
intensity will be distributed according to exponential distribu-
tion with a small expected value. These two constraints are
expected to ensure that, in probability, compared with N and
M, the maximal number of analytes L present at the particular
m/z coordinate is small enough. However, N stands for the

number of biological samples available, and it is expected to
be small. Thus, it can virtually be impossible to satisfy the afore-
mentioned requirement. That is why, as in [4], in order to in-
crease the number of measurements (samples), the original
uNNBSS problem (1) has to be mapped into RKHS by using
EKM. Before that, we need to approximate the uNNBSS problem
(1)/(2) by an equivalent uLNBSS problem.

2.2. Sparse probabilistic model of source signals

The Taylor expansion of the nonlinear model (1) up to an
arbitrary order K is derived in the Supporting Information. It is
shown that the uNNBSS problem (1) can be represented by an
equivalent uLNBSS problem, Eqn (7) in the Supporting Informa-

tion, comprised of M original sources and
XK

k¼2
M kð Þ higher-

order monomials, where M kð Þ ¼ Mþ k � 1

k

� �
. Thus, without

further constraints, the uNNBSS problem (1) is computationally
intractable. That is why, according to A4, we assume that sources
s comply with the sparse probabilistic model comprised of
mixed state distribution [4,14,15]:

p smtð Þ ¼ ρmδ smtð Þ þ 1� ρmð Þδ� smtð Þf smtð Þ∀m ¼ 1;…;M ∀t
¼ 1;…; T (3)

where δ(smt) is an indicator function and δ*(smt) = 1� δ(smt) is

its complementary function, ρm ¼ P smt ¼ 0ð Þf gTt¼1 . Hence,

P smt > 0ð Þ ¼ 1� ρmf gTt¼1 . The nonzero state of smt is
distributed according to f(smt). We have chosen the exponential
distribution f(smt) = (1/μm)exp(�smt/μm) to model the sparse
distribution of the nonzero states, in which case, the most
probable outcomes are equal to μm. It has been verified in [4]
that model (3) describes well the mass spectra of the
pure components. Herein, by using the mass spectra of
25 pure components, we have estimated ρ̂m∈ 0:27; 0:74½ � and
μ̂m∈ 0:0012; 0:0014½ � ; see Section 3.2 and Figure 4 for more
details.2 Under the exponential prior, the probability that
amplitude smt ∈ [ε, μm], for 0< ε≪ 1, is 0.632. Thus, in 36.8% of
the cases, a random realization of smt will have amplitudes
greater than the most probable value μm. For a given μm
and given probability p(ε< smt ≤ s), the value of s is obtained
as: s ≈�μmln(1� p). Thus, for p = 0.99 and μm = 1.5 × 10�3, it
follows that s= 7 × 10�3. Hence, we may approximate the
equivalent uLNBSS model, Eqn (7) in Supporting Information, by
retaining the second-order terms only:

X ¼ G1
1ð ÞSþ 1

2
G2

1ð Þ

s21
…

s2M
::::

sm1sm2f gMm1;m2¼1

2
6666664

3
7777775
þ HOT (4)

where G1
1ð Þ and G2

1ð Þ stand for unfolded versions of the tensor of

first-order and second-order derivatives, respectively, and HOT

2Even though the exponential distribution has support on the [0, ∞) interval,
by setting μ= 0.01, realizations will be contained in the [0, 1] interval with a
probability that is close to 1 and with an error of 3.72 × 10�44. Thus, this jus-
tifies a choice of exponential distribution to model the sparse distribution
of amplitudes smt on interval [0, 1].
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stands for higher-order terms. The contribution of third-order
terms in (4) is of the order (7 × 10�3)3 = 3.43× 10�7. In order to
reduce HOT, entry-wise thresholding of X can be performed. By
neglecting fourth-order and higher-order terms, we have empiri-
cally arrived at the threshold value of τ ∈ [10�6, 10�4].3

2.3. Suppression of higher-order (error) terms

The mass spectra of 25 pure components recorded in
the nonlinear chemical reaction of peptide bond formation
(Section 3.2 and Figures 3 and S-4 in Supporting Information)
illustrate the diversity of morphologies. Some have few
very dominant (large) peaks (see spectra of pure components
1, 2, 8, 13, 16, 17, 18, 19, 20, 21, 22, 23, 24 and 25), and
some have intensities distributed on several m/z values,
whereas intensities can be small (see spectra of pure com-
ponents 3, 4, 5, 6, 7, 9, 10, 11, 12, 14 and 15). It is thus hard
to propose one preprocessing (thresholding) transform for
suppression of higher-order terms induced by nonlinear
mixing process. We, therefore, propose a combination of
methods for this purpose.

2.3.1. Robust principal component analysis

Robust principal component analysis has been proposed in
[16,17] to decompose data matrix X into sum of two matrices:
X=A+ E. Provided that A is a low-rank matrix and E is a sparse
matrix, decomposition is unique, and it is obtained as a solution
of the optimization problem:

minimize Ak k� þ λ Ek k1 subject to Aþ E ¼ X (5)

Thereby, Ak k� ¼
XI≤N

i¼1
σi denotes the nuclear norm (sum of

singular values) and I≤N is a rank of matrix A, Ek k1 ¼XN

n¼1

XT

t¼1
ent denotes the ℓ1-norm of E and λ≈ 1/√T is a

regularization constant. In terms of the equivalent uLNBSS
problem (4), A is associated with first-order and second-
order terms, and E is associated with HOT. A is actually
represented by a linear mixture model composed of
2M+M(M� 1)/2 sources and N mixtures. Because both N
and 2M+M(M� 1)/2 are small compared with T, the rank of A
equals min(N, 2M +M(M� 1)/2) =N. Thus, it is low. E is com-
prised of monomials (products of the original source compo-
nents) of the order 3 or higher. Because by assumption, A4,
source components are sparse in support and amplitude, their
three-order and higher-order products are either zero or very
small. Thus, E is sparse. Therefore, it is justified to use RPCA
decomposition of X in (4) to suppress higher-order terms in-
duced by a nonlinear mixing process. This yields approximation

of X, that is, A, with suppressed higher-order terms. In the exper-
iments reported in Section 3, we have used an accelerated prox-
imal gradient algorithm [41], available with a MATLAB code at
[42], to solve (5).

2.3.2. Hard thresholding

An HT operator [18] can be applied entry-wise to X in (4)

according to bnt ¼ HT xntð Þ ¼ xnt if xnt≥τ1
0 if xnt < τ1

�
, n= 1, …, N, t= 1,

…, T and τ1 ∈ [10
�6, 10�4], which stands for a threshold. HT

preprocessing transform of X yields matrix B that is expected
to have the same structure as A in (5).

2.3.3. Soft thresholding

An ST operator [18] can be applied entry-wise to X in (4)
according to cnt= ST(xnt) =max(0, xnt� τ2), n=1, …, N, t= 1, …,
T and τ2 ∈ [10

�6, 10�4]. ST preprocessing transform of X yields
matrix C that, same as B obtained by HT, is also expected to have
the same structure as A in (5).

2.3.4. Trimmed thresholding

A TT operator [19] is applied entry-wise to X in (4) according to

dnt ¼ TT xntð Þ ¼ xnt
xαnt � τα3

xαnt
if xnt≥τ3

0 if xnt < τ3

8<
: , n= 1, …, N, t= 1, …, T

and τ3 ∈ [10
�6, 10�4]. α is a trade-off parameter between HT

and ST. When α= 1, TT equals ST. When α→∞, TT is equiva-
lent to HT. Herein, we set α= 3.5 because this value yields TT
to operate between ST and HT [19]. TT preprocessing trans-
form of X yields matrix D that, same as B obtained by HT
and C obtained by ST, is also expected to have the same
structure as A in (5).

2.4. Empirical kernel map-based nonlinear mapping of
preprocessed mixture matrix

So far, we have substituted uNNBSS problem (1)/(2) by four
uLNBSS problems in the form of (4). While the original
uNNBSS problem is characterized by nonlinear multivariate
mapping f and triplet (N, M, L), the uLNBSS problems
are characterized by (N, P, Q), where P ≈ 2M +M(M� 1)/2
stands for the number of dependent sources in (4)
and Q ≈ 2L + L(L� 1)/2 stands for the maximal number of
sources at particular m/z coordinates. Because by assumption
A3, M>N, it follows that P ≫N. Thus, even with the activation
of sparseness constraints imposed by A4, it will be virtually
impossible to ensure an essentially unique solution of
these uLNBSS problems. To this end, as in [4], we apply
the EKM-based nonlinear mapping of uLNBSS problems
represented by preprocessed mixture matrices A, B, C and
D to RKHS in order to increase number of samples/mixtures
from N to D ≫N. The theory and discussion related to it
have been presented in great detail in Section 2.2 in [4].
We therefore present it in a concise form herein. EKM Ψ
of column vectors atf gTt¼1 in (4) with respect to a basis

vdf gDd¼1 is ψ : RN→ RD, such that at↦κ ∘; atð Þ vdf gDd¼1

��� ¼
κ v1; ; atð Þ;…; κ vD; ; atð Þ½ �T∀t ¼ 1;…; T . Thereby, κ(vd, at) is a

positive definite symmetric function. The basis vdf gDd¼1 has

3These threshold values can be justified by the following analysis. Because
of A1 and A2, elements of G in (7) in the Supporting Information are less
than 1. In pursuing the worst-case analysis of third-order effects, we assume
that third-order derivative coefficients in G are less than some value g3.
Thus, the contribution of third-order terms is limited above by x(3) =M(3)g3s.
If the mixture value xnt is greater than x(3), then it is probably due to first-or-
der and second-order terms. The threshold value evidently depends on
values of M(3), g3 and s. For example, assuming M = 100 (M(3) = 171,700),
g3 = 0.1 and s = 3.4 × 10�7, we obtain x(3) = 5.8 × 10�3. However, this is overly
pessimistic given the fact that most of the third-order cross-products will,
owing to sparseness, vanish. Thus, the optimal threshold value is some-
where in the interval 10�6, 10�4.

I. Kopriva et al.
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to span the empirical set of patterns atf gTt¼1 such that

span vdf gDd¼1 ≈ span atf gTt¼1 . In this case, span ϕ vdð Þf gDd¼1

≈ span ϕ atð Þf gTt¼1 , where at↦ϕ atð Þ∈R0þN
n oT

t¼1
, that is,

vd↦ϕ vdð Þ∈R0þN
n o

d¼1
D , is in principle an infinite-dimensional

nonlinear mapping. If ϕ(at) = κ(○, at) and ϕ(vd) = κ(○, vd), pro-
jection of ϕ atð Þf gTt¼1 onto ϕ vdð Þf gDd¼1 yields in matrix form

Ψ Að Þ ¼
κ a1; v1ð Þ … κ aT ; v1ð Þ

… … …

κ a1; vDð Þ … κ aT ; vDð Þ

2
64

3
75 (6)

Herein, as in [4], we choose κ(at, vd) = exp(�∥at� vd∥
2/σ2).

When assumption A1 holds, we can set σ2 ≈ 1. We analogously
obtain empirical kernel mappings of matrices B, C and D, which
respectively yields D × T matrices Ψ(B), Ψ(C) and Ψ(D). Likewise,
as in [4], we use a k-means data clustering algorithm to esti-

mate basis V by clustering atf gTt¼1 in D clusters. Thereby, by set-
ting D = T, clustering is unnecessary because each empirical
pattern is a basis vector. This, however, comes at an increased
computing cost. By using sparseness assumption A4, it is
shown in [4] that

Ψ Að Þ ¼ Zþ G
01�T

S

� 	
þ HOT (7)

where Z is a bias term and does not play a role in parts-based
decomposition that follows, 01×T is a row vector of zeros and
S∈RP�T

0þ is a matrix with P≈ 2M +M(M� 1)/2 rows that contain
original source components and their second-order mono-
mials. G is a matrix of appropriate dimensions. Empirical ker-
nel-mapped matrices Ψ(B), Ψ(C) and Ψ(D) follow the same
approximation as Ψ(A) in (7). It is important to emphasize that
in (4), higher-order (error) terms are induced by nonlinear
mixing process f(S), while in (7), they are induced by the
nonlinear character of the EKM. That is, an increase of the num-
ber of mixtures from N to D in Ψ(A), Ψ(B), Ψ(C) and Ψ(D) comes
at the cost of errors induced by the EKM. However, as in [4] and
(4), we can again apply preprocessing transforms to suppress
HOT. Because matrices B, C and D were obtained by respec-
tively applying HT, ST and TT operators on X in (4), we apply
these operators in the same order on Ψ(B), Ψ(C) and Ψ(D). In or-
der to keep the level of notational complexity as low as possi-
ble, we keep the same notation for thresholded versions of
matrices Ψ(B), Ψ(C) and Ψ(D). We do not apply RPCA decompo-
sition on Ψ(A) because its rank is dictated by Z and is equal to
min(D, T) =D, which is not low. The final effect of EKM-based
mappings is to ensure that sparseness-constrained factoriza-
tion of Ψ(A), Ψ(B), Ψ(C) and Ψ(D) yields, with greater probabil-
ity, more accurate solution compared with decomposition by
the same method of A, B, C and D. This will be the case when
the following condition holds:

D=Nð Þ >> P=Mð Þ and D=Nð Þ >> Q=Lð Þ (8)

Because P≈ 2M+M(M� 1)/2 and Q≈ 2L+ L(L� 1)/2, condition
(8) becomes (D/N)≫ (M/2� 3/2) and (D/N)≫ (L/2� 3/2). The
numerical problem studied in Section 3 is characterized by N=3,
M=8, L=3 and D= T=1000. Evidently, the preceding condition
is fulfilled.

2.5. Sparseness-constrained factorization

To increase the accuracy of the pure component extraction,
we apply sNMF in RKHS to matrices Ψ(A), Ψ(B), Ψ(C) and Ψ(D).4

This yields four sets of separated components:

sAm
� �P

m¼1¼ sNMF Ψ Að Þð Þ (9)

sBm
� �P

m¼1¼ sNMF Ψ Bð Þð Þ (10)

sCm
� �P

m¼1¼ sNMF Ψ Cð Þð Þ (11)

sDm
� �P

m¼1¼ sNMF Ψ Dð Þð Þ (12)

When it comes to implementation of the sNMF algorithms, we
use, as in [4], the NMU algorithm [40] with a MATLAB code
available at [44] and the NMF_L0 algorithm [39] with a MATLAB
code available at [45]. The NMF_L0 algorithm was run with the
following parameter setup: reverse sparse nonnegative least
square sparse coder and alternating nonnegative least square
for dictionary update stage. A main reason for preferring the
NMU algorithm over other sNMF algorithms is that there are
no regularization constants that require a tuning procedure.
When performing NMU-based factorizations in (9)-(12), the
unknown number of pure components P needs to be given to
the algorithm as an input. As in [4], we set P=D= T. That is, in
order not to lose some component, we prefer to extract all T
rank-one factors.5 These four sets of separated components are
compared with the pure components stored in the library using
normalized correlation coefficients. Each pure component is
associated with the separated component by which it has the
highest correlation. As a reference, in the benchmark numerical
study, we have used the solution obtained by applying the
NMF_L0 algorithm to (9)-(12). Afterwards, the maximal correla-
tion criterion has been used to assign separated components
to pure components in the library. NMF_L0 is based on a natural
sparseness measure, the ℓ0-pseudo-norm of the component ma-
trix S, and this is known from compressed sensing theory [47] to
yield the best results when sparseness of S decreases. The
NMF_L0 when applied in (9)-(12) requires a priori information
on the number of components P and number of overlapping
components Q, and they are related to M and L through P≈ 2M+
M(M� 1)/2 and Q≈ 2L+ L(L� 1)/2. In a numerical scenario, both
M and L are known, while in an experimental scenario, the selec-
tion of the optimal (true) value of L is hard. We summarize the
PTs-EKM-NMU/NMF_L0 algorithm in Algorithm 1.

4To ensure essentially unique decomposition, sNMF algorithms have been
formulated such as in [38–40]. However, only very recently is it proven in
[43] (Theorem 4 and Corollary 2) that the uniqueness of some asymmetric
NMF S=WH implies that each column ofW (row of H) contains at least M� 1
zeros, where M is a nonnegative rank of S.
5The factorization problems (9–12) are related to the determination of the
nonnegative rank of a nonnegative matrix, which is defined as the smallest
number of rank 1 matrices into which the original matrix can be decomposed
[46]. For some matrix Ψ∈RD�T

0þ with D≤ T, a nonnegative rank equals the
smallest positive integer P for which there exist nonnegative column vectors

gp

n oP

p¼1
such that each column vector of Ψ can be represented as a linear

combination with nonnegative coefficients of the column vectors gp

n oP

p¼1
.
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3. EXPERIMENTS

Studies on numerical and experimental data reported in the
following were executed on a personal computer running
under a Windows 64-bit operating system with 64 GB of RAM
using an Intel Core i7-3930K processor and operating with a

clock speed of 3.2 GHz. A MATLAB 2012b environment has
been used for programming.

3.1. Numerical study

In a numerical study, we simulate uNNBSS problem (2) with N=3,
M=8, L=3 and T=1000. Source signals were generated according

to mixed state probabilistic model (3) with exponential prior.
Thereby, μm=1.5× 10�3 ∀ m=1, …, M. We have generated two
scenarios with ρm=0.5 and ρm=0.8 ∀ m=1, …, M. Values for μm
and ρm are equivalent to those obtained by fitting probabilistic
model (3) to experimental mass spectra of 25 pure components;
see Section 3.2 and Figure 4 for details. The uNNBSS problem (2)
has been simulated using nonlinear mixtures:

f 1 sð Þ ¼ s31 þ s22 þ tan�1 s3ð Þ þ s24 þ s35 þ s36 þ tanh s7ð Þ þ sin s8ð Þ

f 2 sð Þ ¼ tanh s1ð Þ þ s32 þ s33 þ tan�1 s4ð Þ þ tanh s5ð Þ þ sin s6ð Þ
þs27 þ s28

f 3 sð Þ ¼ sin s1ð Þ þ tan�1 s2ð Þ þ s23 þ s34 þ tanh s5ð Þ þ sin s6ð Þ þ s37
þ tan�1 s8ð Þ

Nonlinear mixtures are chosen arbitrarily to demonstrate the
capability of the proposed algorithm to solve the uNNBSS prob-
lem comprised of unknown nonlinear mixtures. HT, ST and TT
operators used in steps 2–4 and 6 in Algorithm 1 were
implemented with τ = 10�5, and α=3.5 has been used for TT op-
erator. Gaussian kernel-based EKM has been used with σ2 = 1
and D= T=1000. Table I shows the results of the comparative
analysis, for the case of ρm= 0.8, obtained by NMU and NMF_L0
applied to uNNBSS (1)/(2); NMU and NMF_L0 applied in (9–12)
without suppression of higher-order monomials (EKM-NMU and
EKM-NMF_L0); and NMU and NMF_L0 applied in (9–12) after
RPCA, HT, ST and TT preprocessing transforms (PTs-EKM-NMU
and PTs-EKM-NMF_L0). Because of sparse prior imposed on
sources, it was reasonable to expect that useful results can be
obtained by direct factorization of uNNBSS problem (2). Results
for ρm=0.5 are shown in Table S1 in the Supporting Information,
while results for ρm=0.8 and ρm= 0.5 as a function of the Monte
Carlo index are shown in Figure 1. For the value of a normalized
correlation coefficient between a pure component and an
assigned separated component, we evaluate the performance
in terms of four metrics described in the notes of Table I. They
are defined with respect to predefined labeling of the pure com-
ponents stored in the library. The first three metrics are
calculated for correctly assigned components only. That is why
NMU and NMF_L0 appear to have comparable performance in

Table I. Comparative performance analysis of NMU, NMF_L0, EKM-NMU, EKM-NMF_L0, PTs-EKM-NMU and PTs-EKM-NMF_L0
algorithms

NMU NMF_L0 EKM-NMU EKM-NMF_L0 PTs-EKM-NMU PTs-EKM-NMF_L0

Correlation≥ 0.6 2.8 ± 0.92 2.3 ± 1.34 3.7 ± 0.48 3.2 ± 0.63 3.8 ± 0.42 3.7 ± 0.48
Mean correlation 0.70± 0.03 0.61 ± 0.11 0.69 ± 0.02 0.64 ± 0.03 0.70 ±0.03 0.69 ± 0.04
Minimal correlation 0.53± 0.04 0.42 ± 0.08 0.51 ± 0.03 0.45 ± 0.04 0.52 ± .04 0.49 ± 0.06
Incorrect assignments 3.4 ± 0.70 3.1 ± 0.57 2.4 ± 0.97 2.2 ± 0.63 2.0 ± 0.88 1.5 ± 1.43

Probability of zero state was ρm=0.8. The four metrics used in comparative performance analysis were the number of associated
components with normalized correlation coefficient greater than or equal to 0.6, mean value of correlation coefficient over all
associated components, minimal value of correlation coefficient and number of pure components assigned incorrectly (which
occurs because of poor separation). All four metrics were calculated with respect to predefined labeling of the pure
components stored in the library. Incorrect assignment implies that, based on the maximal correlation criterion, two or more
pure components are assigned to the same separated component. Mean values and variance are reported and estimated over
10 Monte Carlo runs. The best result in each metric is in bold. The first three metrics are calculated only for correctly assigned
components. That is why NMU and NMF_L0 appear to have comparable performance.

Required:

X∈RN�T
0þ . If A1 is not satisfied, perform scaling

X→X= argmaxt xtk k1
� �T

t¼1or X→X= argmaxnt Xntf gN;Tn;t¼1.

1. Perform RPCA (5) on X in (2)/(4) with λ≈ 1/√T. It yields
approximation A in (4).

2. Perform HT on X in (2)/(4) with τ1 ∈ [10
�6, 10�4]. It yields

approximation B.
3. Perform ST on X in (2)/(4) with τ2 ∈ [10

�6, 10�4]. It yields
approximation C.

4. Perform TT on X in (2)/(4) with τ3 ∈ [10
�6, 10�4] and α=3.5.

It yields approximation D.
5. Perform empirical kernel mappings A→Ψ(A), B→Ψ(B),

C→Ψ(C) and D→Ψ(D) according to (6). Use Gaussian kernel
with σ2 = 1.

6. PerformHT, ST and TT, respectively, of matricesΨ(B),Ψ(C) and
Ψ(D).

7. Perform sparseness-constrained factorization, preferably by
the NMU algorithm, of matricesΨ(A),Ψ(B), (ΨC) andΨ(D) to

obtain separated components S
A
,S

B
, S

C
and S

D
.

8. Assign to pure components from the library those separated

components S
A
, S

B
, S

C
and S

D
with the highest normalized

correlation coefficient.

Algorithm 1. The PTs-EKM-NMF (preferably NMU) algorithm.
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terms of mean and minimal correlation metrics. But they are in-
ferior in the number of separated components correlated
with pure components with a correlation greater than or equal
to 0.6 as well as in the number of (in)correctly assigned

separated components (due to poor separation). Thereby, an in-
correct assignment implies that two or more pure components
are assigned to the same separated component. We also can
see that preprocessing transforms improve performance

Figure 1. Numerical study. Normalized correlation coefficient versus Monte Carlo run index between true and extracted sources by algorithms NMF_L0
(crosses), NMU (circles) and PTs-EKM-NMU (pluses) and PTs-EKM-NMF_L0 (stars). Mean value (first row), minimal value (second row), number of values
greater than or equal to 0.6 (third row) and number of incorrect pairs (fourth row). Probability of state 0 equal to 0.5 (left column) and 0.8 (right column).
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compared with factorizations of mixture data without prepro-
cessing related to suppression of higher-order monomials.

3.2. Experimental data on chemical reaction comprising
peptide synthesis

3.2.1. Chemicals

Chemical reaction has been performed according to the following
procedure: L-leucine (200mg, 1.52mmol) was dissolved in 5mL
of dry dimethylformamide, and the solution was cooled to 0 °C.
N-methylmorpholine (3.05mmol, 337μL) and isobutyl chlorofor-
mate (3.34mmol, 458μL) were added. Aliquots of the reactionmix-
ture (100μL) were withdrawn every 30min (t0–t8), and the solvent
was evaporated and the residue dissolved in 1mL of 0.1% formic
acid (FA) in 50% MeOH. Aliquots (100μL) were diluted with
400μL of 0.1% FA in 50% MeOH, and 10μL was injected through
an autosampler on a column (Zorbax XDB C18, 3.5μm, 4.7mm)
at a flow rate of 0.5mL/min. The mobile phase was 0.1% FA in
water (solvent A) and 0.1% FA in MeOH (solvent B). The gradient
was applied as follows: 0min 40% B, 0–15min 90% B, 12–15min
90% B, 17.1min 40% B and 17.1–20min 40% B. Figure S2 in the
Supporting Information shows nine chromatograms correspond-
ing to the reaction mixture recorded at nine time instants (t0–t8)
during the reaction. The mass spectra of nine mixtures (x1–x9),
obtained by full integration of chromatograms, and mass spectra
of 25 pure components (s1–s25) arising during the reaction are
respectively shown in Figures S3 and S4 in the Supporting Infor-
mation. The mass spectra of pure components 1, 4, 8 and 11 are
also shown in Figure 3.

3.2.2. Mass spectroscopy measurements

Electrospray ionization–mass spectrometry measurements operat-
ing in a positive ion mode were performed on an high-
performance liquid chromatography–mass spectrometry triple
quadrupole instrument equipped with an autosampler
(Agilent Technologies, Palo Alto, CA, USA). The desolvation gas
temperature was 300 °C with a flow rate of 8.0 L/min. The frag-
mentor voltage was 135V, and the capillary voltage was 4.0 kV.
Mass spectra were recorded in the m/z segment of 10–2000. All
data acquisition and processing were performed using Agilent
MassHunter software. Acquired mass spectra are composed of
intensities at T=9901m/z coordinates.

3.2.3. Setting up an experiment

Peptides and proteins are compounds involved in numerous
biological processes of key importance, like cell–cell communi-
cation, immune response, cell growth and proliferation, and
hormonal and enzymatic activity. They are, therefore of ever-
increasing interest as tools in studies of biological systems
and modulators of biological functions. Chemical synthesis of
peptides involves condensation of two suitably protected parts
(amino acids or peptides) in order to obtain a single, desirable
product. However, for the purpose of this work, a different
approach was undertaken. Non-protected amino acid, L-leucine,
was allowed to react under basic conditions (N-methylmorpholine)
in the presence of isobutyl chloroformate, giving various products:
dipeptides, tripeptides, tetrapeptides and corresponding interme-
diates. The nonlinearity of the described reaction was assured
based on the following: (i) the concentration of individual compo-
nents does not change linearly with time and (ii) as the reaction
proceeds, new components appear that were not present at the
beginning of the reaction. Figure 2 schematically describes the
possible components present in the reaction mixture. It is impor-
tant to note that the aim of this experiment was not to determine
the structure of all components, but to provide reliable experimen-
tal data on nonlinear reaction. A library of compounds required for
the validation of the algorithm was built by integration of each
peak in the chromatogram corresponding to the mixture x9 and
subsequent extraction of mass spectrum. During the library gener-
ation, no discrimination based on the intensity of peaks was made.
Therefore, all peaks were treated as pure components.

4. RESULTS AND DISCUSSION

Inspection of pure component mass spectra shown in Figure S4
in the Supporting Information shows significant overlapping,
resulting from the similarity of the chemical structure of compo-
nents. Pure components 1 and 2, 16 and 17 as well as 19 and 21
have normalized correlation coefficients above 0.97, and conse-
quently, they are impossible to distinguish. In addition to that, pure
components 5 and 7 have normalized correlation coefficients
above 0.78. Thus, they are also expected to be very hard to discrim-
inate. However, we expect from the proposed PTs-EKM-NMU
method to be able to discriminate the rest of the components. This
is not trivial given the fact that normalized correlation coefficients

Figure 2. Structures of possible components present in the reaction mixture.
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Figure 3. Two top rows: mass spectra of pure components s1, s4, s8 and s11. Two bottom rows: estimated mass spectra of pure components s1, s4, s8
and s11 by the proposed PTs-EKM-NMU algorithm. Information on the value of the highest normalized correlation coefficient and associated error
reduction method (RPCA, HT, ST and TT) is also displayed.
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for 26 combinations of pure components vary between 0.1 and
0.44. This makes the uNNBSS problem comprised of correlated
pure components very hard. The correlation matrix of the pure
component mass spectra, where pairs of pure components are
identified with a normalized correlation coefficient above 0.1, is
shown in Table S2 in the Supporting Information. As emphasized
previously, it is the sparseness of the pure component
mass spectra in support and amplitude that is expected to enable
the solution of related uNNBSS. To this end, mixed state proba-
bilistic model (3) with exponential prior on continuous distribution
of the nonzero amplitude has been fitted to experimental pure
component mass spectra (they are shown in Figure S4 in the
Supporting Information as well as in Figure 3 for pure components
1, 4, 8 and 11). Even though these pure components are correlated
with others and some (4 and 11) have small intensity, they are
uniquely assigned to the true pure components from the library.
Figure 4 (left), also Figure S5 in the Supporting Information, shows
the estimated probability that the value of the pure component
mass spectra is zero. As can be seen, 22 out of 25 pure components
have zero amplitudes at 40–75% of their support. Figure 4 (right),
also Figure S6 in the Supporting Information, showsmost expected
values (mean) of exponential distribution estimated by fitting
exponential distribution to amplitude histograms. They were
estimated for 25 pure components in the range (0, 1] within inter-
vals of the 0.01 width. It can be seen that μ̂m∈ 0:0012; 0:0014½ � for
m=1, …, 25. Figure S7 shows the probability that the amplitude
of the pure component mass spectra occurs in the interval [0, A],
such that 0.01≤A≤ 1, that is, an average estimate over 25 pure
components. It is seen that 0.01≤A≤ 0.08 occurs with a probability
of 0.97. Reported results confirm that sparse probabilistic model (3)
is experimentally well grounded. This is further confirmed by
Figure S8 in the Supporting Information, which shows estimated
histograms (stars) and exponential probability density functions
(squares) calculated with the mean values from Figure 4 (right). It
is seen that approximation is very good. Estimated histograms
versus exponential probability density functions for pure compo-
nents 1, 4, 8 and 11 are also shown in Figure 5.

Table II presents the results of the comparative performance
analysis using the four metrics as in Section 3.1 for NMU, EKM-
NMU, PTs-EKM-NMU for D= T= 9901 and PTs-EKM-NMU for
D=4000. Thus, in the last case, k-means clustering has been

used to find a basis vdf g4000d¼1 in the input space of patterns

xtf g9901t¼1 . Provided that it retains accuracy, the subspace approx-
imation is very important from computational reasons. This is
because when four preprocessing transforms are combined,
sNMF in (9)-(12) has to be performed four times. This can be
carried out in parallel. Nevertheless, one factorization of the
9901× 9901 matrix by the NMU algorithm takes approximately
79 h on an earlier specified machine, while factorization of the
4000× 9901 matrix by the same algorithm takes approximately
13.7 h. For NMF_L0, the number of overlapping components, L,
has to be reported to the algorithm as input information. For
the PTs-EKM-NMF_L0 algorithm, the optimal value of L can be
inferred by running the NMF_L0 algorithm multiple times on a
problem such as (9). This, however, would result in high compu-
tational costs. That is why NMF_L0 has not been used in RKHS on
problems (9)-(12). It is seen from Table II that linear sparseness-
constrained matrix factorization yields poor quality of separation
compared with linear factorization in the RKHS. This is especially
the case with the number of incorrectly assigned components
and is a direct consequence of the low purity of separated com-
ponents. This, indirectly, also confirms the nonlinear character of
the mixture mass spectra of the desired chemical reaction. It is
also seen the that combination of four preprocessing transforms
for suppression of higher-order monomials and sparseness-
constrained factorization in RKHS significantly improves the
quality of separation. In this regard, Figure S9 in the Supporting
Information shows the mass spectra of 25 separated compo-
nents assigned to pure components according to the maximal
correlation criterion. Separated pure components 1, 4, 8 and 11
are also shown in Figure 3. Thereby, the value of the normalized
correlation coefficient and preprocessing transform (RPCA, HT,
ST or TT) that yielded the best result are also reported. Because
of the diversity of morphologies of mass spectra, all four prepro-
cessing transforms yielded the best results at some cases. It is
also important to notice that subspace approximation of pro-
posed method with D= 4000 yields results very comparable with
those obtained by D= 9901 but with a much shorter compu-
tation time. Thus, the proposed approach to pure component
extraction can, when implemented on a state-of-the-art multi-
processor (grid) platform, be executed in an even shorter time,
which makes it practically relevant.

Figure 4. Experimental study. Left: estimated probability that the value of the pure component mass spectra is zero, that is, estimate of ρm, m=1, …,
25. Right: estimates of most expected values (means) of exponential distribution obtained by fitting the exponential distribution to amplitude histo-
grams. They were estimated for 25 pure components in the range (0, 1] within intervals of the 0.01 width.
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5. CONCLUSION

A blind source separation approach to pure component extrac-
tion is most often based on a linear mixture model. That is, mix-
ture spectra are assumed to be the unknown weighted linear
combination of pure component spectra. Herein, we have
addressed the problem related to extraction of pure compo-
nents from nonlinear mixtures of mass spectra. Thereby, the
number of mixtures is assumed to be (significantly) less than
the number of pure components. We propose an approach that
combines four preprocessing methods for suppression of higher-

order monomials induced by nonlinear mixing process and
sNMF in RKHS induced by EKM. Two practically important prop-
erties of the proposed approach are that no information about
the character of the nonlinear mixing process is required and
that the linear mixing problem is contained implicitly as a special
case. It is believed that these properties make the proposed
approach practically relevant for contemporary metabolic profil-
ing of biological samples, that is, pure component extraction in
biomarker identification studies. The proposed approach is
demonstrated on demanding numerical and experimental
scenarios. In the last case, related to chemical reaction of

Table II. Comparative performance analysis of NMU, NMF_L0, EKM-NMU, PTs-EKM-NMU (D= T=9901) and PTs-EKM-NMU
(D=4000) algorithms of nine experimental nonlinear mixture mass spectra related to peptide synthesis

NMU NMF_L0 EKM-NMU PTs-EKM-NMU PTs-EKM-NMU

D= T= 9901 D= 4000

Correlation≥ 0.6 8 14 16 18 18
Mean correlation 0.342 0.518 0.673 0.702 0.708
Minimal correlation 0.038 0.039 0.267 0.419 0.283
Incorrect assignments 15 7 0 0 1
CPU time 1.3 s 40 s 78.78 h 4× 78 h 4× 13.7 h

The number of pure components equals 25. The four metrics used in comparative performance analysis were number of associated
components with normalized correlation coefficient greater than or equal to 0.6, mean value of correlation coefficient over all
associated components, minimal value of correlation coefficient and number of pure components assigned incorrectly (which
occurs because of poor separation). The best result in each metric is in bold. The first three metrics are calculated only for correctly
assigned components.

Figure 5. Experimental study for pure components 1, 4, 8 and 11. Estimated histograms (stars) versus exponential probability density functions
(squares), calculated with the estimates of mean values shown in Figure 4 (right), fitted to amplitude histograms.
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synthesis of peptides, components separated from nine
nonlinear mixture mass spectra are assigned uniquely to 25 pure
components from the library. On the same problem, separation
by linear NMF algorithms yielded 15 (NMU) and 7 (NMF_L0)
incorrectly assigned components.
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